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Alzheimer’s disease (AD) is a neurodegenerative disorder and the leading cause of

dementia. Vascular abnormalities and neuroinflammation play roles in AD pathogenesis.

Plasma contact activation, which leads to fibrin clot formation and bradykinin release, is

elevated in many AD patients, likely due to the ability of AD’s pathogenic peptide

b-amyloid (Ab) to induce its activation. Since overactivation of this system may be

deleterious to AD patients, the development of inhibitors could be beneficial. Here, we

show that 3E8, an antibody against a 20-amino acid region in domain 6 of high molecular

weight kininogen (HK), inhibits Ab-induced intrinsic coagulation. Mechanistically, 3E8

inhibits contact system activation by blocking the binding of prekallikrein (PK) and factor

XI (FXI) to HK, thereby preventing their activation and the continued activation of factor

XII (FXII). The 3E8 antibody can also disassemble HK/PK and HK/FXI complexes in

normal human plasma in the absence of a contact system activator due to its strong

binding affinity for HK, indicating its prophylactic ability. Furthermore, the binding of

Ab to both FXII and HK is critical for Ab-mediated contact system activation. These

results suggest that a 20-amino acid region in domain 6 of HK plays a critical role in

Ab-induced contact system activation, and this region may provide an effective strategy

to inhibit or prevent contact system activation in related disorders.

Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder and a major cause of dementia. The pathologi-
cal hallmarks of AD are b-amyloid (Ab) plaques, tau tangles, neuroinflammation, and neuronal degenera-
tion. There is evidence that vascular dysfunction is also a core pathology of AD.1-3 Not only is disruption
of the blood-brain barrier (BBB) an early biomarker of cognitive dysfunction,4 but cerebrovascular and
blood flow abnormalities are also associated with cognitive decline and AD progression.5-7 AD is a com-
plex and heterogeneous disease, and it is unlikely that only one mechanism can be targeted for treatment
of all patients.8 It is therefore important to identify various pathogenic pathways which will allow stratifica-
tion of patients and personalized treatment.

Dysfunctional blood clotting is often observed in AD patients and mouse models.7,9-18 Parenchymal brain
deposits of fibrin, a proinflammatory protein that is also the main component of blood clots,19,20 play a
significant role in AD progression in mouse models.9,10,19,21-24 Fibrin and its precursor, fibrinogen, are
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Key Points

� A 20-residue region in
domain 6 of HK plays
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induced contact
system activation.

� 3E8 blocks PK and
FXI binding to HK,
disassembles HK/PK
and HK/FXI
complexes, and
delays intrinsic
coagulation.
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blood proteins, and their presence in the brain indicates a loss of
BBB integrity in these patients. Fibrin is formed upon the generation
of thrombin during the clotting pathway of the contact activation
system.

The plasma contact system, which includes both clotting and inflam-
matory pathways,25 may play a role in AD pathogenesis.14,26 Ab42,
one of the primary pathogenic factors of AD,27-29 can activate factor
XII (FXII) to initiate the contact system.30-33 Activated FXII (FXIIa)
can activate factor XI (FXI) to trigger the intrinsic clotting pathway,
leading to thrombin generation and fibrin formation,32,34 whereas
FXIIa activation of prekallikrein (PK) leads to the release of bradyki-
nin from its precursor high molecular weight kininogen (HK) and
subsequent activation of inflammatory processes.6,32,35-39 Both
fibrin formation and bradykinin-mediated inflammation may contribute
to AD.9,18,22 It has been shown that the AD brain parenchyma
exhibits higher plasma kallikrein (PKa) activity,40 and Ab plaques
contain FXII41 and bradykinin.18 Compared with nondemented indi-
viduals, AD patients have increased levels of cleaved HK (cHK) in
their cerebrospinal fluid42 and higher plasma levels of FXIIa, cHK,
and bradykinin.15,18,43 In a mouse model of AD, plasma contact sys-
tem activation is also elevated,43 and knockdown of this system
using an anti-FXII antisense oligonucleotide ameliorates AD pathol-
ogy and cognitive impairment in a mouse model.35 Therefore, inhibi-
tion of the contact system could be beneficial for AD patients.

We previously showed that an anti-HK antibody (clone 3E8, raised
against a 20-amino acid region in domain 6 of HK) blocks Ab42-
induced HK cleavage and bradykinin release.36 Our new studies
revealed that 3E8 also prevents Ab42-induced intrinsic coagulation.
Mechanistically, 3E8 inhibits contact system activation by blocking
the binding of PK and FXI to HK, thereby preventing activation of
PK and FXI and continued activation of FXII. We also show here
that 3E8 disassembles HK/PK and HK/FXI complexes in normal
human plasma in the absence of a contact system activator, sug-
gesting its prophylactic ability. Moreover, our results revealed that
Ab42 can bind HK, which is critical for Ab42-mediated contact sys-
tem activation. Therefore, our results show for the first time that a
20-amino acid region of HK plays an essential role in Ab42-
mediated contact system activation, and targeting this region may
provide an effective strategy to treat contact system-related patho-
logical conditions such as AD.

Materials and methods

Preparation of anti-HK antibodies and Ab42

3E8, 2B7, and 4B12 anti-HK antibodies44 and Ab4243,44 (Anas-
pec) were prepared as previously described. The aggregation state
of Ab42 was confirmed by transmission electron microscopy at
Rockefeller’s Electron Microscopy Resource Center.

Binding experiments

The binding experiments were performed using enzyme-linked immu-
nosorbent assay (ELISA).45 For 3E8 binding to HK, plates were
coated with 2 mg/mL 3E8 in binding buffer (0.1 M sodium bicarbon-
ate; pH 9.6). For PK and FXI binding to HK, plates were coated
with 2 mg/mL of PK or FXI in binding buffer, respectively. The plates
were then incubated with various concentrations of HK in the bind-
ing buffer. Bound HK was detected with an antibody to HK as
described.44 The dissociation constant (KD) of HK and 3E8

interaction was determined from the binding curve using a nonlinear
regression curve fit equation in GraphPad Prism software. For 3E8
blocking, PK/HK binding, or FXI/HK binding studies, HK was prein-
cubated at 37�C in the absence or presence of increasing concen-
trations of the 3E8 antibody. Bound HK was then determined as
described above.

Blood collection and plasma preparation

The collection and preparation of human plasma were approved by
The Rockefeller University Institutional Review Board. Blood from
healthy human donors (n 5 6) who had given informed, written con-
sent was collected at The Rockefeller University Hospital. Plasma
was prepared as described previously.44 Pooled normal human
plasma (NHP) and FXII-deficient (FXII-DF) human plasma were
purchased from George King Bio-Medical. Kininogen-deficient (KN-
DF) human plasma was purchased from Technoclone.

Ab42 pulldown experiments and anti-HK antibody

immunoprecipitation

NHP, FXII-DF, or KN-DF human plasma was incubated with biotiny-
lated Ab42 (B-Ab42) in the presence or absence of 3E8 anti-HK
antibody. Dynabeads M-280 Streptavidin (Invitrogen) was used to
pull down the B-Ab42/bound proteins complex according to the
manufacturer’s instructions.

For anti-HK antibody immunoprecipitation, anti-HK antibodies (3E8,
2B7, 4B12)44 and control immunoglobulin G (IgG) (Innovative
Research) were biotinylated using EZ-Link Sulfo-NHS-LC-Biotin
(Thermo Scientific) according to the manufacturer’s instructions.
Ethylenediaminetetraacetic acid (EDTA) plasma was incubated with
biotinylated HK antibodies and control IgG. In 2B7 anti-HK antibody
pulldown experiments, NHP was incubated with 3E8/phosphate-
buffered saline (PBS)/IgG, then incubated with B-2B7 at 37�C for
20 minutes. Dynabeads M-280 Streptavidin was used to pull down
the antibody-antigen complex. Samples were eluted with sodium
dodecyl sulfate (SDS) sample buffer, and western blots were
performed.

HK D6 peptide competition experiments

A 20-residue peptide derived from domain 6 of HK (IQSDDDWIP-
DIQIDPNGLSF) was synthesized at Rockefeller’s Proteomics
Resource Center. This peptide (hereafter referred to as HK-D6) was
used as an antigen to generate the 3E8 anti-HK antibody. Human
plasma was incubated with buffer; 3E8 anti-HK antibody (0.5 mM);
control IgG (0.5 mM); HK-D6 (0.5 mM, 1 mM, 2mM); or 3E8 anti-
HK antibody or control IgG (0.5 mM) 1 HK-D6 (0.5 mM, 1 mM, 2
mM). Incubations were left at 37�C for 20 minutes, and then Ab42
(5 mM) was added and incubated for 2 hours. Western blotting
analyses were performed.

Western blotting

Western blots were performed as described previously.46 Plasmas
after various treatments were heated to 95�C for 5 minutes in sam-
ple buffer. Equal amounts of plasma from each sample were run on
SDS polyacrylamide gel electrophoresis (SDS-PAGE), transferred
to polyvinylidene difluoride membrane (Bio-Rad), and analyzed by
western blot with antibodies against FXII/FXIIa (Cedarlane Laborato-
ries), FXI (Haematologic Technologies), PK (Affinity Biologicals), HK
and cHK (3E8), HK light chain (Abcam), low molecular weight
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kininogen (LMWK) (Novus Biologicals), and transferrin (TF)
(Abcam). Blots were imaged via Bio-Rad ChemiDoc. Protein levels
were quantified by densitometry with the National Institutes of
Health Image J. All experiments used plasmas from 6 healthy
donors, were run in duplicate, and repeated at least 3 times.

Plasma kallikrein activity

EDTA-plasma was incubated with buffer, control IgG (50 nM), or
various concentrations of 3E8 anti-HK antibody (5 nM, 25 nM, and
50 nM) at 37�C for 20 minutes in plates. Ab42 (5 mM) and chro-
mogenic substrate S-2302 (0.67 mM final concentration, Diaph-
arma) were added, and absorbance at 405 nm was read for 60
minutes at 37�C in a spectrophotometer (Molecular Devices). Plas-
mas from 6 different human donors were used, and each plasma
was used twice.

Activated partial thromboplastin time (aPTT) and

prothrombin time (PT) tests in human plasma

A spectrophotometer-based aPTT assay was performed as des-
cribed previously15 with some modifications. Briefly, citrated plasma
was warmed at 37�C for 3 minutes and incubated with buffer or
control IgG (3.75 mM) or various concentrations of 3E8 anti-HK
antibody (0.05 mM, 0.15 mM, 0.75 mM, and 3.75 mM) at 37�C for
20 minutes in a 96-well plate. Then aPTT reagent solution (30 ml;
APTT-XL; Pacific Hemostasis) was added and incubated for 5
minutes. Clot formation was initiated by adding 30 ml of 25 mM
CaCl2 solution. Clot formation was monitored kinetically at 350 nm

at 37�C over time using SoftMax Pro 6.1 software (Molecular Devi-
ces) as described previously.15

For the effects of 3E8 anti-HK antibody on Ab42-induced intrinsic
coagulation changes, citrated plasma was incubated with buffer or
control IgG (3.75 mM) or various concentrations of 3E8 (0.05 mM,
0.15 mM, 0.75 mM, and 3.75 mM) at 37�C for 20 minutes. Ab42
(4 mM) was added and incubated at 37�C for 10 minutes, then
CaCl2 solution was added, and clotting was determined as
described above.

For PT, citrated plasma was warmed to 37�C for 3 minutes and
incubated with buffer, control IgG, or 3E8 anti-HK antibody (3.75
mM) at 37�C for 20 minutes in 96-well plates. Clotting was moni-
tored kinetically as described above after the addition of PT reagent
Thromboplastin D (Pacific Hemostasis).

Statistical analyses

All statistical analyses were performed using GraphPad Prism 4
software. Comparisons among multiple groups were performed
using 1-way ANOVA followed by Newman-Keuls multiple compari-
son test.

Results

Characterization of the 3E8 anti-HK antibody

The 3E8 anti-HK antibody dose-dependently blocks Ab42-induced
HK cleavage and bradykinin release in human plasma ex vivo.36 To
investigate the specificity of this antibody, we performed western
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Figure 1. Characterization of the 3E8 anti-HK antibody. (A) Western blot shows 3E8 specifically recognizes HK in NHP and cHK in Ab42-treated human plasma.

Purified human HK and cHK were included as controls. In KN-DF human plasma, HK was not detected by 3E8, indicating the specificity of 3E8. The membrane was stripped

and reprobed with anti-LMWK antibody. LMWK was detected in normal and Ab42-treated human plasma but not in KN-DF plasma. 3E8 did not recognize LMWK. (B) The

3E8 and 2B7 anti-HK antibodies pulled down HK, but not FXII, PK, or TF from human plasma. Human plasma was incubated with biotinylated 3E8, 2B7, and 4B12 anti-HK

antibodies and control IgG, and streptavidin was added to pull down the antibody-antigen complex. The samples were analyzed by western blot using commercial antibodies

against HK, FXII, PK, and TF. The 3E8 and 2B7 HK antibodies immunoprecipitated HK from human plasma, but they did not pull down FXII, PK, or TF. The 4B12 antibody,

which recognizes cleaved HK but not intact HK, did not pull down HK, FXII, PK, or TF from human plasma. (C) HK ELISA shows the KD of 3E8 anti-HK antibody binding to

HK is 168 6 38 pM. The experiments were performed in triplicate and repeated 3 times.
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blotting with purified proteins and human plasmas and probed with
3E8 (Figure 1A). 3E8 detected purified human HK and cHK, and it
showed a single band corresponding to HK in NHP and a single
band corresponding to cHK in Ab42-treated human plasma. There
were no bands detected in KN-DF plasma. When the membrane
was stripped and reprobed with an antibody against LMWK,
LMWK was detected in NHP and Ab42-treated human plasma, but
not in KN-DF plasma (Figure 1A). This LMWK band was not
revealed by the 3E8 anti-HK antibody, indicating 3E8 does not rec-
ognize LMWK and is specific for HK and cHK.

We also performed immunoprecipitation using 3E8, 2B7 (intact HK-
specific), and 4B12 (cHK-specific) antibodies.44 Both 3E8 and
2B7 immunoprecipitated intact HK, but not FXII or PK, from NHP
(Figure 1B), indicating that 3E8 and 2B7 do not bind FXII or PK.
Neither 4B12 nor control IgG pulled down intact HK from NHP.
This experiment showed that 3E8 binds HK but not other contact
system proteins in human plasma. Furthermore, using ELISA,45 we
determined that the KD of 3E8 for HK is 168 6 38 pM, which indi-
cates a very strong binding affinity (Figure 1C).

The inhibitory effects of 3E8 anti-HK antibody on

Ab42-induced HK cleavage are abolished by the

competitive HK-D6 peptide

The 3E8 anti-HK antibody was generated using a peptide derived
from D6 of human HK. To analyze whether 3E8 blocks HK cleavage
by binding specifically to the D6 of HK in human plasma, we exam-
ined the inhibitory effects of 3E8 on HK cleavage in the presence of
various concentrations of HK-D6 (Figure 2). Ab42 induced HK
cleavage, and HK cleavage was blocked by 3E8 (lanes 2 and 3,

Figure 2A). Under the same conditions, HK-D6 did not show much
effect on Ab42-induced HK cleavage (lanes 5-7, Figure 2A). How-
ever, HK-D6 dose-dependently blocked the inhibitory effects of 3E8
on Ab42-induced HK cleavage (lanes 8-10, Figure 2A). Control IgG
and IgG1HK-D6 did not show any effect on Ab42-induced HK
cleavage (lanes 4 and 11-13, Figure 2A). These results suggest
that the inhibitory effect on HK cleavage by 3E8 is dose-
dependently abolished by the competitive HK-D6 peptide (Figure
2B), confirming that 3E8 blocks HK cleavage by binding to
this 20-amino acid region of D6 in HK (antigen of 3E8) in
human plasma.

3E8 dose-dependently inhibits Ab42-induced PK

and FXII activation

The 3E8 anti-HK antibody binds to the D6 of HK, the region that
binds PK and FXI, and hence plays an important role in contact sys-
tem activation.47-50 We analyzed whether 3E8 impacts PK activation.
3E8 dose-dependently inhibited Ab42-induced HK cleavage36 as well
as PK activation (Figure 3A-B). We also analyzed whether 3E8 inhibits
Ab42-induced kallikrein activity using a chromogenic substrate. In the
absence of 3E8, Ab42 induced kallikrein generation in NHP. How-
ever, 3E8 dose-dependently inhibited Ab42-induced kallikrein activa-
tion (Figure 3C). Control IgG had no effect on kallikrein activity.

Since activated PK (kallikrein) can feed back to activate FXII51 and
3E8 inhibited PK activation, we investigated whether 3E8 affected
FXII activation. We found that 3E8 dose-dependently inhibited FXII
activation (Figure 3D-E). These results suggest that 3E8 anti-HK
antibody dose-dependently prevents both PK and FXII activation.
Since our immunoprecipitation analyses showed that 3E8 only binds
HK but not FXII or PK in human plasma (Figure 1B), the effects of
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Figure 2. The inhibitory effects of the 3E8 anti-HK antibody on Ab42-induced HK cleavage are abolished by competitive HK-D6 peptides. (A) EDTA-human

plasma was incubated with buffer, 3E8 anti-HK antibody (0.5 mM), control IgG (0.5 mM), HK-D6 (0.5 mM, 1 mM, 2 mM), 3E8 anti-HK antibody (0.5 mM) 1 HK-D6 (0.5 mM,

1 mM, 2 mM) or control IgG (0.5 mM) 1 HK-D6 (0.5 mM, 1 mM, 2 mM) (as indicated in [A]) at 37�C for 20 minutes. Ab42 (5 mM) was added and incubated for 2 hours.

Western blotting analyses were performed with antibodies against HK and TF. 3E8 HK antibody protected HK from Ab42-induced cleavage (lane 3), but control IgG (lane

4) and different concentrations of HK-D6 did not have significant effects on Ab42-induced HK cleavage (lanes 5-7 and [B]). However, HK-D6 dose-dependently inhibited

the protective effects of 3E8 anti-HK antibody on Ab42-induced HK cleavage (lanes 1, 3, 8-10, and [B]). HK-D6 did not have significant effects on the control IgG in

Ab42-induced HK cleavage (lanes 4, 11-13, and [B]). HK western blotting signals were normalized to TF. n 5 6. Data are denoted as mean 6 SEM. *P , .05, **P # .01,

***P # .001. P . .05 was not significant (n.s.).
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3E8 on FXII or PK activation are through its direct binding to HK,
not FXII or PK.

3E8 has the same effect on Ab42-induced FXII

activation as does HK deficiency in human plasma

We compared the effect of 3E8 anti-HK antibody with that of HK
deficiency (using KN-DF human plasma) on Ab42-induced FXII acti-
vation in human plasma. In NHP, Ab42 induced FXII activation and
HK cleavage, and 3E8 completely blocked HK cleavage36 (Figures
1-3). Although significant, 3E8 did not completely prevent FXII activa-
tion (Figures 3D-E and 4). Using KN-DF human plasma, we found
that Ab42 induced a small but significant amount of FXII activation
(lane 6 of Figure 4A-B). 3E8 did not have a significant effect on

Ab42-induced FXII activation in KN-DF plasma (lanes 6 vs 7 in Figure
4A-B). The addition of 3E8 to normal plasma and the overall lack of
HK in KN-DF plasma have similar inhibitory effects on Ab42-induced
FXII activation (lanes 3 vs 6 in Figure 4A-B). These results indicate
that HK plays an important role in Ab42-induced FXII activation and
that HK participates in contact system activation primarily through the
20-residue region of D6. Therefore, an antibody blocking this region,
like 3E8, is effective in inhibiting contact system activation.

3E8 delays intrinsic coagulation and prevents

Ab42-induced intrinsic coagulation

FXI plays an important role in the activation of the intrinsic coagula-
tion pathway.52 Since 3E8 and FXI both bind D6 of HK, 3E8 might

50 kDa

0.0
0.0

0.2

0.4

0.6

0.5

1.0

1.5

n.s.

n.s.
n.s.

n.s.
n.s.

***

***

*** *

*

*

***

** ***
*

***

TF
1 2 3 4 5 6

PK

cHK

HK

75 kDa
100 kDa

50 kDa
75 kDa

100 kDa
150 kDa

N
H

P
3E

8 
0�

M
3E

8 
0.

02
�M

3E
8 

0.
1�

M
3E

8 
0.

5�
M

Ig
G

 0
.5
�M

A�42 5�M 

A�42 5�M 

PK
/T

F

Ka
llik

re
in 

ac
tiv

ity

A�42 5�M 

N
H

P

N
o 

tr
ea

tm
en

t

3E
8 

0n
M

3E
8 

5n
M

3E
8 

25
nM

3E
8 

50
nM

Ig
G

 5
0n

M

3E
8 

0�
M

3E
8 

0.
1�

M
3E

8 
0.

02
�M

3E
8 

0.
5�

M
Ig

G
 0

.5
�M

A B C

1 2 3 4 5 6
TF

FXII

FXIIa

cHK

HK

50 kDa

75 kDa
100 kDa

50 kDa

75 kDa
100 kDa
150 kDa

N
H

P
3E

8 
0�

M
3E

8 
0.

02
�M

3E
8 

0.
1�

M
3E

8 
0.

5�
M

Ig
G

 0
.5
�M

A�42 5�M D

n.s.
*

*** *** ***

***
*

0.0
0.3
0.6
0.9
1.2

A�42 5�M 

FX
lla

/T
F

N
H

P
3E

8 
0�

M

3E
8 

0.
1�

M
3E

8 
0.

02
�M

3E
8 

0.
5�

M
Ig

G
 0

.5
�M

E

Figure 3. 3E8 dose-dependently inhibits Ab42-induced PK and FXII activation in human plasma. (A,B) The 3E8 anti-HK antibody dose-dependently inhibited

Ab42-induced PK activation in NHP. NHP was incubated with buffer, 3E8 anti-HK antibody (0.02 mM, 0.1 mM, 0.5 mM), or control IgG (0.5 mM) at 37�C for 20 minutes.

Ab42 (5 mM) was added and incubated at 37�C for 2 hours (A). Western blots were performed with antibodies against HK, PK, FXII, and TF. 3E8 dose-dependently

protected HK from Ab42-induced cleavage, as shown previously.36 It also dose-dependently inhibited PK activation. Decreases in the PK band indicate activation of PK

to PKa; PKa was not detectable by this antibody (lanes 1-5 in [A-B]). Control IgG did not show any effect on Ab42-induced PK activation (lane 6 in [A-B]). (C) 3E8

dose-dependently inhibited Ab42-induced kallikrein activity in human plasma. NHP was incubated with buffer, control IgG (50 nM), or various concentrations of 3E8 HK

antibody (5 nM, 25 nM, and 50 nM) at 37�C for 20 minutes. Ab42 (5 mM) and chromogenic substrate S-2302 (0.67 mM final concentration) were added, and absorbance

at 405 nm was read for 60 minutes at 37�C. In the absence of 3E8, Ab42 induced a dramatic increase in kallikrein activity. The 3E8 antibody dose-dependently inhibited

Ab42-induced kallikrein activation, while control IgG had no effect. (D-E) 3E8 anti-HK antibody dose-dependently inhibited FXII activation. 3E8 also dose-dependently

inhibited FXII activation (FXIIa) (lanes 1-5 in [D-E]), while control IgG did not influence Ab42-induced FXII activation (lane 6 in [D-E]). FXIIa and PK western blots were

normalized against TF. n 5 6. Data are denoted as mean 6 SEM. *P , .05, **P # .01, ***P # .001. P . .05 was not significant (n.s.).
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interfere with FXI binding and impact intrinsic coagulation. To ana-
lyze whether 3E8 affects intrinsic coagulation, we measured
aPTT.53 After incubating human plasma with various concentrations
of 3E8, we induced intrinsic coagulation. While a very low dose of
3E8 (0.05 mM) did not impact aPTT, a higher dose (0.15 mM) sig-
nificantly delayed aPTT (Figure 5A). We also analyzed the effect of
3E8 on the extrinsic coagulation pathway by measuring PT.53 We
found that 3E8 did not impact the PT (Figure 5B), indicating that
3E8 delays intrinsic, but not extrinsic, coagulation.

Ab42 induces thrombin generation32 and dramatically accelerates
clotting in normal plasma (Figure 5C). To analyze whether 3E8 anti-
HK antibody could prevent Ab42-induced clotting, we incubated
human plasma with various concentrations of 3E8 and then Ab42
before adding calcium to initiate coagulation. 3E8 (75 nM) abol-
ished the effects of Ab42-induced accelerated clotting and normal-
ized clotting (Figure 5C).

Since FXI can also be activated by thrombin,54 we used a purified
protein system to examine whether 3E8 could affect thrombin-
induced FXI activation. Our results showed that the 3E8 anti-HK
antibody did not inhibit FXI activation by thrombin (supplemental
Figure 1).

Ab42 binding to both HK and FXII, and PK and FXI

binding to HK play important roles in Ab42-induced

plasma contact system activation

We analyzed the interaction between Ab42 and other contact sys-
tem proteins in NHP using biotinylated-Ab42 (B-Ab42). Molecules
were pulled down and analyzed by nonreducing SDS-PAGE/west-
ern blots. The specificity of the antibodies used was validated using
purified proteins (lanes 1-4, Figure 6A). B-Ab42 pulled down

FXII/FXIIa, cHK, some FXI, and some PK (Lane 7, Figure 6A). Since
the contact system was activated by Ab42 during the pulldown pro-
cess: FXII was dramatically activated; HK was cleaved; PK and FXI
were decreased due to their activation to PKa and actived FXI
(FXIa), respectively, which are not detectable by these antibodies
(compare lanes 5-7, Figure 6A). Most FXIIa was pulled down by
Ab42, as FXIIa was not detected in the supernatant after B-Ab42
pulldown. Furthermore, cHK was pulled down by Ab42 (lanes 5-7,
Figure 6A). These results show that activated FXII and cleaved HK
bind to Ab42. TF, a noncontact system plasma protein used for nor-
malization, was not pulled down by B-Ab42, indicating the specific-
ity of the pulldown assay.

Since the pulldown process with B-Ab42 induced contact system
activation, we used FXII-deficient human plasma (FXII-DF) for further
studies. All proteins except FXII were detected in FXII-DF (lane 1,
Figure 6B). B-Ab42 pulled down HK, FXI, and PK, but not TF (lane
2, Figure 6B). 3E8 blocked FXI and PK pulldown by B-Ab42, but
not HK (lanes 2 vs 3, Figure 6B), indicating FXI and PK pulldown
by B-Ab42 depends on their binding to HK. 3E8 blocked FXI and
PK binding to HK, therefore preventing FXI and PK pulldown. FXII-
deficiency prevented Ab42-induced HK cleavage as cHK was not
detected (Figure 6A vs Figure 6B), indicating that FXII is necessary
for Ab42-induced contact system activation.

To further analyze the role of HK in the interaction of FXI/PK with
Ab42, KN-DF plasma was used. All proteins analyzed except HK
were detected in KN-DF plasma, and the protein levels were similar
between NHP and KN-DF plasma (lanes 1 and 2, Figure 6C).
B-Ab42 pulled down FXII but neither FXI nor PK from KN-DF
plasma (lane 3, Figure 6C). This result further shows that FXI and
PK pulled down by Ab42 depends on HK; in the absence of HK,
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Ab42 did not pull down FXI and PK. Even though Ab42 induced
FXII activation and pulled down FXIIa in NHP (lane 7, Figure 6A), it
did not pull down FXIIa in KN-DF plasma (lane 3, Figure 6C) as
there was likely too little FXIIa formed to be pulled down (Figure 4).
This result indicates that Ab42 did not induce FXII activation in
KN-DF plasma. Therefore, Ab42 binding to both FXII and HK is criti-
cal for Ab42-mediated contact system activation.

To further investigate the role of 3E8 anti-HK antibody in FXI and
PK binding to HK, we used an ELISA-based binding assay. Plates
were coated with PK (Figure 6D) or FXI (Figure 6E) and then incu-
bated with HK in the presence or absence of 3E8. In the absence
of 3E8, HK bound to PK (Figure 6D) or FXI (Figure 6E). In the pres-
ence of 3E8, HK binding to PK (Figure 6D) or FXI (Figure 6D) was
blocked. Control IgG did not influence HK binding to PK or FXI.
These results directly show that 3E8 blocked PK or FXI binding to
HK.

3E8 anti-HK antibody disassembles PK/HK and

FXI/HK complexes in NHP in the absence of a

contact system activator ex vivo

Since PK and FXI circulate in the blood as complexes with HK, we
hypothesized that 3E8 could disassemble PK/HK or FXI/HK com-
plexes in NHP in the absence of contact system activators. To test
this possibility, we incubated NHP with 3E8 anti-HK antibody, then
pulled down HK and its bound proteins with an anti-HK antibody
that does not recognize or bind D6 (biotinylated-2B7, B-2B7).44 In

the absence of 3E8, B-2B7 anti-HK antibody pulled down HK, FXI,
and PK (lanes 1 and 3, Figure 7A). However, in the presence of
3E8, B-2B7 antibody pulled down HK but not FXI or PK (lane 2,
Figure 7A,C,D). This result indicates that the 3E8 anti-HK antibody
disassembled PK/HK and FXI/HK complexes in human plasma in
the absence of contact system activation ex vivo. There was signifi-
cantly more intact HK pulled down in the presence of 3E8 com-
pared with in the absence of 3E8 (Figure 7A,B). Control IgG did
not have an effect on the pulldown, indicating the specificity of the
3E8 antibody. Neither FXII nor albumin were pulled down, demon-
strating the specificity of the B-2B7 antibody for HK and the lack of
binding between FXII and HK in the absence of a contact system
activator. Overall, this experiment shows that the 3E8 anti-HK anti-
body is capable of disassembling PK/HK and FXI/HK complexes in
normal human plasma in the absence of contact system activation
ex vivo.

Discussion

HK is a nonenzymatic cofactor for the optimal activation of the
plasma contact system. HK mostly circulates in the blood com-
plexed with PK or FXI.55,56 FXII binds directly to negatively charged
surfaces, which can lead to autoactivation, whereas HK may be nec-
essary for optimal activation of PK and FXI by surface-bound acti-
vated FXIIa and for positive feedback activation of FXII by PKa.57,58

Plasma deficient in HK has a markedly prolonged aPTT ex vivo.59-62
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Human HK consists of 6 domains (designated D1 to D6, respec-
tively). Previous studies revealed that D6 of HK contains the PK and
FXI binding sites, which partially overlap.47-50 This region is impor-
tant for HK-dependent clotting activity of NHP and dextran sulfate
sodium salt-induced activation of PK and HK cleavage.47 We
focused on a smaller 20-amino acid region within the identified PK/
FXI binding site in D6 of HK.47-49 The effect of 3E8 anti-HK anti-
body on Ab42-induced HK cleavage is dose-dependently blocked
by the HK-D6 peptide (Figure 2), indicating the importance of this
region. Moreover, 3E8 inhibited FXII and PK activation and delayed
aPTT in NHP. Our immunoprecipitation experiment in human plasma
showed that 3E8 directly bound HK yet bound neither FXII nor PK,
indicating the effects of 3E8 on contact system activation is through
its binding to HK. Together, these results suggest the effects of
3E8 anti-HK antibody on Ab42-induced contact system activation is
through its binding to a 20-amino acid region of the D6 of HK, dem-
onstrating that this small region of HK plays an important role in
Ab42-induced contact system activation.

Based on previous studies from other investigators47-50,55,56,58 and
our present results, we hypothesize the following models: in normal
plasma (supplemental Figure 2A), PK and FXI bind to HK and form
complexes.50,56 Ab42 binds to FXII and activates FXII to FXIIa,
which initiates contact system activation. Ab42 also binds to HK,
which facilitates access of PK and FXII to Ab42-bound FXIIa (Figure

6A). FXIIa activation of FXI (to FXIa) triggers the intrinsic coagulation
pathway, leading to clot formation, whereas FXIIa activation of PK
(to PKa/kallikrein) leads to the cleavage of HK and release of brady-
kinin from its precursor HK and subsequent binding to bradykinin
receptors and initiation of inflammatory processes. PKa can posi-
tively feedback to activate FXII,51 and FXIIa can further activate the
downstream pathways and amplify contact system activation. In the
presence of 3E8 (supplemental Figure 2B), 3E8 binds to D6 of HK
and blocks PK and FXI binding to HK (Figure 6B,D,E). Ab42 can
minimally activate FXII in the presence of 3E8 (Figure 4), but Ab42-
bound FXIIa does not have access to FXI and PK due to the binding
of 3E8 and therefore cannot activate PK or FXI. Since PK is not
activated, it cannot feedback to activate more FXII, and FXII remains
minimally activated by Ab42 (Figure 3D). The effect of KN-DF is
similar to that of 3E8. In the absence of HK (supplemental Figure
2C), Ab42 can bind to FXII and initiate limited FXII activation (Figure
4), but Ab42-bound FXIIa does not have access to FXI and PK and
therefore cannot activate PK nor FXI. Since PK is not activated, it
cannot positively feedback to activate FXII, and FXII has very limited
activation by Ab42 (Figures 4 and 6C). Therefore, in the absence of
HK, contact system activation is very limited by Ab42 (Figure 4).

HK has important functions in many pathophysiological condi-
tions.39,63-65 Kininogen-1 knockout mice are protected from ische-
mic neurodegeneration without an increase in infarct-associated
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hemorrhage.66 Therefore, HK is instrumental in pathologic thrombus
formation and inflammation but dispensable for hemostasis.66 Bra-
dykinin, which is released from HK, is involved in many pathologies
in a variety of systems and organs.40,67-74 These studies suggest
that targeting HK may be beneficial in many pathological conditions.
Our study showed that 3E8, an antibody targeting HK, not only
blocks bradykinin release36 and subsequent inflammatory activity,
but it also inhibits FXI and PK activation, prevents FXII feedback
activation of FXII, and prevents intrinsic coagulation ex vivo. Further-
more, 3E8 can disassemble HK/PK and HK/FXI complexes in the
absence of a contact system activator. Our studies may provide
important information for novel therapeutic and prophylactic strate-
gies for contact system-related pathological conditions, such as Alz-
heimer’s disease and hereditary angioedema.
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