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Age is the single largest factor underlying the onset of many 
cancers1. Age-related accumulation and clonal expansion 
of cancer-associated somatic mutations in healthy tissues 

has been posited recently as a pre-malignant status consistent with 
the multi-stage model of carcinogenesis2. However, the widespread 
presence of cancer-associated mutations in healthy tissues high-
lights the complexity of early detection and diagnosis of cancer3–7.

CHIP is defined as the clonal expansion of HSPCs in healthy 
aged individuals. CHIP affects more than 10% of individuals over 
the age of 60 years and is associated with an estimated ten-fold 
increased risk for the later onset of hematological neoplasms3–5. 
There is a clear benefit of detecting CHIP early for close clinical 
monitoring and early detection, as the association between clone 
size and malignancy progression is well-established5,8,9.

The particular mechanisms by which common mutations of 
CHIP—for example, DNMT3A and TET2—contribute to the pro-
gression of leukemia are still not understood, which hinders early 
diagnosis of CHIP on a gene or variant basis8,10–12. In clinical practice, 
CHIP is diagnosed by the presence of somatic mutations at variant 
allele frequencies (VAFs) of at least 2% in cancer-associated genes, 
that is in more than 4% of all blood cells8,13. Clonal fitness, defined as 
the proliferative advantage of stem cells carrying a mutation over cells 
carrying no or only neutral mutations, has emerged as an alternative 
clone-specific quantitative marker of CHIP14,15. As mutations in stem 
cells often drive leukemia5, we hypothesized that stem cell fitness 
contributes substantially to transformation from CHIP to leukemia.

Stratification of individuals to inform close clinical monitor-
ing for early detection or prevention of leukemia in the future will 
depend on the ability to accurately associate genes and their vari-
ants with progression to disease. However, it remains unresolved 
whether variant-specific or gene-specific fitness effects outweigh 
other factors contributing to variable progression among individu-
als, such as environment or genetics.

Hitherto, fitness effects have been predicted from large 
cross-sectional cohort data14,16. In this approach, single-timepoint 
data from many individuals are pooled to generate allele frequency 
distributions. Although this method allows the study of a large col-
lection of variants, pooling prevents estimation of an individual’s 
mutational fitness effects from cross-sectional data. Inferring fit-
ness from a single timepoint creates additional uncertainty about 
whether a mutation has arisen recently and has grown rapidly (high 
fitness advantage) or arose a long time ago and has grown slowly 
(low fitness advantage). With longitudinal samples, fitness effects of 
individual mutations can be estimated directly from the change in 
VAF over multiple timepoints.

In this study, we worked with longitudinal data from the Lothian 
Birth Cohort of 1921 (LBC1921) and the Lothian Birth Cohort of 
1936 (LBC1936)17. Such longitudinal data are rare worldwide owing 
to their participants’ older age (70–90 years) and their three-yearly 
follow-ups over 12 years in each cohort and over 21 years of total 
timespan. We developed a new framework for extracting fitness 
effects from longitudinal data using Bayesian inference. First, a 
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likelihood-based filter for time series data (LiFT) allowed us to 
segregate between sequencing artifacts or naturally drifting popu-
lations of cells and fast-growing clones. Second, we inferred the 
growth potential or fitness effects simultaneously for all growing 
mutations within each individual and also allowed for clones with 
multiple mutations if these are favored by Bayesian model compari-
son. We detected gene-specific fitness effects within our cohorts, 
highlighting the potential for personalized clinical management.

Results
Longitudinal profiling of CHIP variants in advanced age. The 
Lothian Birth Cohorts (LBCs) of 1921 (n = 550) and 1936 (n = 1091) 
are two independent, longitudinal studies of aging with approxi-
mately three-yearly follow-up for five waves, from the age of 70 years 
(LBC1936) and 79 years (LBC1921)17. We previously identified 73 
participants with CHIP at wave 1 through whole-genome sequenc-
ing (WGS)18. Here, we used a targeted error-corrected sequencing 
approach using a 75-gene panel (ArcherDX/Invitae) to assess lon-
gitudinal changes in VAFs and clonal evolution over 21 years across 
both LBC cohorts (6 years in LBC1921 and 12 years in LBC1936; 
Supplementary Table 1). Error-corrected sequencing allowed accu-
rate quantification, providing more sensitive clonal outgrowth esti-
mates than our previous WGS data. We sequenced 248 LBC samples 
(85 individuals across 2–5 timepoints) and achieved a sequencing 
depth of 2,238× mean coverage (2,153× median) over all targeted 
sites with an average of 1.6 unique somatic variants (pan-cohort 
VAF 0.03–87%, median VAF 4.4%) detected per participant. We 
examined all participant-matched events across the time course: 
sequence quality control metrics revealed that only seven of 275 
data points failed to meet our quality criteria, likely due to low ini-
tial VAF. Most of our variant loci generally displayed a high number 
of supporting reads, with a mean of 258 (Extended Data Fig. 1a).

For our initial analysis, we retained variants with at least one 
timepoint at 2% VAF (Supplementary Table 2). DNMT3A was the 
most commonly mutated CHIP gene (n = 39 events in 33 partici-
pants), followed by TET2 (n = 18 events in 15 participants), JAK2 
(n = 8 events in eight participants) and ASXL1 (n = 3 events in three 
participants) (Fig. 1a–c and Extended Data Fig. 1e). Our mutation 
spectrum is consistent with previous studies in finding DNMT3A 
and TET2 as the most frequently mutated genes4,5. We detected 
some variants more frequently at certain hotspots within a gene, 
such as R882H in DNMT3A, with previously unreported vari-
ants being present as well (Fig. 1d–i and Supplementary Table 2)5.  
We most frequently detected missense mutations with several other 
key protein-altering event types ranking highly, including frame-
shift insertions and deletions and nonsense mutations (Fig. 1a–c).  
Participants broadly cluster together across their time course, 
driven by the expanding or stable VAF of their harbored mutations, 
underscoring the high prevalence and large clone size of common 
clonal hematopoietic drivers, namely DNMT3A, TET2 and JAK2 

(Fig. 1a–c). In the case of JAK2V617F, we identified two individuals 
who developed leukemia at wave 2 and received treatment between 
waves 2 and 3, likely driving a clear reduction in clone size (Fig. 1h). 
Those individuals were excluded from further analysis. In our data, 
we identified a lower frequency of mutations in splicing genes, such 
as SF3B1, despite the older age of the cohorts (Fig. 1a and Extended 
Data Fig. 1e). This is in contrast to previously published cohort data, 
where splicing mutations became more prominent with increased 
age19. Most mutations were missense, frameshift and nonsense 
mutations (Fig. 1b).

Overall, our sequencing approach allowed for high-resolution, 
longitudinal mapping of CHIP variants over 6-year and 12-year 
time spans in LBC1921 and LBC1936, respectively, and 21-year 
time span across both cohorts from the same geographical region 
and born 9 years apart.

Cataloguing of fitness effects for CHIP variants at >2% VAF. 
Stem cell fitness is defined as the proliferative advantage over cells 
carrying no or only neutral mutations. It remains incompletely 
understood to what extent fitness is gene-specific or variant-specific 
or determined by the bone marrow microenvironment and clonal 
composition. Earlier estimates suggested a wide spread of fitness 
effects even for variants of the same gene14, which would make it 
difficult to clinically stratify individuals with CHIP. To determine 
the fitness effects of the variants identified in our cohorts (Fig. 1a 
and Extended Data Fig. 1e), we initially selected all CHIP variants 
in our data using the commonly used criterion of defining any vari-
ants with VAF > 2% as CHIP8,13 and retaining only those variants 
with at least two timepoints (Fig. 2b). This approach identified 76 
CHIP mutations overall (Fig. 2c). To estimate the fitness effect that 
each variant confers, we used Bayesian inference and birth–death 
models of clonal dynamics (Fig. 2a), including all trajectories with 
at least two timepoints (Supplementary Table 3). The resulting fit-
ness values show an overall dependence of fitness on the gene level 
(Fig. 2d), with a wide distribution of fitness for some genes, such as 
TET2 and DNMT3A, but not others, such as JAK2 (which are all the 
same variant).

Longitudinal trajectories accurately stratify CHIP variants. 
Because longitudinal data allow direct quantification of the growth 
in VAF over time, we can inspect the gradients (fluctuations) in VAF 
for variants that were classified as CHIP based on thresholding. We 
found that a VAF > 2% threshold not only misses fast-growing and 
potentially harmful variants (Fig. 2b) but can also include variants 
whose frequencies are shrinking (Fig. 2b,c) and, thus, either do not 
confer a fitness advantage or are being outcompeted by other clones. 
Overall, 70% of CHIP mutations detected by thresholding at 2% VAF 
were growing during the observed time span (Fig. 2b,c). Longitudinal 
data, thus, reveal limitations in defining CHIP mutations based on a 
widely used VAF threshold.

Fig. 1 | Clonal hematopoiesis in the LBCs. a, Counts of unique events that exceeded 2% VAF across the range of the longitudinal cohorts in our panel of 
75 hematopoietic genes. b, Counts of the functional consequences of the unique events listed in Fig. 1a. Missense mutations, frameshift insertions and 
deletions and nonsense mutations are indicated. Exact counts, n, are for each category. c, Schematic of the top seven most affected genes in the cohort 
with the largest clone size of an event in any given gene shown. All affected participants were clustered across all timepoints, with the point size scaled 
by VAF and colored by the functional consequence of the variant (as per Fig. 1b and legend). d, Clone size trajectories of all DNMT3A mutations across 
the time series in both LBC1921 and LBC1936 colored by the functional consequence of the variant (as per Fig. 1b,c). e, Locations of somatic mutations 
discovered in DNMT3A. Protein-affecting events are marked and labeled across the structure of the gene (missense in red, truncating in purple, stacked 
for multiple events) with the structure of the gene labeled along the amino acid length of its protein. f. Clone size trajectories of all TET2 mutations across 
the time series in both LBC1921 and LBC1936 colored by the functional consequence of the variant (as per Fig. 1b,c). g, The locations of somatic mutations 
in TET2. Protein-affecting events are marked and labeled across the structure of the protein (missense in red, truncating in purple, stacked for multiple 
events). h, Clone size trajectories of all JAK2 mutations across the time series in both LBC1921 and LBC1936 colored by the functional consequence of the 
variant (as per Fig. 1b,c). Points marked in black denote timepoints after which the affected participant received treatment for leukemia. i, The locations 
of somatic mutations in JAK2. Protein-affecting events are marked and labeled across the structure of the protein (missense in red, truncating in purple, 
stacked for multiple events). All eight JAK2 mutations are p.Val617Phe (JAK2 V617F) missense variants. del, deltion; FS, frameshift; ins, insertion.
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To overcome the limitations of a threshold-based selection 
of fit variants, we sought to filter variants based on longitudinal 
information, by comparing a stochastic model of clonal dynamics 
with a model of sequencing artifacts (Fig. 3a). This novel approach, 
which we named LiFT, allows classification of fit variants even for 
VAF < 2%. LiFT classification of fit variants broadly agreed with 
noise profile statistics from the ArcherDX pipeline (Extended Data 
Fig. 2f,g) but identified additional variants by leveraging the longi-
tudinal nature of the data. LiFT classification resulted in 114 vari-
ant trajectories (Fig. 3b–d and Extended Data Fig. 2a–g), 86% of 
which grew over the observed time span. We note that the VAF of fit 
mutations may still shrink over time due to the presence of an even 
fitter clone in the same individual. This is in contrast to threshold-
ing at 2% VAF, with only 70% of variants identified to be growing 
and, thus, likely to confer a fitness advantage. Of the 114 variants 
we detected, 50 would not have been detected using the previous 
VAF threshold filter. We, therefore, recomputed fitness estimates 
for this new set of fit trajectories (Fig. 3e,f). Growing variants that 
were missed by the traditional filtering method include highly 
fit variants such as U2AF1 Q157R (fitness 33.5%) and DNMT3A 
R882H (fitness 16%) (Fig. 3c,g and Supplementary Table 4). VAF 
thresholding did not identify any TP53 variants. However, LiFT 
identified four TP53 mutations, all of which were growing over 
the observed time course (Fig. 3c,g and Supplementary Table 4). 
In addition, all of those were either termination/frameshift muta-
tions or previously reported as cancer-associated in the Catalogue 
of Somatic Mutations in Cancer (COSMIC)20 and classified as likely 
damaging (Supplementary Table 5). Moreover, all TP53 variants 
led to high fitness effects; thus, our filtering method allows us to 
identify potentially harmful variants at very low VAFs. Overall, the 
variants detected by LiFT were of higher fitness than those detected 
by VAF thresholding (Fig. 3f; Kruskal–Wallis H = 14, P = 1 × 10−4), 
with an even larger effect size when comparing variants that are 
exclusive to each filtering algorithm (Fig. 3f; Kruskal–Wallis 
H = 18, P = 1 × 10−5).

We further stratified variants using seven computational pre-
dictors recently identified as being most useful for identifying 
pathogenic mutations21–27 (Fig. 3g and Supplementary Table 5), 
categorizing the most prevalent CHIP variants into likely damag-
ing (21 variants), possibly damaging (20 variants) and likely benign  
(11 variants) as well as frameshifts and terminations (37 variants, 
which are also most likely damaging to protein structure and, thus, 
protein function; Supplementary Table 6). Our novel LiFT algo-
rithm, therefore, produces a low false discovery rate of pathogenic 
variants, with 88% of the detected fit variants being predicted to be 
possibly damaging, frameshift or termination.

Taken together, applying a probabilistic model of clonal dynam-
ics to longitudinal sequencing data results in a novel method— 
the LiFT algorithm—that improves on the threshold-based defini-
tion of CHIP mutations (Fig. 3a). The LiFT algorithm replaces an 

arbitrary cutoff on VAF by a choice of false discovery rate (through 
a Bayes factor threshold) and, as a result, selects fewer trajectories 
with shrinking VAF (Figs. 2b,c and 3b–d).

Clinical relevance of LiFT. We further analyzed differences in the 
distributions of fitness between genes using a non-parametric test. 
Despite having small sample sizes for many genes, we still detected 
statistically significant differences among the distributions of fit-
ness effects (Fig. 4a,b). In particular, we found that mutations in 
TP53, SF3B1 and SRSF2 conferred a higher fitness advantage over 
mutations in commonly mutated CHIP genes, such as JAK2 and 
DNMT3A. We also tested differences in fitness by genes when sum-
marized into functional categories and found trajectories of genes 
involved in DNA methylation to have lower fitness than genes 
involved in splicing and genes for transcription factors that are rel-
evant in development (Extended Data Fig. 3a,b).

Differences in the distribution of fitness allow us to predict the 
future growth of mutations from initial timepoints. For example, 
if a patient presents with a variant in a gene with 10% fitness at 
1% VAF, its growth could be confidently measured after 7 months  
(Fig. 4c), warranting a clinical follow-up over that timeframe to 
confirm or revise the fitness estimate. Conversely, the time between 
observations places a lower bound on the fitness that can be mea-
sured for mutations of a given VAF (Fig. 4d). These data can then 
inform on the timeframe for close clinical monitoring and early 
detection of disease.

Ableson et al.16 compared CHIP carriers who never developed 
acute myeloid leukemia (AML) with CHIP where individuals subse-
quently developed AML, and they found that the number of muta-
tions, the mutational burden and the size of the larger driver clone 
were associated with the risk of progression to AML. In the pres-
ent study, we carried out a survival analysis to correlate the maxi-
mum observed VAF of mutations and survival. This correlation 
was stronger in the older cohort (LBC1921) although not statisti-
cally significant (hazard ratio (HR) = 1.35; 95% confidence interval 
(CI) 0.83, 2.19; P = 0.23) due to the small sample size (Extended 
Data Fig. 3d and Supplementary Table 7). In the younger cohort 
(LBC1936), we found that survival better correlated with the speed 
of growth of a mutation, although this was, again, not statistically 
significant (HR = 1.35; 95% CI 0.76, 2.4; P = 0.3) (Extended Data 
Fig. 3d and Supplementary Table 7).

Notably, only two timepoints are necessary to apply LiFT, mak-
ing this a widely applicable method for existing cohorts and future 
studies (Extended Data Fig. 3c). We propose the use of LiFT over 
thresholding for clinical practice.

Discussion
The clinical potential for stratifying progression of CHIP depends 
on whether genes confer distinct fitness advantages. Indeed, most 
studies so far have not shown a clear distinction of fitness effects on 

Fig. 3 | LiFT allows classification of fit variants <2% VAF. a, Schematic of LiFT algorithm. LiFT compares a model of clonal dynamics (Fig. 1a) with an 
artifact model and performs Bayesian model selection. The subsequent steps to infer clonal structure and fitness distributions are as in Fig. 1a. b, Gradient in 
VAF versus VAF for variants detected in the LBCs with at least two timepoints and at least one VAF > 1% per trajectory, with filtered (orange), fit (blue) and 
synonymous (light green dots) mutations, classified by LiFT on a logarithmic scale. c, Longitudinal trajectories of fit (blue) and filtered (orange) mutations 
linked to age in years. d, Number of trajectories classified as fit by LiFT, broken down into increasing or decreasing VAF from first to last timepoint. e, Left, 
deterministic fit of all mutations selected by LiFT in an individual of the LBC cohorts using the inferred optimal clonal structure (Supplementary Information 
Methods, Appendix B). 90% CIs associated with binomial sampling noise are shown for each data point. VAF is displayed on a logarithmic scale. Right, 
posterior distribution of fitness associated to each clonal structure. f, Fitness effects of variants broken down by filtering method. The sample size, n, and 
statistical analyses comparing the distribution of fitness, computed using the non-parametric Kruskal–Wallis test, are highlighted (*H = 14, P = 1 × 10−4; 
**H = 18, P = 1 × 10−5). g, Fitness of variants selected as fit by LiFT broken down by their maximum VAF, >2% and <2%, and damage prediction. The top row 
displays a bar plot of variant counts for each category. The bottom row displays box plots showing the median and interquartile range of the distribution of 
MAP fitnesses by damaging prediction displayed on a logarithmic scale to emphasize relative differences in fitness between variants. Consequently, of a 
total of 89 variants with a damage prediction, 17 variants with fitness below 2% are not shown but are reported in Supplementary Tables 4–6. A marginal 
plot shows the Gaussian kernel density estimation of the MAP fitness values. fs, frameshifts; ter, terminations.
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a gene basis and have shown considerable overlap in fitness coef-
ficients among variants of different genes. We show that fitness can 
substantially differ by gene and gene category. Combining longitu-
dinal data with a new method to identify CHIP variants allows for 

more accurate fitness estimates of CHIP than cross-sectional cohort 
data and motivates further studies with increased sample sizes.

Our fitness estimates are independent of the time when  
the mutation was acquired. In cross-sectional studies, fitness 
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estimates are generally (inversely) correlated with the muta-
tion rate, introducing additional uncertainty14. In contrast, our  
fitness estimates are based on the observed growth among longi-
tudinal samples and, thus, also take into account other mutations 
in an individual. The resulting fitness estimates are largely inde-
pendent of hematopoietic stem cell absolute numbers (Extended 
Data Fig. 4b,c).

The strength of our approach, combining longitudinal data with 
our LiFT algorithm, is exemplified by U2AF1 and TP53, for which 
no variants were identified by a 2% VAF threshold (Fig. 2b,c). In 
contrast, our LiFT method identified one U2AF1 and four TP53 
variants, all of which are conferring a fitness advantage, scored as 
possibly damaging in our missense variant effect analysis and have 
been previously reported in COSMIC20 (Fig. 3g and Supplementary 
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Tables 4 and 5). Moreover, we pick up the DNMT3A R88H variant 
with LiFT but not with 2% VAF thresholding—a mutation that is 
well-reported in the context of leukemia28. Therefore, for patients 
with those variants, close clinical monitoring for early detection of 
disease such as leukemia is merited.

Combining longitudinal data with LiFT enables a personal-
ized approach managing CHIP (Extended Data Figs. 5 and 6). 
Longitudinal data allow quantifying fitness effects even for muta-
tions not seen in large cohorts, as cross-sectional fitness estimation 
requires a mutation to be observed in multiple individuals. Our 
method offers clinicians a way forward for patient stratification 
even for unique variants occurring in single individuals, because 
two timepoints for one individual suffice to estimate fitness, includ-
ing uncertainty quantification (Fig. 4e). We have provided a pre-
diction of the time required between first and second observations 
to be able to accurately infer fitness, depending on the initial VAF 
of a mutation in an individual (Fig. 4c). For high fitness muta-
tions (>10%), a follow-up clinical observation could be performed 
after only a few months, even for small clones (1% VAF or less). 
Conversely, the time between observations places a lower bound 
on the fitness that can be measured for mutations of a given VAF 
(Fig. 4d). In the future, these data can be used to inform time to 
the next appointment for close clinical monitoring of patients with 
clones containing highly fit variants, which will likely outcompete 
other clones. Using longitudinal data to better quantify and predict 
clonal progression in our study, however, comes with a tradeoff in 
the lower number of participants in our cohort and limits the power 
of cross-sectional analysis to find associations.

In addition, our inference method aims to resolve the clonal com-
position of multiple mutations in an individual. Specifically, we can 
now infer the likely co-occurrence of mutations from longitudinal 
data. Current cross-sectional studies do not take into account the 
clonal composition of individuals and, therefore, make predictions 
of the isolated effect of a mutation. In contrast, we are able to link 
fitness to clones carrying a specific combination of mutations that is 
unique to each individual, without relying on any prior knowledge 
of variant-specific fitness effects (Supplementary Table 4).
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Methods
Participant samples and ethics. This study complies with all relevant ethical 
regulations. The study protocol was approved by NHS Lothian (formerly Lothian 
Health). Informed consent was given by all participants. Ethics permission for 
LBC1936 was obtained from the Multi-Centre Research Ethics Committee for 
Scotland (wave 1: MREC/01/0/56), the Lothian Research Ethics Committee  
(wave 1: LREC/2003/2/29) and the Scotland A Research Ethics Committee (waves 2,  
3, 4 and 5: 07/MRE00/58). Ethics permission for LBC1921 was obtained from 
the Lothian Research Ethics Committee (wave 1: LREC/1998/4/183; wave 2: 
LREC/2003/7/23; wave 3: 1702/98/4/183) and the Scotland A Research Ethics 
Committee (waves 4 and 5: 10/MRE00/87).

LBC1921 contains a total of 550 participants at wave 1 of their testing 
(performed between 1999 and 2001) with a gender ratio of 234:316 (male:female) 
and a mean age at wave 1 of 79.1 years (s.d. = 0.6) (Supplementary Table 1)17. 
LBC1936 contains a total of 1,091 participants at wave 1 of their testing (performed 
between 2004 and 2007) with a gender ratio of 548:543 (male:female) and a mean 
age at wave 1 of 69.5 years (s.d. = 0.8) (Supplementary Table 1)17. We previously 
identified 73 participants with CHIP at wave 1 (ref. 18). We sequenced DNA from 
those 73 LBC participants using a targeted gene panel (Supplementary Table 8) and 
added 16 LBC participants with previously unidentified CHIP and 4–5 timepoints. 
We have accepted 85 of 89 participants for inclusion in our study, removing four 
participants for failing to meet quality criteria (low library complexity), with a 
total of 248 samples together with 14 ‘Genome in a Bottle’ (GIAB) controls, two 
per sequencing batch (Supplementary Table 9)29. In addition, two individuals 
carrying the JAK2V617F mutation received treatment for leukemia after the first 
respective timepoint available, potentially driving the observed reductions in clone 
size. Those patients were omitted from further analysis after sequencing (Fig. 1h).

Targeted, error-corrected sequencing and data filtering. DNA was extracted 
from Ethylenediaminetetraacetic acid (EDTA) whole blood using the Nucleon 
BACC3 kit (Sigma-Aldrich, GERPN8512), following the manufacturer’s 
instructions. Libraries were prepared from 200 ng of each DNA sample using the 
Archer VariantPlex® 75 Myeloid gene panel and VariantPlex® Somatic Protocol 
for Illumina sequencing (Invitae, AB0108, and VariantPlex®-HGC Myeloid Kit for 
Illumina; Supplementary Table 9), including modifications for detecting low allele 
frequencies. Sequencing of each pool was performed using the NextSeq 500/550 
High-Output version 2.5 (300 cycle) kit on the NextSeq 550 platform (Illumina). 
To inform reproducibility, background model for error and batch correction,  
we sequenced two GIAB DNA samples in each batch of samples (DNA NA12878, 
Coriell Institute)29.

Reads were filtered for phred ≥30 and adapters removed using Trimmomatic 
(version 0.27)30 before undergoing guided alignment to human genome assembly 
hg19 using bwa-mem (version 0.7.17)31 and bowtie2 (version 2.2.1)32. Unique 
molecular barcodes (ligated before PCR amplification) were used for read 
de-duplication to support quantitative multiplexed analysis and confident mutation 
detection. Within targeted regions, variants were called using three tools (Lofreq 
(version 2.1.0)33, Freebayes34 and Vision (ArcherDX version 6.2.7, unpublished)), 
building a consensus from the output of all callers (Supplementary Table 2).

All filtered variants at 2% VAF met the following criteria: (1) the number 
of reads supporting the alternative allele surpasses the coverage criteria while 
exhibiting no directional biases (AO ≥ 5, UAO ≥ 3); (2) variants are significantly 
underrepresented in the Genome Aggregation Database (gnomAD; P ≤ 0.05)35; 
(3) variants are not obviously germline variants (stable VAF across all waves 
~0.5 or ~1) that may have been underrepresented in the gnomAD due to the 
narrow geographical origin of the LBC participants; and (4) contain events that 
are overrepresented across the dataset—generally frameshift duplications and 
deletions—whose reads share some sequence homology to target regions yet are 
likely misaligned artifact from the capture method (Supplementary Table 2).  
In addition, we manually curated this list, checking for variants that were 
previously reported, as per Jaiswal et al.5, in COSMIC20 or in the published 
literature (Supplementary Table 10). Finally, for any variant that surpassed the 
above criteria at VAF ≥ 2% across the measured time period, we included other 
participant-matched data points regardless of VAF level (Extended Data Fig. 1a,b).

To further mitigate against the diverse sources of noise that can occur in any 
sequencing experiment, which can become especially problematic when attempting 
to detect variants at low VAFs, the ArcherDX variant-calling platform leverages 
the pan-dataset coverage levels of each sample and the GIAB controls to establish a 
position-specific noise profile and, thus, ascertain the limit of detection (LOD) for 
each variant discovered in our panel. Here, we report two parameters for each variant: 
(1) the minimal detectable allele fraction (95% MDAF; Extended Data Fig. 1c), which 
describes the minimum VAF that a variant can be detected in our data, in essence 
describing the LOD for each event; and (2) the VAF outlier P value, which denotes the 
probability that any variant call could have been generated by sequencing noise given 
the position-specific noise distribution across our GIAB controls and the pan-dataset 
coverage levels of our samples, thus allowing us to discern overrepresented 
sequencing artifacts from real events (Extended Data Fig. 1d).

Computational prediction of missense variant effects. To predict which missense 
variants are most likely to be damaging, we used seven computational variant 

effect predictors recently identified as being most useful for identifying pathogenic 
mutations21–27. Specifically, for each variant identified in this study, we determined 
what fraction of previously identified pathogenic and likely pathogenic missense 
variants from ClinVar and what fraction of variants observed in the human 
population from gnomAD version 2.1 for each computational predictor. We then 
averaged these fractions across all predictors. Note that DeepSequence26 was not 
run for all proteins due to its computational intensiveness and difficulty of running 
on long protein sequences. We also performed predictions of missense variant 
(de)stabilization using FoldX 5.0, using the experimentally determined protein 
structure, if available, and the AlphaFold model36,37.

Mathematical model of clonal dynamics to infer fitness. Given the longitudinal 
nature of this study, we can use the probabilistic solution of an established minimal 
model of cell division14,38 to infer the parameter distribution resulting in the 
observed time evolution of VAF trajectories in a participant’s genetic profile  
(Fig. 2a). For each individual, we simultaneously estimated the fitness of variants 
as well as the size of the stem cell pool, without needing to estimate the time of 
mutation acquisition.

In this model, cells exist in two states: stem cells (SCs) or differentiated cells 
(DCs). Under the assumption that DCs cannot revert to a SC state, differentiation 
inevitably leads to cell death and is treated as such. Furthermore, assuming that 
each SC produces the same amount of fully differentiated blood cells allows a 
direct comparison between the VAF of a variant as observed in blood samples 
and the number of SCs forming the genetic clone (clone size). For an individual 
with a collection of clones {ci}i∈I, the VAF evolution in time vi(t) of a clone 
ci corresponds to vi(t) =

ni(t)
2N(t), where vi(t) is the VAF of the variant at time t; 

ni(t) is the number of SCs carrying the variant; and N(t) corresponds to the 
total number of diploid HSPCs present in the individual. Finally, we assume 
that N(t) = Nw +

∑
i∈I ni(t), where Nw is the average number of wild-type 

HSPCs in the individual. The bias toward self-renewal of symmetric divisions is 
parameterized by parameter s and determines the fitness advantage of a clone. 
In normal hematopoiesis, s = 0, in which case clones undergo neutral drift. For 
clones with non-neutral (fitness-increasing) mutations, s > 0, and this average 
clone size grows exponentially in time as es(t−t0) from an initial population of 
one SC at the time of mutation acquisition t0. The full distribution of clone sizes 
is well-approximated by a negative binomial distribution matching the mean 
(exponential growth) and variance of the full stochastic solution (Supplementary 
Information Methods, section 1, and Extended Data Fig. 4a). Because the 
model dynamics are Markovian (without memory), once we condition on 
a previously observed timepoint in a trajectory, the prediction for all future 
times is independent of t0. From the predicted clone size distributions, we can 
infer the marginal posterior distribution of parameter s using Bayes’ theorem 
(Supplementary Information Methods, section 3)39. We further take into account 
the sampling error during sequencing to estimate the distribution of clone sizes at 
the start and end of each time interval in the longitudinal sequencing data. Here, 
we approximate this sampling error as binomial.

When multiple fit clones are present in an individual, we constrain the inference 
to share the SC pool size N(t) for all variant trajectories in this individual. This 
increases the data:parameter ratio and produces richer dynamics, where the evolution 
of exponentially growing clones can be suppressed by the growth of a fitter clone. This 
implies that even non-competitive models, where trajectories grow independently of 
each other, will result in competitive dynamics in the observed VAF trajectories as 
variants strive for dominance of the total production of blood cells.

We take into account possible clonal substructures for all fit variants in an 
individual, selecting models with co-occurring mutations on the same clone if they 
are more likely after biasing against models with multiple mutations per clone, 
as these are presumed to be rarer (Supplementary Information Methods, section 
2.4.7). The evidence supporting the optimal clonal structure, determined by 
Bayesian model comparison, relative to the model assuming no mutations co-occur 
on the same clone is shown in Extended Data Fig. 4d. We then infer the posterior 
fitness distributions per clone for the most likely clonal model in every participant.

Once we have inferred the posterior distributions of the parameters, we use 
the mode of the distribution (maximum a posteriori (MAP) estimate) for each 
mutation to visualize the deterministic—that is, average—growth curves. These 
result in the logistic time evolution of its corresponding VAF,

v(t) =
1

2 + 2Nwe−s(t−t0)
,

where we determine the time of mutation acquisition t0, which is used only for 
plotting, using maximum likelihood (Supplementary Information Methods, 
Appendix B). Although deterministic fits are not a direct reflection of the inference 
results of our stochastic model, these can be used to visually assess the ‘goodness 
of fit’ of the fitness MAP estimates and have been included for each participant in 
LBC1921 and LBC1936, respectively, in Extended Data Figs. 5 and 6.

Note that this model cannot account for loss-of-heterozygosity events.

LiFT. To select fit variants, we compare the likelihood of the clonal model, 
including binomial sampling error, to a model of sequencing artifacts. The artifact 
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model assumes that all variability arises from sampling error with a proportion 
that remains constant over time. For variants that occur more than once in our 
dataset, we use a beta-binomial model to account for overdispersion, and, for 
unique variants, we use a binomial model. We select variants as fit only if the 
model evidence for the clonal model is at least four times that of the artifact model 
(Supplementary Information Methods, section 2.4, and Extended Data Fig. 2c,d). 
Fit variants thus selected are taken through to clonal structure model selection and 
fitness inference as described above.

Workflow overview. A workflow chart describing the full pipeline and 
implementation guidance is included in the GitHub repository (see ‘Code 
availability’). Our pipeline can be applied to other datasets with a few adjustments. 
Our LiFT algorithm has been tailored to the LBC dataset by extracting parameters 
from the distribution of synonymous mutation reads, which inform the priors used 
for our Bayesian inference method (Supplementary Information Methods, section 
2.3.3, and Extended Data Fig. 2a–c). Guidance on how to adapt our LiFT algorithm 
to other datasets is included in the code repository. All other parts of the pipeline, 
including the extraction of variants using ArcherDx software and the inference of 
clonal structures and fitness, are directly applicable to other datasets.

Framework implementation. Both LiFT and Bayesian inference of the posterior 
distribution of model parameters were implemented in Python version 3.7 (ref. 40) 
with dependencies on Numpy version 1.21.5 (ref. 41), Scipy version 1.7.3 (ref. 42) 
and Pandas version 1.3.4. Survival analysis was implemented using Python version 
3.7 (ref. 40) with dependencies on lifelines version 0.26.4 (ref. 43). Data curation was 
undertaken in Python version 3.7 (ref. 40) and R base44, with use of the ‘tidyverse’45 
suite of packages and plotted with ggplot2 (ref. 46).

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
We have deposited all data pertinent to this analysis, including the de-identified 
raw FASTQ read data and processed variant calls for our longitudinal cohort, onto 
the National Center of Biotechnology Information Gene Expression Omnibus 
under accession ID GSE178936. LBC phenotypic data are available in the database 
of Genotypes and Phenotypes (dbGAP) under accession number phs000821.v1.p1. 
All other Lothian Birth Cohort data are deposited in dbGAP or are provided via 
the LBC Data Access Collaboration (https://www.ed.ac.uk/lothian-birth-cohorts/
data-access-collaboration). Information concerning the cohort is contained 
here, including its history, data summary tables for both LBC1921 and LBC1936 
and data access request forms and contact information to obtain all data points 
(contact: https://www.ed.ac.uk/profile/simon-cox, simon.cox@ed.ac.uk; timeframe: 
1 month to respond).

Code availability
All code used in this manuscript is available at https://github.com/neilrobertson/
LBC_ARCHER.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Quality Control Metrics. a. Sequence quality metrics for mutation calls across participants and time-points filtered for 2% VAF. 
Plotted are the AO (the number of sequenced reads supporting the alternative allele (mutation)) against the UAO (the number of sequenced reads with 
unique start sites that support the alternative allele - a measure of molecular complexity). Red dotted lines denote filter thresholds in both measurements 
(AO ≥ 5, UAO ≥ 3) and points are scaled by the VAF of the somatic mutation. Only 7 (of 275) data points failed to meet our filter criteria which were 
not excluded as they were supported with matching events across any participants’ time series. b. Box and jitter plot of the variant allele frequency of all 
observed events in the 1st Wave at 2% VAF coloured by variant classification and ordered by largest mean VAF showing the median and interquartile 
range. c. The 95% MDAF (Minimal Detectable Allele Fraction with 95% Confidence) versus the VAF for each event. All variants used in our analysis above 
2% VAF are scaled by their clone size and coloured by their functional consequence. Points in red are events that failed to pass our quality criteria and are 
removed from subsequent work. d. The VAF Outlier P-Value (describing the pan-cohort position-specific background noise) versus VAF for each event. All 
variants used in the analysis above 2% VAF are scaled by their clone size and coloured by their functional consequence. Points in red are events that failed 
to pass our quality criteria and are removed from subsequent work. All accepted events that exceed VAF Outlier P-Value > 0.1 are generally low VAF and 
are supported by matching events across the time-series that adhere to our acceptance criteria of VAF Outlier P-Value ≤ 0.1. e. Schematic of all affected 
genes in the cohort with the largest clone size of an event in any given gene shown above 2% VAF. All affected participants have been clustered across all 
time-points, with the point size scaled by VAF and coloured by the functional consequence of the variant (as per legend).
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | LiFT Method Details. a. Prior distributions for the beta-binomial model for sequencing artefacts. Priors are constructed separately 
for mutations with a single occurrence and mutations with multiple observations in the LBCs (see SI methods Section 2.3). b. Prior distribution of the 
proportion for the binomial model for sequencing artefacts. This prior is constructed only for mutations with a single occurrence in the LBC. c. Effect of the 
Bayes Factor (BF) threshold on the number of non-synonymous variants selected as fit using LiFT. In red, we show the results assuming that sequencing 
artefacts always follow a beta-binomial model, regardless of the mutation occurrence in the LBC. In green, we show the results where the sequencing 
artefact model assumes a binomial model for single occurring mutations and a beta-binomial model for mutations with multiple occurrences in the 
LBCs. d. Effect of the BF on the number of synonymous variants selected as fit using LiFT. Colour coding as in Fig. S2C. e. Longitudinal trajectories of non-
synonymous variants coloured by their LiFT status; fit (blue) and filtered (orange). f. Comparison between LiFT status and the VAF Outlier P-value. Each 
data point corresponds to a trajectory in the LBC and has been coloured according to its LiFT status; fit (blue) and filtered (orange). The coordinates of 
each data point are given by the average VAF Outlier p-Value and their average VAF. g. Comparison between LiFT status and the Minimal Detectable Allele 
Fraction (MDAF). Each data point corresponds to a trajectory in the LBC and has been coloured according to its LiFT status; fit (blue) and filtered (orange). 
The coordinates of each data point are given by the average MDAF and their average VAF. Note that the MDAF is shown on a logarithmic scale.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Clinical Relevance of LiFT - Supporting Material. a. Distribution of fitness by gene category. Genes are grouped according to their 
biological function into DNA methylation (TET2, DNMT3A), Splicing (SF3B1, U2AF1, SRSF2, U2AF2, ZRSR2, LUC7L2, DDX41), mitogenic function (KRAS, NF1, 
JAK2, JAK3, SH2B3, PTEN, PTPN11, NRAS), cohesin (RAD21, STAG2), DNA damage (TP53, CDKN2A, PPM1D, ATRX) and Transcription factors (TF) important 
during development (GATA2, RUNX1, NOTCH1, CUX1, ETV6). The sample size, n, of each gene category is denoted in brackets. For each gene category 
we display a boxplot showing the maximum a posteriori (MAP) estimates of fitness for variants in the category, as well as the median and exclusive 
interquartile range. b. Analysis of variance of the maximum posterior fitness estimates across gene categories. Heatmap of all statistically significant 
(p < 0.05) Kruskal-Wallis H statistics, labelled by effect size, computed for all combinations of pairs of genes. The effect size is only shown for statistically 
significant relations. Variants with a fitness below 2% were left out of this study as our prediction classifies them as conferring no or a negligible fitness 
advantage. c. Influence of the number of time-points in a trajectory on the inferred fitness distributions. We show the maximum posterior estimates for 
genes DNMT3A and TET2 and for all LiFT variants split according to the number of time-points. d. Survival analysis (Cox proportional hazards regression 
model) broken down by cohort and covariates. LBC1921 and LBC1936 are analysed separately given their difference in age during the observed time-
span. (left) Error bar showing the inferred hazard ratio coefficient and 95% CI for each regression study, as well as the sample size, n, and the number of 
observed events in each analysis. Note that none of the survival analyses shown are statistically significant. The complete summary for each analysis is 
found in Supplementary Table 7. (right) Kaplan-Meyer survival plots for the LBC cohort stratified using 2 standard deviations of the analysed covariate.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Clonal Dynamics and Inference - Supporting Material. . a. Approximation of a neutral birth-death model using the negative 
binomial distribution. The exact model assumes symmetric divisions occur every 40 weeks, or 1.3 divisions per year, and has no bias towards self-
renewal (see SI methods Section 1). b. Deterministic trajectory (see SI methods Appendix B) with maximum a posteriori (MAP) fitness and fitted time 
of mutation (left) and joint posterior distribution of fitness and number of wild-type HSPCs population (right) inferred from an individual with a single 
mutation selected by LiFT. 90% confidence intervals associated with binomial sampling noise are shown for each data point. Note that VAF is displayed 
on a logarithmic scale to highlight relative differences and the initial exponential growth of clones. Also note that a small random horizontal jitter has 
been added to data points to avoid overlapping of confidence intervals. c. Deterministic trajectory (see SI methods Appendix B) with maximum posterior 
fitness and fitted time of mutation (left) and joint posterior distribution of fitnesses and number of wild-type HSPCs inferred from an individual with 
three mutations, selected by LiFT, occurring in two clones. 90% confidence intervals associated with binomial sampling noise are shown for each data 
point. Note that VAF is displayed on a logarithmic scale to highlight relative differences and the initial exponential growth of clones. Also note that a small 
random horizontal jitter has been added to data points to avoid overlapping of confidence intervals. d. Evidence supporting the clonal structure selected by 
our Bayesian model comparison relative to the model assuming no mutations co-occur on the same clone. The evidence is only shown for non-trivial cases 
where more than one mutation was selected by LiFT in an individual.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Deterministic Visualisation of Mutational Trajectories in the LBC21. a. Deterministic trajectories (see SI methods Appendix B) 
with maximum a posteriori (MAP) fitness and wild-type stem cells and fitted time of mutation (left) and posterior distribution of fitness associated to 
each clonal structure (right) inferred for all mutations selected by LiFT in each participant of the LBC1921 cohort. 90% confidence intervals associated 
with binomial sampling noise are shown for each data point. Note that VAF is displayed on a logarithmic scale to highlight relative differences and the 
initial exponential growth of clones. To use a logarithmic axis, data points with zero observations have been replaced by VAF = 0.001, or a factor of 
10 below our observation threshold. Also note that a small random horizontal jitter has been added to data points to avoid overlapping of confidence 
intervals.
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Extended Data Fig. 6 | Deterministic Visualisation of Mutational Trajectories in the LBC36. a. Deterministic trajectories (see SI methods Appendix B) 
with maximum a posteriori (MAP) fitness and wild-type stem cells and fitted time of mutation (left) and posterior distribution of fitness associated to 
each clonal structure (right) inferred for all mutations selected by LiFT in each participant of the LBC1936 cohort. 90% confidence intervals associated 
with binomial sampling noise are shown for each data point. Note that VAF is displayed on a logarithmic scale to highlight relative differences and the 
initial exponential growth of clones. To use a logarithmic axis, data points with zero observations have been replaced by VAF = 0.001, or a factor of 
10 below our observation threshold. Also note that a small random horizontal jitter has been added to data points to avoid overlapping of confidence 
intervals.
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