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ABSTRACT

The MalaCards human disease database (http://www.
malacards.org/) is an integrated compendium of an-
notated diseases mined from 68 data sources. MalaC-
ards has a web card for each of ∼20 000 dis-
ease entries, in six global categories. It portrays
a broad array of annotation topics in 15 sections,
including Summaries, Symptoms, Anatomical Con-
text, Drugs, Genetic Tests, Variations and Publica-
tions. The Aliases and Classifications section re-
flects an algorithm for disease name integration
across often-conflicting sources, providing effec-
tive annotation consolidation. A central feature is
a balanced Genes section, with scores reflecting
the strength of disease-gene associations. This is
accompanied by other gene-related disease infor-
mation such as pathways, mouse phenotypes and
GO-terms, stemming from MalaCards’ affiliation with
the GeneCards Suite of databases. MalaCards’ ca-
pacity to inter-link information from complementary
sources, along with its elaborate search function,
relational database infrastructure and convenient
data dumps, allows it to tackle its rich disease an-
notation landscape, and facilitates systems analy-
ses and genome sequence interpretation. MalaCards
adopts a ‘flat’ disease-card approach, but each card
is mapped to popular hierarchical ontologies (e.g.
International Classification of Diseases, Human Phe-
notype Ontology and Unified Medical Language Sys-
tem) and also contains information about multi-level
relations among diseases, thereby providing an op-
timal tool for disease representation and scrutiny.

INTRODUCTION

With the advent of new high-throughput technologies
in both research and clinical domains, new data across
many fields pertaining to diseases are generated. While this
presents opportunities for discovery, it also brings about
new challenges in disease data acquisition, processing and
unification. In 2013, we released MalaCards, an integrated
compendium of diseases and their annotations (1). MalaC-
ards tackles many of the problems that stem from the com-
plexity of disease data and from the multiplicity of informa-
tion sources. This is accomplished by employing sophisti-
cated data-mining strategies modelled after the widely-used
GeneCards database (2,3). The present report reviews these
ongoing strategies, and highlights improvements and new
implementations. One important change is an increase from
44 data sources in 2013 to 68 today.

One of the key issues in disease data integration is disease
nomenclature, whereby very often a disease is named dif-
ferently in different databases. MalaCards overcomes this
difficulty by employing an elaborate aliases system, so that
practically every name appears as a listed alias. This multi-
faceted approach is also reflected in MalaCards’ striving to
portray complementary information, sometime at the price
of a certain degree of redundancy, such as when showing
multiple complete summaries from different sources. This
approach optimizes the capacity of MalaCards to maximize
the complete portrayal of disease attributes. This overview
trait is strengthened by the free text search that allows users
to present elaborate queries and effectively benefit from the
wealth of stored information.

In recent years, new high-throughput technologies have
greatly advanced the field of disease genetics and genomics.
MalaCards continues to address this challenge with its com-
prehensive Genes section, in line with the systems approach
that guides MalaCards. This section has undergone signif-
icant alterations, including score comparability among dis-
eases and the introduction of the concept of Elite disease-
gene association. In the same vein, the Drugs and Therapeu-
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tics section has been expanded, e.g. with clinical trials and
FDA-approved drugs. With these and other improvements,
MalaCards remains an invaluable tool for researchers and
clinicians alike. We describe the database creation process,
along with recent additions and improvements to the data
and web interface. MalaCards data are available online at
no cost, and through data dumps, upon request.

DISEASE DEFINITION

Disease unification

The MalaCards project constitutes an attempt to generate
a complete lexicon of all human diseases. This is a daunt-
ing task for many reasons, and, therefore, we regard it as
an effort to delineate a route toward attaining that goal.
The main challenge of such a task is to overcome the lex-
ical heterogeneity that prevails in the realm of diseases.
We selected ten disease databases to serve as disease-name
sources (Supplementary Table S1). In Version 1.11, these
primary sources include a total of 83 923 unique name and
alias strings, which underwent a textual unification process
(1), resulting in almost 20 000 disease name groups. An in-
herent part of the process is that in each group, one of the
names is defined as a ‘main name’ and the rest are defined
as ‘aliases’. The main names constitute the basis for the
MalaCards database, and define the titles of the ∼20 000
annotated disease web cards; each of them is called ‘MalaC-
ard’ – a card for a disease/malady. The remaining 50 560
terms populate the Aliases and Classifications section of the
cards.

In addition, there are 11 other data sources, defined as
secondary, whose names and aliases are used to supply ad-
ditional MalaCards aliases to existing cards, largely using
the same name mapping algorithm. One of these sources,
Unified Medical Language System (UMLS), is associated
with a different mapping algorithm, the MetaMap program
(4). Each MalaCards term (names and aliases) obtained
in the first round is submitted to the MetaMap program
with results restricted to UMLS concepts with semantic as-
signments of Pathologic Function, Cell or Molecular Dys-
function, Experimental Model of Disease, Disease or Syn-
drome, Mental or Behavioral Dysfunction and Neoplastic
Process. A term that generates a maximal MetaMap In-
dexing ranking function score of 1000 (details available at
http://skr.nlm.nih.gov/papers/references/ranking.pdf) to a
UMLS concept is accepted as a legitimate alias for MalaC-
ards. In total, 13 425 unique UMLS concepts were identified
and mapped onto 12 817 unique maladies in MalaCards.

The relational database behind MalaCards allows us to
perform extensive comparative analyses that help rational-
ize the relations among different disease compendia, includ-
ing MalaCards. One important facet of our unification pro-
cess is that MalaCards is fully inclusive: every disease en-
try in each of the data sources has a representation within
MalaCards. While there are no accepted standards for ob-
jectively defining several textual strings as representing the
same disease, which makes the MalaCards unification pro-
cess difficult, it nonetheless guarantees that MalaCards has
a remarkable capability to discover disease names from un-
related sources. We subjected MalaCards to an advanced

Figure 1. Overlaps among disease sources. (A) Venn diagram for the four
major MalaCards name sources, according to MalaCards mapping. (B) A
symmetric matrix showing the number of overlapping diseases between all
pairs of primary name sources according to MalaCards mapping. Shad-
ing (as per color bar) and numerals represent degree of overlap in disease
counts. Source abbreviations: DO– Disease Ontology, GR- Gene Reviews,
NIH RD– NIH Rare Diseases, GT- GeneTests, GHR- Genetic Home Ref-
erence, NINDS– National Institute of Neurological Disorders and Stroke.

search on 1000 randomly-selected disease names from Dis-
GeNET (5). Searching for an exact match to MalaCards
main names, main names and aliases, and all fields, respec-
tively yielded results in 49%, 83% and 90% of the queries.

The MalaCards naming process provides a capacity
to analytically compare disease coverage among different
databases. One analysis involves four main data sources,
with ∼6000 entries each (Figure 1A). It highlights the ap-
parent name heterogeneity represented in these sources,
whereby 40–70% of all entries are singletons, i.e. not unified
with entries from other sources. Only 2282 entries are suc-
cessfully unified among 3 or 4 of the sources. Another anal-
ysis (Figure 1B) portrays an all-against-all overlap in dis-
ease coverage among MalaCards and its ten primary nam-
ing data sources. It is evident that MalaCards successfully
integrates partially overlapping sources, bringing forth the
most comprehensive collection of disease entries. The dif-
ferent source sizes and varying patterns of overlap are likely
related to differences in topical focus and granularity of dis-
ease definition.

http://skr.nlm.nih.gov/papers/references/ranking.pdf
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In one example, the overlap between Orphanet and
OMIM is 2421 diseases, and between MalaCards and
OMIM it is 6060 diseases (the entire OMIM disease count),
probably due to Orphanet’s policy of unifying several
OMIM disease subtypes into one entry. However, as the
overlap between Orphanet and MalaCards comprises 6720
diseases, there may be as many as 660 diseases that ap-
pear in both of the latter databases, but not in OMIM. The
non-OMIM diseases show a disease category distribution as
shown in Supplementary Figure S1, suggesting that many
such missing diseases are either cancers, or fetal or infec-
tious diseases.

Disease relatedness

Each disease defined by the naming and unification pro-
cess is subsequently assigned a hierarchy of disease related-
ness layers as follows: (i) Disease aliases (synonyms), shown
in the Aliases and Classifications section. This section also
contains a list of external identifiers that facilitates mapping
and navigation in additional data facilities. The aliases con-
stitute a rich source of nomenclature stemming from disease
names in sources other than the one selected to define the
disease’s main name, as well as declared aliases in all rele-
vant sources. (ii) Disease families. These are molded after
the concept of phenotypic series in OMIM (6), generated
via an in-house text-mining algorithm that highlights cases
in which several diseases bear the same name, but with mod-
ifiers such as serial numeral/letter, type indication or inheri-
tance mode. MalaCards defines 1299 families with 4.8 ± 8.3
members (range 2–132), including a total of 6292 diseases.
(iii) Related diseases, where B is defined to be a related dis-
ease for disease A if the disease name A is mentioned ver-
batim, and in any section, in the MalaCard for disease B.
Additional relatedness links are discovered by seeking sig-
nificant gene sharing between the two diseases as seen in
GeneAnaltytics (7). A composite relatedness score is gen-
erated and defines the top 20 related diseases portrayed in
each MalaCard’s weighted network image (see (8) for de-
tails). (iv) Disease SuperPaths, currently en route to imple-
mentation. These are generated from the gene-disease ma-
trix (see Gene-disease connections below). The basic con-
cept is defining a ‘disease pathway’ to be the group of genes
related to a disease. We have shown that such pathways con-
tain new information with respect to standard biological
pathways (Rappaport et al., submitted). Adapting an al-
gorithm previously constructed for the unification of bio-
logical pathways from different data sources (9), we obtain
optimal disease SuperPaths, which afford the discovery of
novel gene-disease and disease-disease relationships across
a network path that spans several disease-gene and gene-
disease edges. This approach may be extended in the future
to topological calculations such as the disease-gene network
distance of two diseases or of two genes.

Another form of disease-disease connection shown in the
Related Diseases section is co-morbidity. A set of disease co-
morbidity relationships (with P < 0.01) was obtained from
the Phenotypic Disease Network (PDN) (10). These dis-
eases are identified with ICD9 codes in the PDN. The ICD9
codes were used to identify the corresponding UMLS con-
cepts that were checked against the list of UMLS concepts

mapped to maladies. A total of 4989 relationships mod-
elling co-morbidity of unique 741 MalaCards diseases were
mapped.

ANNOTATIONS

Following the unification process, a MalaCard is generated
for each amalgamated disease. It displays a disease web-
card with diverse annotative information and provides an
entry point for disease information, integrating textual in-
formation, disease network graphics, keywords and links to
other databases. The card is divided into 15 sections. The
left sidebar includes the list of sources contributing to the
specific section in the specific disease. A ‘Jump to section’
element exists in each section header for easy navigation to
different sections.

MalaCards employs several different methods to anno-
tate its disease cards: (i) Direct mining of relevant text from
a ‘named’ target source, i.e. one for which the unification
process has generated a relationship between a MalaC-
ards name and the source’s disease name. This is exem-
plified by summaries from Genetic Home Reference, or
symptoms from Disease Ontology (DO). (ii) Text mining
for the MalaCards name in a target source, followed by
mining of the required information, e.g. publications from
PubMed, whereby the MalaCards name is matched within
the PubMed title to associate publications with a disease.
(iii) Identifier links connecting a MalaCard to a record tar-
get source, followed by information mining, as exemplified
by variations from ClinVar. (iv) Manual curation of specific
sections in a target source followed by obtainment of spe-
cific annotations. This is done in the case of disease-related
drugs obtained from FDA.gov. (v) Set enrichment analy-
sis via GeneAnalytics (7), by probing the overlap between
genes associated with an entity in GeneCards (e.g. path-
ways, GO terms and mouse phenotypes) and disease-related
genes. Where possible, annotative elements in the different
sections are scored and prioritized based on their relevance
level, and deep links to the sources of information are given.

Quality assurance

Automatic data mining affords rapid extraction and an-
notation of large amounts of data from multiple sources.
This is nearly unavoidable for a project of MalaCards’ mag-
nitude. However, automated mining methods may lead to
both false positive and false negative annotations, which
could result, among others, in improper disease unification.
The search results minicards mechanism (see below), which
shows the exact hit context, enables crowd-sourced elimina-
tion of some of these errors. In addition, quality assurance
is instituted on every MalaCards update and version (we
currently aim for three major versions per year, with addi-
tional interim updates). This QA includes automatic checks
on database integrity and comparisons to previous versions.
In addition, a dedicated team member and part-time con-
sultants perform sample manual curation.

Symptoms and phenotypes

Key disease annotations are symptoms and phenotypes
which typically represent changes from normal function or
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appearance. MalaCards currently obtains such information
from five sources, four in the Symptoms section and one
in the Animal Models section (mouse phenotypes). MalaC-
ards shows the following: (i) Human Phenotype Ontology
(HPO) phenotype entries of aspect ‘O’ (Phenotypic abnor-
mality) (11). These are displayed in a table with pheno-
type description, frequency among the diseased individ-
uals and source accession. (ii) DO symptoms (12), using
the ‘has symptom’ relationship. (iii) Orphanet (13) clinical
signs. Recently, Orphanet has added HPO terminology, and
this will be shown in MalaCards 1.12, assisting future uni-
fication. (iv) UMLS symptoms using semantic type assign-
ment of Sign or Symptom. A total of 1868 distinct UMLS
symptoms were mapped to 4619 distinct maladies via 21 675
relationships. (v) OMIM symptoms, included as links to the
Clinical Features and Clinical Synopsis section. (vi) Mouse
phenotypes are brought in from Mouse Genome Informat-
ics (14). We note that the distinction between diseases and
symptoms is not always well defined, hence the same tex-
tual terms may appear as symptoms for disease A and a
MalaCards name for disease B (e.g. Glaucoma for Marfan
syndrome).

Drugs and therapeutics

The Drugs and Therapeutics section has recently undergone
considerable improvement, increasing the number of sub-
sections from 2 to 7. This provides the user with a multi-
source overview in a central information domain for dis-
eases. Described below are the Drug and Therapeutics ta-
bles shown in MalaCards.

i) A table based on the ClinicalTrials.gov registry. To
obtain drug-disease connection we first mapped the
source’s conditions to MalaCards disease names us-
ing our name unification algorithm. Since ClinicalTri-
als.gov shows a list of clinical trials for each condition,
and, in turn, includes a list of drug interventions for ev-
ery clinical trial, we were able to generate a unique list
of drugs for every MalaCard. The drug expandable ta-
ble is further enriched with drug integrated annotations
drawn from GeneCards drugs data, including a compre-
hensive drug synonym list, as well as trial phase and sta-
tus (by which the table is sorted), CAS Registry Number
and PubChem ID. A total of 8005 distinct diseases were
mapped to 3017 distinct drugs via 966 338 relationships.

ii) A table based on combined information from the
UMLS. Since UMLS concepts are mapped onto
MalaCards names, UMLS drugs, based on the Na-
tional Drug File-Reference Terminology (NDF-RT)
(15) can also be mapped to MalaCards diseases. For
each mapped UMLS concept, all relationships that
have an attribute of ‘may treat’ and semantic type
assignment of ‘pharmacologic substance’ were exam-
ined. There were 1772 unique drug concepts that were
mapped to 3080 unique maladies in MalaCards.

iii) A manually curated table for cancer and respiratory
drugs from FDA labels (http://labels.fda.gov/). The
connection between the label drug indication in this
source and the MalaCards name was curated manu-
ally. The table includes drug name, active ingredient(s),

pharmaceutical company and approval date. In an ex-
panded view, users may view information and sum-
maries on the FDA label, indication and usage, drug
target(s) from DrugBank and mechanism of action.
This effort is being extended to additional diseases cat-
egories.

iv) A table showing interventional clinical trial records
from the ClinicalTrials.gov registry, mapped onto the
specific disease by applying the name unification pro-
cess on the aforementioned condition list. The table in-
cludes the title, status, phase and ID of the clinical trial.

In addition, the section contains (i) a link to a search
of the disease name within the NIH clinical center (http:
//clinicalcenter.nih.gov/), yielding additional information
regarding clinical trials; (ii) Cell-based therapeutic ap-
proaches from LifeMap Discovery (16), which include
stem-cell-based therapeutics, and Embryonic/adult cul-
tured cells (candidate therapeutic approaches); and (iii) a
link to Mesh lookup in the Cochrane library of evidence-
based medicine (17), which provides evidence enabling in-
formed healthcare decision-making.

Categories and classification

To enhance its navigation and analysis capacities, we have
added categorization and classification features to MalaC-
ards, most of which appear in the Aliases and Classifications
section. The first feature is disease characteristics, which in-
cludes mortality, age of onset, age of death and mode of in-
heritance, taken from HPO (11) (aspects ‘I’, ‘C’ and ‘M’)
and Orphanet (epidemiological data, available at http://
www.orphadata.org/cgi-bin/index.php/). Secondly, we dis-
play disease classifications: an International Classifications
of Diseases (ICD10) tree (18), mapped to the disease using
naming as well as identifier matching through intermedi-
ary source identifiers; and Orphanet classification for the
disease, based on MalaCards name mapping. Thirdly, we
show in-house MalaCards categories, including 6 general
disease categories (rare, genetic, cancer, metabolic, fetal and
infectious), as well as 18 major organ/tissue categories, with
some degree of inter-category overlap. These are generated
by mapping to accepted classification sources (e.g. DO, Or-
phanet, ICD10) as well as by mining specialized keywords
in disease names and descriptions. Special pages list all dis-
eases for each category, sorted by relevance, and including
the members of each family, all of which, by a MalaCards
rule, share the same category affiliations. Finally, MalaC-
ards shows in the Anatomical Context section several data
entries related to more detailed disease-tissue relationships.
These include the in-house MalaCards organs/tissues re-
lations selected from a broader repertoire of 82 anatomi-
cal entities, obtained by extensive text mining of individual
cards; Foundational Model of Anatomy (FMA) ontology
data connected to the disease via DO; Assignment of the
cells, compartments, and organs relevant to the disease, ob-
tained from LifeMap Discovery (16).

Summaries and publications

These annotations provide textual information pertaining
to each disease in MalaCards. We have ten sources for

http://labels.fda.gov/
http://clinicalcenter.nih.gov/
http://www.orphadata.org/cgi-bin/index.php/
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Figure 2. Distributions for disease-gene relations. Solid black – diseases
per gene, dashed black – genes per disease, solid grey – diseases per elite
gene, dashed grey – elite genes per disease.

entries in the Summaries section, including definition of
the disease, etiology and main symptoms. This section is
a major strength of MalaCards, as it brings under one
roof a diversity of viewpoints, with different degrees of res-
olution and different levels of detail, providing the user
with a multisource overview of the disease. Summaries
are mapped in several ways, depending on the informa-
tion source. For example, the Wikipedia summary is linked
by searching for the MalaCards main name, using the
MediaWiki search API (https://www.mediawiki.org/wiki/
API:Search), and the SwissProtKB summary (http://www.
uniprot.org/docs/humdisease) is linked by cross-referencing
to the OMIM ID. Also included is MalaCards’ in-house au-
tomatically generated summary that judiciously groups cen-
tral annotations in the specific card into a descriptive text.

The Publications sections shows a total of ∼2 000 000
articles associated with MalaCards diseases, obtained by
searching appearances of all of the disease main names
within all PubMed paper titles using the PubMed API (19).
Publications are sorted according to descending date. All
summaries and publication titles are searchable, and article
abstracts will soon be added to the searchable index.

GENE-DISEASE CONNECTIONS

Disease genes

Each disease in MalaCards is associated with a priori-
tized list of genes, obtained from nine sources and shown
in MalaCards’ Genes section. This basically defines the
GeneCards Suite’s gene-disease matrix, fully available via
the ‘disease genes’ link on the in GeneCards home page,
and is reflected in the GeneCards Disorders section of ev-
ery relevant gene. The gene disease matrix currently con-
nects 10 198 genes with 13 619 disease entries, spanning
1 to 318 genes per disease, and 1 to 386 diseases per gene
(Figure 2). The sources for gene-disease relations are both

manually-curated (e.g. OMIM, Orphanet, SwissProtKB)
and text-mined resources (e.g. DISEASES (20), Novoseek
(21)). For the latter type, MalaCards links to evidence-
providing publications. The gene-disease priority scores are
assigned both by the significance ascribed at the mined
source, and by search scores strength for each associa-
tion. This is accomplished by defining an overall disease-
gene score SDG, computed as a weighted sum of individual
scores derived from eight sources of information: OMIM,
ClinVar, Orphanet, SwissProt-Humsavar, GeneTests, DIS-
EASES, Novoseek and GeneCards, as described (Rappa-
port et al., Submitted). The individual score values depend
on the level of manual curation of the information source,
and on the confidence score assigned by the source to its dif-
ferent annotation classes. In MalaCards we further define
an ‘elite’ gene for a disease as a gene with SDG > 2.5, and
the overall score is designed to assure that gene-disease rela-
tions above this threshold come from at least one manually-
curated source. Through a recent improvement, disease-
gene connection scores are now comparable across differ-
ent diseases. A total of 73.6% of the gene disease associa-
tions are supported by GeneCards through a text mining
process in which the disease main name is mined from the
cards of the genes in GeneCards by using a non-stemmed
Solr index (http://lucene.apache.org/solr/) and Elasticsearch
queries (https://www.elastic.co/). Data filtering heuristics at
this stage reduce the noise level while retaining support for
75% of the elite associations. ‘Elite’ gene-disease associa-
tions are defined to be those from sources that are manually
curated and contain strong and reliable associations. In par-
allel, for cancer diseases, census genes from COSMIC (22)
are prominently tagged. We emphasize that the term ‘elite
gene’ purely reflects the evidence for the strength of disease-
gene association. It is not a gene annotation, as for or a
given gene, elite status may prevail for some diseases and not
others. Importantly, the implications column in the Genes
section’s table supplies evidence for the association, with
links to respective sources/relevant GeneCards sections.

Gene-related disease annotations

Several annotation entries in MalaCards depend on the dis-
ease gene list, and are briefly described as follows:

i) Disease-related genetic testing information, for both in-
herited and other disorders, are displayed in the Ge-
netic Tests section. This information is mined from two
resources, GeneTests (23) and the recently added Ge-
netic Testing Registry (24). These display a link to a
disease page in the external source, where related labo-
ratories and tests are listed. A future improvement will
include the mining of the identity of the specific labora-
tory and the properties of the specific tests relevant to
the disease. Notably, some of the tests in the linked dis-
ease pages constitute more broadly disposed gene pan-
els, and some are more specific for the disease.

ii) Disease-related Gene Ontology (GO) terms (25) of the
three classes––cellular component, biological process
and molecular function––are shown in a dedicated GO
Terms section. As in the case of related diseases, we
show here GO terms scored by relevance, based on Ge-

https://www.mediawiki.org/wiki/API:Search
http://www.uniprot.org/docs/humdisease
http://lucene.apache.org/solr/
https://www.elastic.co/
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neAnalytics gene-set analysis, which calculates signifi-
cant enrichment of GO terms in the gene set associated
with the disease (7,26).

iii) Disease-related biological pathways. This is a recent im-
provement, which included the GeneCards SuperPaths
(9) (clusters of individual pathways) enriched in the
gene set associated with the disease. The table displays
the SuperPaths along with their member pathways.

iv) In a pilot, we show expression information for over 100
human diseases. The data includes the most differen-
tially expressed genes (P-value threshold of 0.05, cor-
rected for multiple testing) in the diseased tissue versus
its matched normal tissue. The data are derived from
the gene expression omnibus and/or manually curated
from the scientific literature, extracted as described in
(16).

Genetic variations

Causative variations for a given disease are gleaned from
three sources, each shown in a separate table. Data from
ClinVar (27) include variation name with a link to the
information source, variation type, significance, dbSNP
ID, genome assembly and location. Variations are taken
from ClinVar only if most of its clinical significance at-
tributes belong to the set of pathogenic, risk factor, drug
response, protective, confers sensitivity or likely pathogenic.
Data from UniProtKB/Swiss-Prot (http://www.uniprot.
org/docs/humsavar) include nucleic acid and amino acid
change, dbSNP ID and a link to further details at the source.
For showing data from the catalogue of somatic mutations
in cancer (COSMIC) (28) we algorithmically mapped the
COSMIC cancer disease classification tags to MalaCards
names. This was done by searching the classification terms
in the following MC sections: Genes, Aliases and Classifi-
cations and Summaries, excluding non-specific terms like
‘mixed’, ‘NS’, etc. The variation score is a summation of
the number of hits of each of the tags. In the future, we plan
to unify the above three variations sources into one table.

SEARCH AND NAVIGATION

MalaCards aggregates textual annotations for each of its
diseases from 68 data sources. Much of this information is
included in the web card, and is indexed by the Lucene/Solr
search engine. Therefore, searching MalaCards provides
users with direct access to dozens of disease information
sources in one go, akin to crowd wisdom (29). The MalaC-
ards search provides a default set of section weights. For
example, the Aliases and Classifications section is boosted,
giving preference to keyword hits therein.

Conveniently, search results are initially shown in a for-
mat of one line per found-disease (microcards), showing dis-
ease name, family (parent/child) affiliation, relevance score
(provided by Solr) and a disease’s depth-of-annotation
score (MalaCards information score – MIFTS (1)). MIFTS,
reflects the amount of research devoted to a disease, hence,
in parallel to the search score provides assessment of the im-
portance of a disease among the search results. MIFTS also
allows an evaluation of MalaCards’ progress over the years
(Figure 3). This allows a quick view of the results, before

Figure 3. Distribution of MalaCards Information Score (MIFTS). Grey
– status in version 1.03 (2013), black – the current version 1.11. MIFTS
values have almost doubled, from an average of 12.2 ± 10.3 to 22.5 ± 16,
reflecting the progress made over three years in the knowledge recorded in
MalaCards.

proceeding. Clicking + in a microcard activates a recently
installed feature, showing a minicard with textual context
and section location for each of the found terms. Links are
provided to the corresponding locations in the full MalaC-
ard.

MalaCards search mechanism supports complex
Boolean expressions, wild cards, stemming and exact
match. A recently introduced advanced search enables
further power and specificity. In this mode, users can
limit the search to only match terms in one or more of
MalaCards formal sections, taking advantage of the card’s
formal sectioning. For example, limiting a search to the
‘Symptoms’ section will only bring up diseases in which the
keyword is formally defined as a symptom (‘symptomizer’
action). Finally, the ∼80 tables in the MalaCards SQL-
based relational database allow, in addition, a plethora
of sophisticated queries that enable the advanced user to
discern unexpected trends and relationships in the realm of
human disease.

COMPARISON WITH OTHER DATABASES

Ontologies

MalaCards has been constructed with the idea that each
of its entries (disease cards) is devoted to the comprehen-
sive coverage of a single topic – a defined disease. This is
in contrast to the concept of ontology, an organizational
system basically designed to portray the relationships be-
tween various concepts, as exemplified by GO, (25) DO (12)
and HPO (11). Ontologies are often represented as graph or
tree structures, whose navigation and utilization are often
not straightforward. The ‘flat’, basic design of MalaCards
is more akin to a glossary, whereby each record contains in-
formation on a single entry. This design provides a stable
skeleton for annotation and for searches, but at the same
time allows one to also define, when appropriate, relation-
ships among entries. This is manifested, among others, in

http://www.uniprot.org/docs/humsavar
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Figure 4. The average number of gene-disease associations across all com-
pared sources for the set of 37 compared diseases.

showing ontological relations as part of each card’s anno-
tations, and in MalaCards’ layers of relatedness.

Symptoms, phenotypes and diseases

A contributing factor to the complexity of the disease uni-
verse is that disease terminology and symptom/phenotype
terms are often used interchangeably. This may lead to dif-
ficulties in databases in which searches are confined to ei-
ther disease or symptom terms. MalaCards’ free text search
format allows user flexibility via side-by-side inclusion of
disease terms, as well as relevant symptom, phenotype and
condition keywords in every disease card. At the same
time, users wishing to focus on a specific keyword cate-
gory may take advantage of MalaCards’ advanced search.
Thus, the various search and exploration methods available
in MalaCards enable users to query and identify a disease
or condition based on disease, symptom, or phenotype in-
formation that are available in MalaCards, enabling users to
examine the relationships and current integration of knowl-
edge provided by MalaCards.

Disease genes comparison

Given the importance of gene-disease associations, much
research attention has been directed to improved algorithms
for generating such connections (5,20,30,31). In order to
evaluate MalaCards performance in this context, we per-
formed a comparison to six other disease data sources.
For the analysis we used a sample of 37 MalaCards dis-
eases that have exactly 10 related genes in MalaCards, and
are also mappable to all compared data sources. The aver-
age number of gene-disease associations mined from each
source is shown in Figure 4. It is evident that three of the
sources (OMIM, Orphanet and UniProtKB) have very few
genes (about one gene per disease) and three other (CTD,
DisGeNET and DISEASES) have a very large number of
genes per disease, ranging from 1 to 24 745. MalaCards as-
sumes a middle stand, representing a compromise between

Figure 5. Inter-source gene set comparison. (A) Left, black: Correlation
between MalaCards gene rank vector and the consensus rank; Right, grey:
Standard deviation of the difference between the MalaCards gene rank and
the consensus rank. (B) Left, black: The number of MalaCards gene dis-
ease association in the top 20 consensus rank; Right, grey: The maximal
consensus gene rank for a MalaCards gene. Raw data values for each dis-
ease are given in Supplementary Table S3.

paucity and promiscuity, thus providing a balanced number
of genes per disease. Our data mining mechanism assures
that MalaCards never misses any of the genes in the strin-
gent data sources, in fact, such genes are defined by MalaC-
ards as Elite genes for a disease, reflecting the evidence for
the strength of their association with such a disease.

The question at hand is whether MalaCards’ compromise
between the economy and opulence portrays a good selec-
tion of additional genes, as derived from the promiscuous
sources lists. We therefore examined, for each sample dis-
ease, the relationships between the MalaCards rank vector
and the across-source consensus rank for the same genes,
computed as an average rank across the 7 sources (includ-
ing MalaCards). In two of the 37 diseases, very strong devia-
tions from the consensus rank were found for some MalaC-
ards genes. These were traced to gene symbol errors or data
mining irregularities, and therefore these diseases were re-
moved from the analysis.

The analyses performed were as follows: (i) The average
Pearson correlation between the MalaCards ranks and the
consensus ranks was found to be 0.44 ± 0.37 (Figure 5A,
left). (ii) The average standard deviation of the differences
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between the MalaCards rank and the consensus rank was
5.00 ± 4.16 (Figure 5A, right). (iii) The average number of
MalaCards gene-disease association in the top 20 genes of
the consensus rank is 9.6 ± 0.7 (Figure 5B, left). (iv) The
average maximal consensus rank of a MalaCards gene was
18 ± 12.22 (Figure 5B, right, see also Supplementary Ta-
bles S2 and S3). All of these computed parameters attest to
MalaCards’ capacity to effectively capture the consensus of
all sources.

The great discrepancy between very few genes per dis-
ease in the stringent sources and thousands of genes per
disease in some automatically mined sources may be a cause
of great concern. The stringent sources serve an important
purpose in that they report only what is absolutely certain.
This raises the questions of why add more gene-disease re-
lations, and how many. We contend that the added dis-
ease genes are the basis of further research, whereby knowl-
edge about less-certain gene-disease relations feeds new dis-
coveries that make new relations more solid. This is done,
among other things, via NGS interpretation tools. However,
such tools suffer dearly from excess gene-disease promis-
cuity, and as MalaCards plays a central role in such tools
(see next chapter), its compromise approach becomes a ne-
cessity. We further note that MalaCards does not utilize
a simple-minded numerical cut-off values for deciding the
mid-range gene count ((8), Rappaport et al., Submitted),
and the number 10 mentioned in the foregoing analysis is
for an example disease subgroup and intended to facilitate
comparisons.

The two deviant diseases in Figure 5 portray interest-
ing cases of artefacts incurring in the defining related genes
for diseases. In one example, for van der Woude syndrome
the gene CFAP57 ranked 3 in MalaCards, but was not
present in any of the other sources. It turns out that CFAP57
is a new official HGNC symbol, with a previous symbol
being WDR65. Under the older symbol a disease link is
found in DISEASES (rank 4, Supplementary Table S2), but
none of the other databases shows the gene in either no-
tations. MalaCards benefits from GeneCards strict adher-
ence to HGNC symbols, including immediate adoption of
new symbols. In another example, for spinocerebellar ataxia
2 the gene ARID1B ranks 7 in MalaCards, but does not
appear in any of the other sources. The disease implica-
tion arises from an early publication (32) which is mined
by GeneCards, but not by any other source. We note that
this gene has never since been reconfirmed as related to the
disease, which may explain its absence from other sources
for the disease.

The foregoing portrayals reflect the discrepancy of infor-
mation between the resources integrated in MalaCards. The
capacity to discover irregularities such as for van der Woude
syndrome and spinocerebellar ataxia 2 is a powerful argu-
ment for developing tools like MalaCards, helping to allevi-
ate domains of community confusion or poor use of termi-
nology. In future work, a more comprehensive view of such
discrepancies, with references to the different data sources
provided by MalaCards, may be useful for further curation
of the disease data by the experts and/or scientific commu-
nity, including the development of tools for community cu-
ration.

USE CASES

Next generation sequencing

MalaCards data can be highly useful in analyzing clini-
cal NGS cases. A crucial step in such analyses is gene-
phenotype interpretation, which is performed subsequent
to initial variant annotation and filtering, which, among
other things, assigns variants to genes. NGS interpreta-
tion entails prioritizing the ensuing list of genes by seek-
ing relationships of every gene to the patient’s disease
and phenotype terms (33). As this process is gene-centric,
GeneCards is a natural candidate to assist in this goal.
However, until recently, a considerable segment of crucially
relevant information was present in MalaCards, but not
in GeneCards. We therefore launched a GeneCards Suite
modification, whereby information from three MalaCards
sections, Aliases, Summaries and Symptoms, was fully in-
tegrated into the GeneCards search index (Rappaport et
al., Submitted). This data enrichment is crucial for a com-
prehensive capacity to link genes with diseases and symp-
toms. Such a feature was then fully inherited by Var-
Elect, the GeneCards-based NGS interpretation tool of the
GeneCards Suite (34).

A relevant clinical example is the study of a patient af-
flicted with two seemingly disparate symptoms, distal motor
neuropathy and ichthyosis, investigated in the laboratory of
one of us (MG). A single affected individual, with suspected
X-linked inheritance, underwent whole exome sequencing.
After filtering for high protein impact and for control pop-
ulation frequency <0.01, about 1800 candidate variations
in 1284 genes were identified. This relatively long gene list
is typical of cases with only one sequenced individual and
limited capacity for segregation analysis. The entire gene
list was submitted to MalaCards-enriched VarElect, which
can easily handle lists of this length. Only one gene, an ion
pump, came out as jointly related to both phenotypes.

The decipherment of this disease highlighted the power
of combining MalaCards and GeneCards information. Be-
cause the joint appearance of both phenotypes has never
been reported in a single disease, a search in MalaCards
alone for ‘distal motor neuropathy’ and ‘ichthyosis’ showed
no results. However, VarElect provided a result because the
embedded MalaCards information pointed to two different
diseases, each with one of the phenotypes, but both related
to the same gene. We note that this is in the vein of disease
SuperPaths mentioned above, as we have here a case with
one gene linked to two diseases, each of which related to
more genes. Even a minute part of such a network is capa-
ble of shedding light on a previously undeciphered disease.

The applicability of MalaCards’ information to NGS in-
terpretation has been demonstrated in additional projects
(34). Currently, several hundred laboratories and clinical fa-
cilities worldwide utilize MalaCards-enriched VarElect to
interpret sequenced genomes and identify culprit diseases.

A strong recent trend is a move in NGS analyses from ex-
ome sequencing to whole genome sequencing (WGS) (35).
When an entire genome is sequenced, a great majority of
the variations are found away from protein coding exons.
MalaCards has a strong degree of readiness for WGS, as
its Genes section includes all cases in which ncRNA genes
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have been implicated in a disease. In an example, an ad-
vanced search for MIR* in the Genes section of the current
MalaCards version yields 25 diseases related to microRNA
genes. A more elaborate query performed on the MalaC-
ards MySQL database provides the result shown in Supple-
mentary Figure S2, whereby on average, 3.5% of all genes
in all disease categories are ncRNAs. This figure is expected
to increase significantly as WGS becomes more prevalent.
Finally, since with the advent of WGS, non-coding regula-
tory regions will be found to harbor variants, the MalaC-
ards Genes section will have to be improved to accommo-
date enhancers and their target genes, utilizing tools such as
GeneHancer (Fishilevich et al., In preparation), currently
being embedded in the GeneCards Suite.

Transcriptomics

Transcriptome analyses are often used to tackle disease or
condition mechanisms, where differential gene expression is
registered by comparing disease with control, as a means of
identifying disease-related genes. In one example (36), the
authors asked whether a brain region (Nucleus accumbens,
NAC), involved in natural rewards and addictions, was also
related to the emotional reward of motherhood. Utilizing
microarrays, NAC gene expression changes were monitored
in postpartum female mice as compared to virgin controls.
The MalaCards gene-disease matrix played a central role in
identifying 100 addiction/reward related genes, several of
which showing gene expression alterations. A second exam-
ple was aimed at identifying potential therapeutic targets for
papillary thyroid carcinoma (PTC) (37). Genes showing dif-
ferential expression between PTC patients and normal in-
dividuals were identified and subjected to further bioinfor-
matics analysis. MalaCards helped pinpoint six final candi-
date genes, all related to the disease.

Systems medicine

Due to its extremely broad knowledgebase, as well as so-
phisticated web search and database queries, MalaCards
constitutes an effective Systems Medicine tool (8). In one
example, MalaCards was used to assist transferring anno-
tations from one ontology (the ICD code) to another (GO),
aiming at integrating large-scale heterogeneous biomedi-
cal ontologies based on genomic relationships (38). The
authors reconstructed a merged tree of GO and ICD9
codes and positively assessed it by comparing it with two
disease-gene data sets (MalaCards and DO). A second ex-
ample involves the construction of RNA Binding Protein
(RBP) Expression and Disease Dynamics database (READ
DB), a non-redundant, curated database of human RBPs.
Adding to other RBP annotations such as RNA and protein
expression levels, RNA recognition motifs and predicted
binding targets, they included scored diseases associations
from MalaCards, providing the disease dynamics aspects of
RBPs in the context of post-transcriptional regulatory net-
works (39).

As mentioned under Disease relatedness layers above, it is
possible to define the group of genes related to a disease as a
‘disease pathway’, and such pathways provide new informa-
tion on gene mutual relations (Rappaport et al., Submitted).

In this respect, a global view of disease pathways may bring
forth new vistas on both genes and diseases. There are about
3000 biological pathways in GeneCards, obtained from 12
pathways sources, and these are unified into around 1000
SuperPaths. In comparison, the MalaCards gene-disease
matrix, when its rows are viewed as disease pathways, has
∼5000 entries with 3 or more genes per disease, and ∼1000
entries with 10 or more genes. The total number of genes is
equal, about 10 000. Thus, there is a comparable amount of
informative gene groupings in each of the types.

An exciting future direction for MalaCards is taking such
a comparison several steps further: one may ask how often
it is possible to predict the validity of a disease gene can-
didate based on its being in the same biological pathway
as a known gene for the same disease. Such ‘guilt by as-
sociation’ logic prevails in NGS analyses, including in Var-
Elect’s indirect mode (34). In the inverse direction, perhaps
there are numerous cases in which, having two genes in the
same disease pathway attests to a yet undiscovered biologi-
cal relationship between them. Finally, among systems anal-
yses empowered by MalaCards, one could address ques-
tions such the degree of symptom sharing among diseases
linked to the same gene (cf. (40)) using a broader network
than hitherto available.

A relevant tool in this respect is GenesLikeMe (previ-
ously GeneDecks Partner Hunter (26)), another GeneCards
Suite tools. Given a probe gene, GenesLikeMe provides
a scored list of genes that bear similarity to the probe.
This similarity is multi-dimensional, including similarities
by shared sequence paralogs, protein domains, protein and
RNA expression patterns across normal tissues, biological
SuperPaths, GO terms and more. GeneLikeMe also pro-
vides similarity according to disease pathway sharing (dis-
order sharing). For any pair of genes, one can thus ascertain
how many diseases include both genes in their gene list (dis-
ease pathway). This enables revealing disease-dependent,
perhaps unexpected, gene-to-gene relationships.

Links from external databases

MalaCards’ extensive coverage of both the disease and
gene universes makes it an effective target for incoming
links. Current incoming links include: The UCSC genome
browser (41), whereby relevant genes have disease track
links to the appropriate MalaCards, based on the gene-
disease matrix; Genetic Home Reference (GHR) (https://
ghr.nlm.nih.gov/), and Diseasecard (42), both originating
from their disease pages, employing MalaCards name uni-
fication scheme; PubMed LinkOuts (http://www.ncbi.nlm.
nih.gov/projects/linkout/) from ∼100 000 highly relevant
publications to the corresponding disease cards; UniPro-
tKB, from the ‘pathology & biotech’ section of a protein
card to relevant MalaCards, employing the gene-disease
matrix. Such links provide users of external gene and disease
databases access to considerable additional information.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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