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Abstract In gene expression profiling studies, including single-cell RNA sequencing (scRNA-seq)

analyses, the identification and characterization of co-expressed genes provides critical information

on cell identity and function. Gene co-expression clustering in scRNA-seq data presents certain

challenges. We show that commonly used methods for single-cell data are not capable of identifying

co-expressed genes accurately, and produce results that substantially limit biological expectations of

co-expressed genes. Herein, we present single-cell Latent-variable Model (scLM), a gene co-

clustering algorithm tailored to single-cell data that performs well at detecting gene clusters with

significant biologic context. Importantly, scLM can simultaneously cluster multiple single-cell data-

sets, i.e., consensus clustering, enabling users to leverage single-cell data from multiple sources for

novel comparative analysis. scLM takes raw count data as input and preserves biological variation

without being influenced by batch effects from multiple datasets. Results from both simulation data

and experimental data demonstrate that scLM outperforms the existing methods with considerably

improved accuracy. To illustrate the biological insights of scLM, we apply it to our in-house and

public experimental scRNA-seq datasets. scLM identifies novel functional gene modules and refines

cell states, which facilitates mechanism discovery and understanding of complex biosystems such as

cancers. A user-friendly R package with all the key features of the scLM method is available at

https://github.com/QSong-github/scLM.
Introduction

Co-expressed genes work in concert in biological pathways and
processes [1–3]. Such genes are involved in crucial biological
activities including immune cell activation [4,5], cellular

epithelial-mesenchymal transition (EMT) [6], and transcription
factor-mediated gene regulatory networks and signaling path-
ciences /

http://crossmark.crossref.org/dialog/?doi=10.1016/j.gpb.2020.09.002&domain=pdf
https://github.com/QSong-github/scLM
mailto:wezhang@wakehealth.edu
https://doi.org/10.1016/j.gpb.2020.09.002
http://www.sciencedirect.com
https://doi.org/10.1016/j.gpb.2020.09.002
http://creativecommons.org/licenses/by/4.0/


Song Q et al / scLM for Co-expressed Genes in Single-cell Data 331
ways [7,8]. Co-expression of genes based on similarities among
their expression profiles, has been a primary way to unravel
gene-gene relationships and facilitate functional annotation

[9–12]. Therefore, identification of co-expressed genes provides
functional insights into underlying cellular and molecular
mechanisms in normal and disease processes.

The recently developed single-cell RNA sequencing
(scRNA-seq) technology provides high resolution of gene
expression at the single-cell level [13], yet presents certain chal-

lenges for gene expression analysis [14]. In contrast to bulk
RNA-seq, single-cell data have been shown to exhibit a
characteristic negative binomial (NB) distribution pattern
[15–18], wherein genes suffer from stochastic dropouts and

over-dispersion problems. Dropouts, or genes that exhibit
excessive zero values [19–21], represent a special type of missing
value, which can be caused by low RNA input or stochastic

expression fluctuation at the single-cell level. Over-dispersion
relates to the substantially large cell-to-cell variability in gene
expression profiles which likely arises from technical noise stem-

ming from low input RNA and PCR amplification bias [22].
Rapid advances in scRNA-seq technologies have made it

feasible to perform population-scale studies in which the tran-

scriptome is measured for thousands of single cells from mul-
tiple samples or conditions [23–27]. This in turn has amplified
the need for versatile gene co-expression approaches that not
only address the unique challenges of scRNA-seq data, but

also the challenges of dataset integration including batch
effects, technical variations (e.g., mRNA quality and pre-
amplification efficiency), and extrinsic biological variabilities.

Classical methods designed for analysis of bulk transcrip-
tome data such as weighted gene co-expression network anal-
ysis (WGCNA) [28] and Clust [29] are not designed to account

for the unique characteristics of scRNA-seq data. Some
network-based approaches for single-cell data, including
Single-Cell rEgulatory Network Inference and Clustering

(SCENIC) [30], Cell Specific Network (CSN) [31], and Left
Truncated Mixture Gaussian (LTMG) [32], can detect gene
co-expression modules as part of the network reconstruction.
However, these methods do not account for the technical noise

and extrinsic variance among multiple samples. Therefore,
there is a clear need to develop a tailored and effective method
for scRNA-seq data to extract ‘‘consensus” co-expressed genes

[11], that is, to extract the genes that are consistently co-
expressed in each of the multiple datasets.

Herein, we have developed a novel method, single-cell

Latent-variable Model (scLM), to simultaneously extract co-
expressed genes that exhibit consensus behaviors from multi-
ple single-cell datasets. The scLM method accounts for both
cell-level covariates and sample-level batch effects. We

assessed the performance of scLM in both simulated data
and experimental data. scLM achieves the best performance
over other commonly used methods. We then applied scLM

to our in-house scRNA-seq data generated from four non-
small cell lung cancer (NSCLC) tumor tissues and their corre-
sponding adjacent normal tissues. The scLM method identified

tumor-specific co-expressed gene modules with significant
prognostic values. Furthermore, these co-expression modules
contributed to the subtle characterization of lung tumor cell

states. In addition, we applied scLM to analyze a set of
malignant cells from NSCLC, head and neck squamous cell
carcinoma (HNSCC), and melanoma. We discovered a
common co-expressed gene program across different cancer
types, providing insights into fundamental mechanisms of
carcinogenesis.

Method

scLM

We proposed a latent-variable model to explicitly disentangle

different sources of variabilities in population-scale scRNA-
seq data. Our goal was to perform simultaneous detection of
co-expressed genes across multiple single-cell conditions/-
datasets. Specifically, let xijk denotes the gene expression level

experimentally measured for the i-th gene i 2 1; � � � ;mf gð Þ in

the j-th cell j 2 1; � � � ; nkf gð Þ in condition/dataset
k k 2 1; � � � ;Kf gð Þ.

As multiple recent studies [15–18] showed that the expres-
sion of most genes in single-cell data is sufficiently captured

by NB distribution, NB model is chosen as an appropriate
model to formulate single-cell data. It is supported by the
physical modeling of bursting gene expression [18,33] and is

also commonly used in scRNA-seq analysis [15–18]. Therefore,
without loss of generality, we assumed that the measured gene
expression xijk for cell j in dataset k follows the NB distribution

NBðp; cÞ, which has the probability function as:

f X ¼ xijk; p; c
� � ¼ C xijk þ c

� �
C cð ÞC 1þ xijk

� � 1� pð Þcpxijk ð1Þ

If l, h, and r2 represent the mean, dispersion, and variance
of this NB distribution, then we have

l ¼ pc
1� p

; h ¼ c; r2 ¼ pc

ð1� pÞ2 ð2Þ

also,

p ¼ l
lþ h

; c ¼ h ð3Þ

Therefore, the probability function converts to:

f xijk; h; u
� � ¼ C xijk þ h

� �
C hð ÞC 1þ xijk

� � ð h
hþ u

Þ
h

ð u

hþ u
Þ
xijk ð4Þ

As u and h are regarding different genes i 2 1; � � � ;mf gð Þ
and batches k 2 1; � � � ;Kf gð Þ, we have

f xijk; hik; uik
� � ¼ C xijk þ hik

� �
C hikð ÞC 1þ xijk

� � ð hik
hik þ uik

Þ
hik

ð uik
hik þ uik

Þ
xijk ð5Þ

Herein, uik represents the estimation for the intrinsic gene
expression level across all cells in sample k, hik is the dispersion

parameter, and r2
ik ¼ uik þ uik

2

hik
represents the square deviation

of the observed gene expression level across cells in this

sample.

Let zi ¼ ðzi1; � � � ; zikÞ
0
be a vector consisting of k unobserved

latent variables that are shared by K different datasets. We

assumed the generalized linear model (GLM) below

uik � ajk þ bjkzi ð6Þ
which was used to distinguish the intrinsic biological signals zi
from the extrinsic variabilities (ajk and bjk) including the techni-

cal variances at the cell level (j) and batch effects at the sample
level (k). That is, the uik is composed of the intrinsic biological

signals of gene i captured by latent variables zi regardless of the
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confounding variabilities at the cell level and sample level, while

variances due to technical biases and batch effects are captured
by offsets ajk and scale factors bjk. Since zi is the same for speci-

fic gene i, and uik is estimated from observed counts xijk, we fur-

ther turned the formula into

u xijkjzi
� � � ajk þ bjkzi ð7Þ
To alleviate the impact of extreme values, we utilized loga-

rithm form in the linear model that has been frequently used
[34–38] in scRNA-seq data, i.e., the GLM,

log u xijkjzi
� � ¼ ajk þ bjkzi ð8Þ

where u xijkjzi
� �

is the conditional mean of xijk given zi. In this

way, the original gene expression data were projected into a k-
dimensional latent space Z by the GLM, with the technical
biases and batch effects removed during the projection. In this

latent space, the expression level of gene i is represented as zi.
Since genes sharing similar expression patterns are located
close to each other, a group of co-expressed genes will form

a cluster in the latent space. Thus, different groups of co-
expressed gene modules can be identified through clustering
of the latent variables (Figure 1).

To estimate the parameters in our model, we used the max-
imum likelihood approach. As is assumed above that xijk fol-

lows the NB distribution, the conditional log-likelihood
function of xijk can be written as:

log f xijkjzi; ajk; bjk; hik
� � ¼ C hik þ xijk

� �
C hikð ÞC 1þ xijk

� � uik
hik þ uik

� �xijk hik
hik þ uik

� �hik

ð9Þ
in which,

uik ¼ exp ajk þ bjkzi
� �

For the latent variable zi, fðziÞ represents the density
function of the standard multivariate normal distribution
Figure 1 Schematic of scLM for identifying consensus co-expressed g

Schematic representation of how consensus co-expressed genes across m

profiles of individual cells were disentangled by the latent variables repr

reflecting the technical variances. scLM, single-cell Latent-variable M
N(0, Ik). Therefore, the joint log-likelihood of (xijk, zi) can be

written as

l xijk;zi;ajk;bjk

� �¼Xm
i¼1

Xnk
j¼1

XK
k¼1

log f xijkjzi;ajk;bjk

� �þ log f ðziÞ
� � ð10Þ

To control model complexity and overfitting, we applied

the least absolute shrinkage and selection operator (LASSO,
L1-norm penalty), to the following penalized joint log-
likelihood estimation:

l xijk; zi; ajk; bjk

� ��XK
k¼1

Xnk
j¼1

@kjjbjkjj1

Then the above parameters are estimated by maximizing
the penalized joint log-likelihood function, that is, maximizing

the following penalized joint log-likelihood,

max
ajk ;bjk

lðxijk; zi; ajk; bjkÞ �
PK
k¼1

Pnk
j¼1

@kjjbjkjj1

¼ max
ajk ;bjk

Xm
i¼1

Xnk
j¼1

XK
k¼1

log f xijkjzi; ajk; bjk

� �þ log f ðziÞ
� �

�
XK
k¼1

Xnk
j¼1

@kjjbjkjj1 ð11Þ

where the summation is due to the conditional independence
assumption of xijk given zi.

To estimate the parameters ajk and bjk, we solved the fol-

lowing optimization problem conditional on zi,

min
ajk ;bjk

Xm
i¼1

Xnk
j¼1

XK
k¼1

log f xijkjzi;ajk;bjk

� �þXK
k¼1

Xnk
j¼1

@kjjbjkjj1 ð12Þ

here we used the coordinate descent algorithm provided in [39],
therefore optimized the above log-likelihood function. Herein
ene clusters across multiple datasets

ultiple datasets could be discovered by scLM. The gene expression

esenting the intrinsic biological signals, and the related coefficients

odel.
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the update of parameters ajk and bjk depend on zi. As the latent

variables zi were not observable in our model, we used the
Markov Chain Monte Carlo (MCMC) simulation to
iteratively update zi, for maximizing the penalized joint log-

likelihood. That is, we replaced the value in the parameter
updates by its expectation with respect to zi, through repeat-
edly sampling the latent variables zi from the following joint

posterior distribution, i.e.,

fðziÞ
Ynk
j¼1

YK
k¼1

f xijkjzi; ajk; bjk

� �

With the estimated latent variables zi, that is, with the genes

projected into the latent space, we clustered genes that were
projected in the latent space to identify co-expressed genes.
Here we used K-means clustering to divide genes into k clusters
based on the latent variables zi. The parameter k can be either

determined according to the Bayesian information criterion
(BIC), or chosen by user’s preference.
Data generation in simulation studies

Based on the single-cell data characteristics, we used the NB
distribution to simulate two synthetic cohorts (synthetic cohort

1 and synthetic cohort 2). Each synthetic cohort contained 9
sets of simulated gene expression data with an increasing num-
ber of datasets (D1–D9). That is, D1 contained one individual
dataset (n = 1), D2 contained two individual datasets (n = 2),

. . ., and D9 contained nine individual datasets (n = 9). Each
individual dataset contained 180 genes belonging to three clus-
ters, with 60 co-expressed genes in each of the three clusters.

For each gene cluster c 2 f1; 2; 3g in batch n, their gene expres-
sion was sampled from the NB distribution NBðucn; hcnÞ, where
ucn and hcn referred to the mean and deviation, respectively.

Different gene clusters had different values of ucn and hcn. Full
expression values and cluster membership for these datasets
were provided in the scLM example data.

Additionally, we utilized the Splatter package [40] to gener-
ate another two synthetic cohorts (synthetic cohort 3 and syn-
thetic cohort 4) of simulated data with dropout effects, which
more accurately recapitulated actual scRNA-seq data distribu-

tions. Specifically, we adjusted the batch parameters
‘‘batch.facLoc” and ‘‘batch.facScale” as 1 and generated 16
different batches of data. Each batch consisted of 240 cells,

and 240 genes constituting four groups of co-expressed genes
as the group truth, which was achieved by adjusting the ‘‘de.
prob” parameter. We also added the dropout effects in these

simulation data by setting ‘‘experiment” for global dropout
and the ‘‘dropout.mid” parameter. These 16 batches of data
made up the synthetic cohorts 3 and 4. Full expression values

were provided in the scLM example data.

In-house and public single-cell data

In-house dataset

Fresh tumor and adjacent normal tissues from four NSCLC
patients were collected by the Tumor Tissue and Pathology

Shared Resource (TTPSR) into Miltenyi Tissue Storage
Medium (Catalog No. 130-100-008, Miltenyi Biotec, San
Diego, CA). Tissues were then processed to single-cell suspen-

sions using the Miltenyi Human Tumor Dissociation Kit
(Catalog No. 130-095-929, Miltenyi Biotec) and the
gentleMACS Octo Dissociator with Heaters (Catalog No.
130-096-427, Miltenyi Biotec). Red blood cells were removed

by negative selection using Miltenyi CD235a (Glycophorin
A) microbeads (Catalog No. 130-050-501, Miltenyi Biotec)
and LS Columns (Catalog No. 130-042-401, Miltenyi Biotec).

Recovered cell numbers were determined by trypan blue exclu-
sion using a LUNA II automated cell counter (Catalog No.
L40001, Logos Biosystems, Annandale, VA). In preparation

for scRNA-seq, cells were thawed and washed according to
the demonstrated protocol developed for human
peripheral blood mononuclear cells (PBMCs) by 10X Geno-
mics (San Francisco, CA).

All scRNA-seq procedures were performed by the Cancer
Genomics Shared Resource (CGSR) of the Wake Forest
Baptist Medical Center Comprehensive Cancer Center

(WFBMC-CCC). Viable cells in suspensions were loaded into
wells of a 10X Genomics Chromium Single Cell A Chip Kit
(Catalog No. PN-120236, 10X Genomics). Single-cell gel beads

in emulsion (GEMs) were created on a Chromium Single Cell
Controller and scRNA-seq libraries were prepared using the
Chromium Single Cell 30 Library and Gel Bead Kit v2 (Catalog

No. PN-120237, 10X Genomics). Sequencing libraries were
loaded at 1.3 PM on an Illumina NextSeq500 with a High Out-
put 150 cycle Kit (Catalog No. FC-404-2002, Illumina, San
Diego, CA) for paired-end sequencing. A total of 11,813 single

cells were captured, with the number of cells recovered per
channel ranging from 369 to 2502. Low-quality cells were dis-
carded if the cell with expressed genes was smaller than 200.

Only malignant cells from four tumor samples and epithelial
cells from three adjacent normal samples were used in this
study. The scRNA-seq data were deposited in the Gene Expres-

sion Omnibus (GEO) of National Center for Biotechnology
Information (NCBI) database (GEO: GSE117570) at https://
onlinelibrary.wiley.com/doi/full/10.1002/cam4.2113 [41].

Melanoma dataset

We downloaded the expression matrix data of melanoma from
the GEO of NCBI database (GEO: GSE72056) at https://

www.ncbi.nlm.nih.gov/pubmed/27124452 [42]. This dataset
included expression profiles of 23,689 genes in 4645 cells from
19 melanoma tumors. These cells included both malignant can-
cer cells and non-malignant cells. For the input matrix of

scLM, a sample is excluded if it contains < 200 cells, and a
gene is excluded from the input matrix if it is expressed in
< 300 cells.

HNSCC dataset

We downloaded the expression matrix data of the HNSCC
dataset from the GEO of NCBI database (GEO:

GSE103322) at https://www.sciencedirect.com/science/article/
pii/S0092867417312709 [6]. This dataset consisted of 5902 cells
from 18 patient samples after initial quality controls, including

2215 malignant and 3363 non-malignant cells. For our analy-
ses, we used the samples with more than 200 malignant cells
and genes expressed in over 300 cells as the input matrix.

Breast cancer dataset

We downloaded the expression matrix data of breast cancer
(BR) scRNA-seq dataset from the GEO of NCBI database

(GEO: GSE118390) at https://www.nature.com/articles/

https://onlinelibrary.wiley.com/doi/full/10.1002/cam4.2113
https://onlinelibrary.wiley.com/doi/full/10.1002/cam4.2113
https://www.ncbi.nlm.nih.gov/pubmed/27124452
https://www.ncbi.nlm.nih.gov/pubmed/27124452
https://www.sciencedirect.com/science/article/pii/S0092867417312709
https://www.sciencedirect.com/science/article/pii/S0092867417312709
https://www.nature.com/articles/s41467-018%e2%80%9306052-0


Figure 2 Performance evaluation on simulation data

scLM was compared with other methods (LTMG, CSN, Seurat-wgcna, and MNN-wgcna) on four synthetic cohorts. Each synthetic

cohort contains 9 sets of simulated data with an increasing number of samples. The bar plot represents the ARI of identified gene clusters

compared to the ground truth. A. ARI of synthetic cohort 1. B. ARI of synthetic cohort 2. C. ARI of synthetic cohort 3. D. ARI of

synthetic cohort 4. ARI, Adjusted Rand Index; LTMG, Left Truncated Mixture Gaussian; CSN, Cell Specific Network.
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s41467-018–06052-0 [23]. For our analysis, we used malignant
cells and genes expressed in over 300 cells as input.

Clustering evaluation index

Each clustering result produced by different methods was
assessed using clustering evaluation indices, including the
Adjusted Rand Index (ARI) [43], the Calinski-Harabasz

(CH) index [44], the Davies-Bouldin (DB) index [45], and
the Dunn index [46]. CH index evaluated the cluster validity
based on the average between- and within-cluster sum of

squares. DB index was obtained by averaging all the cluster
similarities. Dunn index used the minimum pairwise distance
between objects in different clusters as the inter-cluster sep-

aration and the maximum diameter among all clusters as the
intra-cluster compactness. Larger CH index, smaller DB
index, and larger Dunn index represented better clustering
results.
Cell clustering based on co-expressed gene modules

With the co-expressed gene modules, we utilized mean value of

the modules in each single cell as input for graph-based cluster-
ing. Uniform manifold approximation and projection
(UMAP) was used to visualize cell clusters. Graph-based clus-

tering was performed using the Seurat package (v3.1), and
UMAP analysis was performed using the ‘‘umap” package
(v.0.2.3.1) [47] in R (v.3.4.3). The number of epochs (n_epochs)
was set at 20. The n_neighbors value was set at 15, and min_d-

ist was set as 0.1.
Statistical analysis

Kaplan-Meier (KM) analysis was performed using the ‘‘sur-
vival” R package (http://cran.r-project.org/web/packages/sur-
vival/index.html). Log-rank test was used to test the

https://www.nature.com/articles/s41467-018%e2%80%9306052-0
http://cran.r-project.org/web/packages/survival/index.html
http://cran.r-project.org/web/packages/survival/index.html
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Figure 3 Evaluation of scLM using experimental data

scLM was compared with other methods (LTMG, CSN,

Seurat-wgcna, MNN-wgcna, and SCENIC) on five experimental

datasets. Multiple evaluation indices were used, including: the

Calinski-Harabasz index (A), the Dunn index (B), and the

Davies-Bouldin index (C).
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differences of survival curves. When evaluating the perfor-
mance of scLM, P value was calculated by t-test.

Functional analysis

Hallmark collection

We downloaded the Hallmark gene set collection for func-
tional analyses from Molecular Signatures Database
(MSigDB) [48], which was a widely used and comprehensive

database. Each hallmark in this collection consisted of a ‘‘re-
fined” gene set that conveyed a specific biological state or pro-
cess and displayed coherent expression. The hallmarks

effectively summarized most of the relevant information of
the original founder sets and, by reducing both variation and
redundancy, provided more refined and concise inputs for gene
set enrichment analysis.

Pathway database

Reactome (http://www.reactome.org) was a manually curated
open-data resource of human pathways and reactions, which

was an archive of biological processes and a tool for discover-
ing potential functions. Gene sets derived from the Reactome
[49] and Kyoto Encyclopedia of Genes and Genomes (KEGG)

[50] pathway database were downloaded from the MSigDB
Collections.

Enrichment test

Functional enrichment based on the Reactome and Gene
Ontology (GO) databases was assessed by hypergeometric test,
which was used to identify a priori-defined gene set that

showed statistically significant differences between two given
clusters. Enrichment test was performed by the clusterProfiler
package [51]. Test P values were further adjusted by

Benjamini-Hochberg correction, and adjusted P values less
than 0.05 were considered statistically significant.

Results and discussion

Overview of scLM

We developed a new method, scLM, for simultaneously
identifying consensus co-expressed genes from multiple

scRNA-seq datasets. Our hypothesis was that co-expressed
genes coordinating biological processes could be captured
across multiple different datasets. In our model, we assumed

that latent variables captured the intrinsic signals of the co-
expressed genes regardless of technical variances and batch
effects among different datasets. Figure 1 provided an illustra-
tive overview of the scLM method. Briefly, the input contained

a collection of multiple datasets (k) representing the single-cell
sequencing data generated under different clinical or experi-
mental settings. In the k-th dataset, we assumed that the

observed expression levels, xijk, of the i-th gene across cells

j 2 f1; � � � ; nkg followed the NB distribution NBðuik; hikÞ. The
intrinsic biological variability of gene i across all cells and all
datasets was captured by the latent variables zi in a
k-dimension latent space. This was achieved through a

conditional GLM log u xijkjzi
� � ¼ ajk þ bjkzi that distinguished

the intrinsic biological variability zi from the extrinsic
signals (ajk and bjk) including the technical variances at the

http://www.reactome.org


Figure 4 scLM identifies co-expressed genes with significantly enriched biological functions

A. The average number of significantly enriched GO terms (adjusted P value < 0.05) based on the co-expressed genes identified by

different methods. B. The average number of significantly enriched pathways in Reactome database (adjusted P value < 0.05) based on

the co-expressed genes identified by different methods. GO, Gene Ontology.
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cell level (j) and batch effects at the sample level (k). The latent
variables and other parameters were estimated and obtained
using MCMC and maximum likelihood approaches. There-

fore, different groups of co-expressed genes (m1–m4) across
multiple datasets were identified through clustering genes in
the latent space. Further explanations of the mathematical
model were included in the Method.
Performance evaluation on simulation data

To evaluate the performance of scLM, we benchmarked it

against other methods, including LTMG [32], CSN [31],
Seurat-wgcna, MNN-wgcna, and SCENIC [30]. Seurat-
wgcna and MNN-wgcna referred to the co-expression analysis

using WGCNA [28], following the batch correction by Seurat
[52] or MNN [53]. As SCENIC relied on the RcisTarget data-
base that required real gene input, we omitted comparing with

SCENIC on simulation data but still included it in the compar-
ison on real single-cell data.
We first generated two synthetic data cohorts (synthetic
cohorts 1 and 2) from NB distribution. Each cohort contained
9 sets (D1–D9) of simulated data with an increasing number of

samples. That is, D1 contained one individual dataset (n = 1),
D2 contained two individuals of datasets (n = 2), and so on.
Each set contained three co-expressed gene clusters as ground
truth. Additionally, we utilized the Splatter package [40] to

generate another two batches of simulated data (synthetic
cohorts 3 and 4) with dropout effects, which could more accu-
rately recapitulate actual scRNA-seq data distributions.

Details of the simulation datasets were provided in the
Method.

With the simulated data cohorts, we applied scLM and

other methods (LTMG, CSN, Seurat-wgcna, and
MNN-wgcna) to identify the co-expression clusters. To assess
and quantify clustering accuracy, we used the ARI [43] as the

performance metric to rank these methods (Figure 2). The
corresponding bar plots represented the ARI of the identified
clusters by each method compared to the ground truth.
Notably, scLM accurately identified each gene cluster in four



Figure 5 scLM identifies co-expressed gene modules that characterize subtle cell subpopulations

A. Simultaneous and consensus clustering of genes across lung tumor cells from four patients (P1–P4). scLM reveals 12 co-expressed gene

modules characterized by the latent variables as well as shown in gene expression data of four patients. In each heatmap, rows are genes

assigned to 12 modules. In each co-expressed gene module, genes are consistently over-expressed (red) or under-expressed (blue). B. The

left panel shows strong batch effects of different patients. The right panel depicts the UMAP visualization of single cells characterized by

the co-expressed gene modules. Two evenly distributed clusters (cluster 1 and cluster 2) are identified. Different patients are distinguished

by colors. C. Heatmap shows the differential expression pattern of EMT-related genes between two clusters. UMI, unique molecular

identifier; UMAP, uniform manifold approximation and projection; DEG, differentially expressed gene.
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cohorts, and demonstrated much higher ARIs (mean ± SE:
0.979 ± 0.063 for synthetic cohort 1; 0.971 ± 0.031 for synthetic
cohort 2; 0.899 ± 0.043 for synthetic cohort 3; 0.886 ± 0.025

for synthetic cohort 4). The other methods showed relatively
lower ARIs. For example, CSN showed lower ARIs in
synthetic cohort 1 (mean ± SE: 0.627 ± 0.028) and synthetic

cohort 3 (mean ± SE: 0.520 ± 0.070). LTMG presented
little higher ARIs and lower variances in four synthetic
cohorts. These results demonstrated the outperformance of
scLM in identifying accurate co-expressed genes from multiple

datasets.

Evaluation of scLM using experimental data

To further demonstrate the performance of scLM,we compared
scLM with other methods (LTMG, CSN, Seurat-wgnca,
MNN-wgcna, and SCENIC) on experimental scRNA-seq data-

sets. For comparisons, we used two in-house datasets from lung
tumor and adjacent normal tissues as well as three public data-
sets fromBR,HNSCC, andmelanoma. The data pre-processing

procedures were described in the Method.
To assess and quantify clustering accuracy on real datasets,

we used performance metrics including the CH index [44],
Dunn index [46], and DB index [45], to rank these methods.

Importantly, scLM produced sets of clusters that showed sig-
nificantly higher CH values than other methods (Figure 3A),
especially higher than LTMG (P = 1.75E�07) and
MNN-wgcna (P = 0.02), demonstrating that scLM achieved
better cluster validity than other methods based on average

between- and within-cluster sum of squares. In addition, com-
pared to other methods, scLM also achieved significantly
higher Dunn index scores representing better inter-cluster sep-

aration and intra-cluster compactness (Figure 3B), and lower
DB index scores reflecting higher cluster quality (Figure 3C).
Though SCENIC and Seurat-wgcna showed higher Dunn
index score in one dataset (HNSCC), they failed to show supe-

rior performance on other datasets. Thus scLM proved to
achieve the best partitioning of co-expressed gene clusters that
are most distinct from each other.

scLM identified co-expressed genes with significantly enriched

biological functions

As co-expressed genes were likely to be enriched with biologi-
cal functions, we compared the extent to which different meth-
ods affected the functional discovery, based on their identified

co-expressed genes. First, the aforementioned methods were
evaluated for their capability to detect enriched GO terms in
the five experimental datasets. Different methods identified
gene clusters enriched with different GO enrichment results.

The average number of significantly enriched GO terms (ad-
justed P value < 0.05) ranged from 15 to 184 (Figure 4A).
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scLM extracted co-expressed genes with more enriched func-
tional terms than other methods in three of the five datasets
(i.e., the BR, HNSCC, and lung Normal datasets). SCENIC

identified relatively high number of enriched GO terms in the
BR dataset, whereas low number of enriched GO terms in
other datasets; CSN identified relatively high number of

enriched GO terms in the lung Tumor dataset but low number
of enriched GO terms in other datasets; MNN-wgcna identi-
fied relatively high number of enriched GO terms in the mela-

noma dataset but low number of enriched GO terms in other
datasets. LTMG and Seurat-wgcna showed lower number of
enriched GO terms in five datasets. Similar results were
observed when we strengthened the enriched significance by

the adjusted P value < 0.01 (Figure S1). The number of signif-
icant terms became fewer for all the methods, yet scLM iden-
tified the most on all datasets except for the melanoma dataset.

Some methods, like LTMG, failed to identify gene clusters
with enriched terms at the threshold of adjusted P value
< 0.01.

In addition to GO terms, we also examined the enriched
pathways in the Reactome database, based on the co-
expressed genes identified by different methods (Figure 4B).

Different methods showed different pathway enrichment
results. Importantly, scLM identified co-expressed genes with
more enriched pathways than other methods in three of the
five datasets (i.e., the BR, HNSCC, and lung Normal data-

sets). Taken together, these results demonstrated that scLM
outperforms other methods in functional discovery of
co-expressed genes.

scLM identified the tumor-specific modules enriched in specific

cell state

In real-world scenarios, samples from different patients or dif-
ferent data sources often demonstrated highly different cell
numbers, largely due to strong batch effects and technical

issues. The scLM method was designed to address such highly
unbalanced data that outperformed other competitors on such
datasets. To validate the effectiveness of scLM, we intention-
ally selected patient samples that varied with respect to cell

number, which could create challenges for this method. As a
case study, we used scLM to analyze our in-house
scRNA-seq profiling from 4 NSCLC patients (P1–P4) [41] to

identify the co-expressed genes in tumor and normal epithelial
cells, respectively. In tumor cells (Figure 5A, heatmap of latent
variables), we discovered 12 co-expressed gene modules in the

latent space (T-m1–T-m12). These modules showed clear
differences but were consistently concordant across patients
(Figure 5A, heatmaps of P1–P4), even though the single cells
from different patients presented strong heterogeneity and

batch effects (Figure 5B, left panel).
Using the 12 co-expression modules, the single cells were

separated into two major clusters. In each cluster, cells from

different patients mixed well without interference from batch
effects (Figure 5B, right panel), which further supported that
the co-expression modules were consistent across patients

and not affected by batch effects. Interestingly, we found that
cluster 1 had higher expression of epithelial functional markers
(EMT-related genes) than cluster 2 (Figure 5C). These results

indicated that co-expression modules were capable of
characterizing specific cell phenotypes.
Similarly, in normal single cells, we observed 13 co-
expressed gene modules (N-m1–N-m13) that showed concor-
dant expression across individual patients (Figure S2). Then

we compared the co-expressed gene modules identified from
tumor and normal cells. Four modules (T-m1, T-m3, T-m4,
and T-m10) were not correlated with any normal modules,

suggesting that they were tumor-specific (File S1; Figure S3).

scLM identified a common program across three types of cancer

To explore the underlying mechanism of carcinogenesis, we
next extended the application of scLM to HNSCC and mela-
noma. In addition to the 12 co-expressed gene modules identi-

fied in NSCLC, we identified 11 modules in HNSCC and 14
modules in melanoma. To determine the similarities of these
co-expression modules, we performed a pair-wise comparison
using weighted Jaccard similarity, followed by hierarchical

clustering. As shown in the diagram (Figure S4A), we found
that most branches were dominated by a mixture of cancer
types. Importantly, we identified a branch with high similarity

among T-m9, HNSCC-m7, and Melanoma-m12 modules.
These three similar modules substantially overlapped with

91 genes, which were defined as a common program across

three cancer types. To gain insights into the biological func-
tions of the common program, we performed enrichment anal-
ysis in the Hallmark database (Figure S4B). The MYC targets
v1 and hypoxia were the top enriched terms, involving the

genes FOS, GAPDH, HLA-A, and NFKB1A, which suggested
the common oncogenesis mechanism regardless of cancer types
(File S1).

From the applications of scLM, we see three meaningful
use of scLM to scientific research. 1) scLM identifies co-
expressed genes that reveal novel biological processes. An

example is the lung tumor-specific module that highlights
cell–cell communication in tumor microenvironment (File S1;
Figure S3). 2) scLM contributes to the subtle characterization

of cell states. In lung cancer, scLM identifies 12 co-expression
modules that are consistent across patients. These co-
expression modules separate cells into two major clusters, of
which one cluster presents different EMT activity suggesting

more precise characterization of cell states (Figure 5). 3) With
the co-expressed genes identified by scLM, both specific and
common gene modules can further be explored for their trans-

lational and biological relevance. For example, in melanoma,
scLM identifies two co-expressed gene modules that are asso-
ciated with immune checkpoint inhibitor (ICI) resistance,

which provides potential value for predicting ICI therapy
response. We also find a common co-expression module from
three different cancer types, and reveal the MYC targets and
hypoxia as the common intrinsic mechanisms of tumor malig-

nancy (File S1; Figure S4).
Given the merits of scLM, several potential limitations war-

rant further study. First, zero-inflated genes are excluded dur-

ing pre-processing. The main reason is that, genes with inflated
zeros are not informative and have negligible meaningful con-
tribution to co-expression. The other reason is, with the fast

advance of scRNA-seq technology, zero-inflation issue will
be very minimal in near future. Second, in future work, we will
examine the necessity of providing zero-inflation models,

which specifically deal with data of poor sequencing depth
and strong dropout effects. Third, the computational cost of
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scLM can be further reduced. We have already utilized C pro-
gramming and parallel computing to dramatically boost the
efficiency of scLM. However, considering that scRNA-seq

data are growing into million-cell level, we will explore the
use of GPU computing and cloud-based approaches to catch
up with the scale of future scRNA-seq data.

Conclusion

Co-expressed genes with coordinate expression indicate func-
tional linkages between genes. Genes with coordinate biologi-
cal functions are frequently co-transcribed, resulting in co-
expression profiles. Thus, co-expressed genes can be used to

intuitively associate genes with biological processes, to reveal
disease-related genes, and to discern transcriptional regulatory
mechanisms. Accumulative evidence supports the reliability of

co-expression analysis for annotating and inferring gene func-
tions [1–3,9–12]. Recent advances in scRNA-seq technologies
enable the systematic interrogation of gene co-expression mod-

ules in specific cell types, and the elucidation of the underlying
biological mechanisms [13,54,55]. The improved data resolu-
tion and quality allow accurate identification of disease-
related modules and regulatory genes for specific cell types

and specific tissues. Thus, we expect co-expression analysis
to be more widely applied due to the technology advances.

In this study, we introduce a novel method, scLM, to simul-

taneously identify co-expressed genes across multiple single-
cell datasets. The scLM algorithm uses the conditional NB dis-
tribution with latent variables to disentangle co-expression

patterns across multiple datasets. To our knowledge, scLM
is the first available tool that is capable of leveraging multiple
scRNA-seq datasets to accurately detect co-expressed genes.

We provide an overview of scLM and illustrate how scLM
can be used to further characterize cell states and identify
tumor-specific modules in lung cancer. We demonstrate that
the tumor-specific modules are enriched in pathways, including

cell–cell communication and SMAD2/3/4 transcriptional activ-
ity, with identified upstream transcriptional factors including
TEAD1 and FOXA1. We further show the clinical prognostic

significance of these discoveries in clinical samples. Moreover,
we explore the common co-expressed genes, i.e., the common
module, across three cancer types and offer intrinsic mecha-

nisms of tumor malignancy. The common module is highly
enriched in the MYC targets v1 and hypoxia, suggesting the
presence of common intrinsic oncogenesis mechanisms.

Additionally, the common module is shown to be related with
clinical response to ICI in melanoma patients, suggesting that
the common module provides predictive value of ICI therapy
response.

Compared with other methods, scLM has several key
advantages: 1) scLM accounts for data heterogeneity and vari-
ances among multiple datasets, such as unbalanced sequencing

depths and technical biases in library preparation. 2) scLM
leverages information across datasets for detecting stable and
conserved co-expression modules with high accuracy and

reproducibility. 3) scLM is an integrated pipeline that uses
raw count matrix without prior batch-correction as input, thus
can be easily applied to scRNA-seq data. Overall, scLM opens
possibilities for further investigation and mechanistic
interpretation of co-expressed genes. With the growing
scRNA-seq data, scLM is poised to become a valuable tool for
elucidating co-expression studies in single-cell transcriptomics.
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