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Abstract

HIV causes several forms of immune dysfunction that need to be addressed in a functional

cure for HIV. Immune exhaustion describes a dysfunctional phenotype caused by chronic

cellular activation. Lymphocyte activation gene-3 (LAG3) is one of several negative core-

ceptors known as immune checkpoints that contribute to this exhaustion phenotype. Anti-

bodies targeting immune checkpoints are now used clinically to restore immunity against

cancer and hold promise in restoring immunity during HIV infection. Here, we summarize

current knowledge surrounding LAG3 and discuss its relevance during HIV infection and the

potential for LAG3-targeting antibodies in a functional HIV cure.

Author summary

Antiviral drugs have transformed HIV infection from a death sentence to a manageable

disease. However, millions still lack access to these drugs, which require daily adherence.

This allows the HIV epidemic to continue, killing a million people each year. The search

for a cure has been long, but researchers now have a greater knowledge of HIV and

human biology than ever before and are designing drugs and strategies that may be used

in a cure. Checkpoint blockade is one strategy already used to treat cancer but may also

eventually be used in an HIV functional cure, which would allow the body to control HIV

without the help of antiviral drugs. Checkpoint blockade works by inhibiting molecules

called immune checkpoints, which are the brakes of the immune system. Here we focus

on an immune checkpoint called LAG3. LAG3 can be present on many different immune

cells with differing frequency but is more abundant during HIV, in which having more

LAG3 is associated with certain aspects of worse disease. Although it may have slightly dif-

ferent functions on different types of cells, overall, LAG3 reduces the cell’s ability to

respond to stimulus. Inhibiting LAG3 could reinvigorate immune cells to fight HIV and

may even help fight coinfections such as hepatitis viruses. Inhibiting other immune check-

points along with LAG3 may improve efficacy. If combined with other drugs and strate-

gies to fight HIV, checkpoint blockade may allow the immune system to control HIV

without the help of antiviral drugs—a functional cure.
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Introduction

Antiretroviral therapy (ART) inhibits human immunodeficiency virus (HIV) replication, but a

reservoir of latently infected cells means that ART must be taken indefinitely and thus does

not constitute a cure. The ideal HIV cure would completely eradicate HIV. However, a func-

tional cure, in which HIV is permanently suppressed in latent reservoirs, is more feasible with

lower cost and less severe side effects. Restorative immunotherapy may help achieve a func-

tional cure by reversing the immune exhaustion during HIV infection.

Immune exhaustion describes a phenotype of misplaced tolerance coinciding with expres-

sion of inhibitory proteins, known as immune checkpoints (IC) (e.g., lymphocyte activation

gene-3 [LAG3], programmed cell death-1 [PD1], TIM3 [T-cell immunoglobulin and mucin-

domain containing-3], TIGIT [T-cell immunoreceptor with Ig and ITIM domains], CTLA-4

[cytotoxic T-lymphocyte-associated protein-4], BTLA [B- and T-lymphocyte attenuator],

2B4), that impair cellular immune response. Like other ICs, LAG3 likely evolved as an im-

muno-regulatory strategy to protect from organ damage during aberrant or excessive immune

activation (e.g., allergy, autoimmunity, inflammatory bowel disease)[1–4]; however, when a

strong immune response is desired, misplaced LAG3-mediated immunosuppression may be

detrimental. Immune exhaustion harms are evident in cancer, in which antibodies blocking

PD1 and CTLA-4 substantially increase survival and have become first-line treatment for

advanced melanoma [5]. Indeed, the 2018 Nobel Prize in Physiology or Medicine was awarded

to pioneers of this research [6]. Although ICs may seem redundant, their differing expression

patterns and signaling mechanisms, and their functional synergy provide the opportunity to

take advantage of functional redundancies to more accurately target and titrate immune resto-

ration. For HIV, reversing immune exhaustion may restore immunity, thereby reducing

opportunistic infection and improving control of HIV. Here, we review LAG3, its relevance in

HIV infection, and its therapeutic potential within a functional cure.

LAG3 expression

LAG3, a member of the immunoglobulin superfamily, is expressed on T cells, natural killer

(NK) cells, plasmacytoid dendritic cells (pDCs) and B cells. LAG3 is frequently studied on T-

cells, in which it translocates to lipid rafts on the cell surface after cellular activation, forming

dimers and oligomers which colocalize with cluster of differentiation 3 [CD3] and CD4/CD8

upon reactivation [7–9]. T-cells LAG3-expression generally increases with differentiation [10–

12].

The lymphocytic choriomeningitis virus (LCMV) infection mouse model is useful for

studying LAG3 in vivo because acute and chronic strains exist. After 1 to 2 weeks of LCMV

infection, LAG3 expression peaks on T-cells. In the acute model, virus is cleared and LAG3

expression decreases, allowing activated cells to differentiate into memory cells. In the chronic

model, LAG3 remains elevated, representing exhaustion [13,14]. Then, like other ICs, LAG3 is

elevated during HIV, cancer, tuberculosis, and hepatitis B and C [11,15–22]. This up-regula-

tion is driven on T-cells by T-cell receptor (TCR) stimulation and on activated NK and T-cells

by interleukin 12 [IL-12] in an interferon-γ [IFNγ]-dependent manner [23,24]. Other cyto-

kines, such as IL-27, IL-15, IL-2, and IL-7, also up-regulate LAG3 [1,23–27]. LAG3 may also

regulate and be regulated by T-bet (a T-box transcription factor), which along with Eomeso-

dermin, guides differentiation of cytotoxic T lymphocytes (CTLs). Indeed, deletion of T-bet

increases LAG3 expression on murine T-cells, and in turn LAG3 knockout increases T-bet

[28,29]. HIV-specific CTLs are overwhelmingly T-betdim, even following ART-initiation[30].

Although TCR stimulation and cytokines up-regulate LAG3, toll-like receptor (TLR) stimu-

lation may oppose this, at least in mice, potentially by increasing expression and activity of
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transmembrane matrix metalloproteases A disintegrin and metalloproteinase domain-con-

taining protein 10 [ADAM10] and ADAM17 [31], which regulate LAG3 through membrane

cleavage [32], or by increasing T-bet activity [33]. During HIV infection, LAG3 remains ele-

vated despite presence of TLR ligands. ART may reduce LAG3 on bulk T-cells but not on cen-

tral memory T-cells, NKs, or invariant-NK T-cells (iNKTs) [10,11,15]. Whether this regulation

of LAG3 is appropriate during HIV infection is unclear. However, PD1 blockade successes in

HIV, discussed later, indicate that ICs are overexpressed [34].

LAG3 receptors

Discovered in 1990, LAG3 was recognized to share ancestral homology and structural similar-

ity to CD4 [35]. LAG3 regulates T-cell activation mainly through interaction with major histo-

compatibility complex (MHC) class II, binding with 100-fold the affinity of CD4 [35–38].

Unlike CD4, however, LAG3 does not bind the HIV envelope glycoprotein 120 [gp120], so it

is thought not to be an HIV receptor [37]. However, as Human Leukocyte Antigen-DR

(HLA-DR), an MHC-II molecule, is expressed on activated T-cells, both LAG3 and its main

receptor are elevated during HIV infection, perhaps enhancing immunosuppression.

In mice, LAG3 also binds two lectins, Galectin-3 (Gal3) and liver and lymph node sinusoi-

dal endothelial cell C-type lectin (LSECtin), in both cases suppressing CTL IFNγ production

[39,40]. HIV and its trans-activator of transcription (Tat) protein up-regulate Gal3, which also

enhances HIV budding and transfer [41,42]. Gal3 exists intracellularly and extracellularly with

distinct functions and binds to many glycosylated proteins with diverse physiological out-

comes [43]. In comparison, LSECtin is lesser known and participates in antigen recognition,

uptake, and internalization [44]. Any evolutionary reason for the interaction between these

lectins and LAG3 is unclear but likely dependent on the heavy glycosylation of LAG3. Research

is needed to confirm LAG3–lectin interaction in humans to determine the importance of Gal3

and LSECtin.

LAG3 mechanism

LAG3 differs from other ICs because it lacks noticeable inhibitory motifs. Early studies of

LAG3’s mechanism supported the idea that LAG3 inhibited T-cell activation through competi-

tion with CD4—just as CTLA-4 competes with CD28 for CD80/86 [45], by demonstrating that

LAG3 inhibited IL-2 production of a CD4+ T-cell hybridoma but not of a CD4− variant—and

that this inhibition depended on MHC-II [46]. However, this same study showed that mutat-

ing a lysine residue in the cytoplasmic domain abolished LAG3 function, implying an intracel-

lular mechanism rather than receptor competition. This is further supported by evidence that

LAG3 inhibits CTLs (discussed below), has non-MHC-II ligands [11], binds a different site of

MHC-II than CD4, and does not competitively inhibit CD4 during TCR ligation [38]. A

potential explanation for this apparent paradox is that LAG3 inhibits intracellular signaling

proteins dependent on CD4 or CD8, such as lymphocyte-specific protein tyrosine kinase

(Lck). Details of LAG3’s intracellular mechanism remain uncharacterized except that LAG3

inhibits calcium flux and nuclear factor of activated T-cells (NFAT) activation during TCR

stimulation [47,48]. Although a LAG3-associated protein binds the glutamine proline (EP)

motif of LAG3’s intracellular domain, deletion of this motif did not abrogate LAG3’s function

[46,49]. Research of LAG3’s role and mechanism has largely been restricted to inhibition of

TCR-dependent stimulation and its interaction with MHC-II. However, the antibody typically

used to inhibit murine LAG3 (clone C9B7W) does not block the LAG3 MHC-II interaction

[50]. Furthermore, LAG3 maintains its role on non–T-cells, as discussed below. Therefore,

LAG3 may also function in TCR-independent stimulations such as through cytokine or
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pattern recognition receptors. Therefore, more research into the LAG3 mechanism and situa-

tional roles is critical.

LAG3 function on cell types and subsets

LAG3 on conventional T-cells

T-cell exhaustion is generally viewed as CTL dysfunction, but CD4+ T-cell exhaustion also

exists [51]. Although cell-line studies show that LAG3 inhibits CD4+ T-cell function

[11,46,47], differential function of LAG3 between these cells and CTLs remains largely unin-

vestigated. Although one study found no effect of LAG3-blockade on CTL activation [52] and

another study demonstrated that inhibition of CTL function is dependent on CD4+ T-cell

LAG3 expression[53], others show that LAG3 inhibits CTL independently of CD4+ T-cells

[22,54]. Overall, studies suggest LAG3 regulates the CTL response but may have greater impact

when expressed on CD4+ T-cells. LAG3-inhibition of CTLs is curious because MHC-II, which

CTLs do not recognize, is the main receptor for LAG3. We propose several possible mecha-

nisms for this curiosity (Fig 1). Although LAG3-mediated regulation protects T-cells from acti-

vation-induced cell death following intense stimulation, LAG3 offers no protection from

apoptosis following physiologically relevant stimulation [7,14,55].

LAG3 on T regulatory cells

Whether T regulatory cells (Tregs) are beneficial or detrimental in HIV pathogenesis is

unclear. As previously reviewed, Tregs abate HIV-related inflammation but also suppress

desired anti-HIV immunity [56–58]. Likewise, Treg LAG3 expression is higher than for con-

ventional T-cells [59,60]; its role on Tregs remains controversial. Early studies suggested

LAG3 enhances Treg function when the inflammatory and/or antigenic burden is high [1,59]

but not in less demanding environments [53,59,61], in which LAG3 expressed on the respond-

ing T-cell had greater impact [29,53]. In contrast, studies using similar models show LAG3

inhibiting Treg function and impairing Treg development [29,62,63]. One consistent finding

throughout these studies is that LAG3 inhibits proliferation of Tregs. The literature is similarly

unclear on LAG3’s role in Treg inhibition of dendritic cell (DC) maturation, with studies

showing conflicting results [60,64]. In summary, LAG3’s role on Tregs is not well defined but

seems dependent on immune microenvironment.

LAG3 on plasmacytoid dendritic cells

As important producers of type I IFN and links between innate and adaptive immunity, pDCs

play a significant role during HIV infection. However, like Tregs, the beneficial or detrimental

effects of pDCs on HIV disease progression is debated. On one hand, pDCs may help control

HIV by inhibiting viral replication and promoting CTL and NK cells through IFNα produc-

tion and cross-presentation, especially during early infection [65]. Yet, pDC-mediated

immune activation may also contribute to immunopathology and immune exhaustion [65].

In mice, pDCs express 10-fold greater LAG3 than Treg and conventional T-cells [66].

LAG3-expressing pDCs behave more tolerogenically than LAG3-negative pDCs—fewer IFNα,

more IL-6, increased generation of Tregs, and induction of monocytes to recruit myeloid-

derived suppressor cells [17]. Furthermore, LAG3 on pDCs inhibits T-cell expansion and vice

versa [66]. These immunosuppressive and trans-cellular LAG3 effects may explain why LAG3

knockout mice have increased numbers of cell types that naturally lack LAG3—including

granulocytes and macrophages [67]—suggesting that LAG3 inhibits expansion of other innate

immune cells by encouraging a suppressive environment.
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LAG3 on NK and innate T-cells

LAG3 knockout mice have increased numbers of innate cells that would otherwise express

LAG3, including γδT cells, NKs, and pDCs, implying that it regulates their expansion [67].

LAG3 expression on innate cells—including mucosal-associated invariant T-cells (MAIT;

20%)[68], NKs and iNKTs (1%–15%) [15,16], pDC (6%) [17], and γδT-cells (19% in mice)

[50]—is higher compared to conventional T-cells.

An early report showed LAG3-knockout or -blockade enhancing murine-NK killing of

tumor cell lines [69]; however, a contrasting study was unable to confirm this in human NKs

[70]. Recently, two murine cancer models showed that LAG3-blockade after IL-12 administra-

tion reduced metastases and increased number and functionality of NKs, implying a similar

regulatory role for LAG3 on NKs as on T-cells [71]. Because LAG3 is up-regulated on NKs

during HIV infection and is higher on those of HIV progressors compared to HIV controllers,

this regulatory role represents a potential source of NK dysfunction during disease [16].

Our laboratory has shown LAG3 to be up-regulated on iNKTs during HIV infection

[15,16]. iNKTs are innate-like cells, with both NK and T-cell markers, that respond to lipid

Fig 1. LAG3 on T-cells during HIV infection. HIV induces inflammation and immune activation, which leads to exhausted lymphocytes and

increased expression of LAG3 and HLA-DR, an HLA class II molecule. LAG3 may inhibit CTL activation by binding to (1) the alternative LAG3

ligands LSECtin or Gal3, (2) HLA class II molecules that traffic to the immune synapse on the target cell or (3) HLA class II molecules that

traffic to the immune synapse on the same cell, or by (4) cotrafficking with CD8 to the immune synapse, which occurs during CD8 crosslinking

[109]. Productive HIV infection increases production of Gal3, which can inhibit CTL activation and killing. Productive infection can be induced

from latent infection through activation of certain transcription factors, including NFAT, which is inhibited by LAG3 during T-cell activation.

CD, cluster of differentiation; CTL, cytotoxic T lymphocytes; Gal3, Galectin-3; HLA, human leukocyte antigen; LAG3, lymphocyte activation

gene-3; LSECtin, liver and lymph node sinusoidal endothelial cell C-type lectin; NFAT, nuclear factor of activated T-cells; TCR, T-cell receptor.

https://doi.org/10.1371/journal.ppat.1007429.g001

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007429 January 17, 2019 5 / 14

https://doi.org/10.1371/journal.ppat.1007429.g001
https://doi.org/10.1371/journal.ppat.1007429


antigens presented by the MHC-I–like molecule CD1d and are important linkers of the innate

and adaptive immune system [72]. Although beneficial for anti-HIV immunity, iNKTs are

depleted and functionally impaired during HIV infection [73]. We have previously shown that

LAG3, but not PD1, expression on iNKTs in HIV-infected individuals is inversely correlated

with their ability to produce IFNγ [15]. Furthermore, LAG3 inhibits proliferation of iNKTs

[74]. Together, this indicates that LAG3 acts as an IC on iNKTs similarly to T-cells.

MAITs are an innate T-cell subset that comprise 1%–10% of peripheral T-cells but are

exhausted and depleted from the periphery during HIV [75]. Although their antiviral function

is not clear, MAITs respond to bacterial metabolites and are likely important in defence

against bacterial coinfections during HIV [75]. Recently, it was discovered that LAG3 is highly

up-regulated on MAITs following activation, causing functional impairment that is reversible

with LAG3-blockade [76]. MAIT LAG3 expression during HIV is unknown, but LAG3-block-

ade may partially reverse their dysfunction during disease.

Innate T-cells are more abundant in the gut and liver than peripheral blood. These are sites

of intense inflammation during HIV infection, suggesting LAG3 expression in these areas may be

even greater than in the blood. HIV can cause liver disease [77], in which iNKTs and MAITs com-

prise up to 30% and 50% of lymphocytes, respectively [78,79], and the LAG3 ligand LSECtin is

highly expressed [80]. During hepatitis B and C infections, LAG3 is up-regulated on T-cells, in

which it reduces cytokine production and cytotoxicity but is uninvestigated on MAITs, NKs, and

iNKTs [20–22]. Taken together, these studies indicate LAG3 is of great importance in the liver

during HIV, hepatitis B virus (HBV), and hepatitis C virus (HCV) infection. Due to complex

immune environments and severe immune-mediated liver damage often caused by these phasic

infections, further study is needed to determine whether LAG3 is harmful or beneficial.

Overall, LAG3 is understudied on innate cells. This is especially true of γδT-cells. γδT-cells

expressing Vδ2 are dysfunctional and severely depleted from peripheral blood during HIV

infection [81]. Although LAG3 expression on γδT-cells has been noted [35,82], little research

has investigated its expression or function in these cells.

LAG3 and HIV disease

Immune exhaustion is a main facet of immune dysfunction and is associated with poor HIV

disease outcomes. Indeed, LAG3 is associated with high viral load [11,19,83], faster disease

progression [19], and rapid return of viraemia following treatment interruption [83]. More-

over, LAG3 is down-regulated on NKs of HIV elite controllers—individuals with undetectable

viral load despite being infected—and HIV-exposed seronegative (HESN) populations, and

CD4+ T-cells of viraemic nonprogressors and elite controllers [16,84,85]. These studies do not

resolve cause from effect, because LAG3 may represent immune activation rather than con-

tribute to disease progression, but they demonstrate that LAG3 is associated with unfavourable

disease measurements and could be a main contributor to immune exhaustion in HIV. Revers-

ing immune exhaustion may restore immunity against coinfections and enhance HIV-specific

immunity, making it a candidate for use in a functional cure.

LAG3-blockade: Potential in an HIV functional cure

The functional HIV cure goal is to suppress virus in latent reservoirs, eliminating the need for

ART. Elite controllers demonstrate that such control is possible. A “shock and kill” tactic, in

which “shock” refers to reactivation of HIV from latent reservoirs and “kill” denotes depletion

of these now visibly infected cells, is one immune-based strategy for a functional cure. LAG3--

blockade could be one component of this strategy by reversing latency and simultaneously

enhancing HIV-specific immunity (Fig 1).

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007429 January 17, 2019 6 / 14

https://doi.org/10.1371/journal.ppat.1007429


LAG3 and HIV latency

LAG3 is elevated in lymph nodes and tissues, areas in which the HIV reservoir is prominent

[11]. Because activation of NFAT and nuclear factor kappa-light-chain-enhancer of activated

B cells (NF-κB) promotes HIV-transcription [86] and LAG3 inhibits NFAT and cellular acti-

vation, its blockade may reverse latency [47]. Furthermore, memory T-cells expressing LAG3

alone, or coexpressing LAG3 with TIGIT and PD1, respectively, harbor 2-fold and 8-fold

more integrated HIV DNA than their negative counterparts, implying an LAG3 or IC combi-

nation blockade would preferentially target infected cells [12]. Although studies have not

investigated whether LAG3 helps maintain HIV latency, studies have shown that PD1-block-

ade enhances latency reversal and exposes HIV in latently infected cells to the adaptive

immune system for potential elimination [87–91].

Checkpoint blockade enhances HIV immunity

Strong immunity is critical to the “kill” aspect of the “shock and kill” tactic. Moreover, CTLs

are necessary to maintain control of HIV [92]. Reversing immune exhaustion could effectively

restore this immunity. Indeed, only a short duration of LAG3-blockade enhances the forma-

tion of memory T-cells during viral infections [14,93].

Although LAG3 expression is not elevated on gag-responsive CTL compared to cytomega-

lovirus CMV-responsive counterparts, PD1 expression is [10,94]. As an approved first-line

treatment for advanced melanoma, research into PD1-blockade is more developed than for

LAG3-blockade. Although cells expressing abundant PD1 may be irreversibly exhausted,

LAG3 is typically expressed without PD1 during HIV [11,12,95]. Furthermore, PD1-blockade

improves frequency and response of HIV-specific CTL, and reduces viral load and mortality

in simian immunodeficiency virus-infected macaques, indicating exhaustion in HIV is

reversible [90,96]. Promising PD1-blockade studies in humanized mice [97] and ex vivo [94]

have resulted in early clinical trial attempts to improve anti-HIV immunity. Thus far, case

reports demonstrate increases in cell-associated HIV RNA and reductions in latent reservoir

size after PD1/CTLA-4–blockade [89,98,99], and one clinical trial showed improved HIV-

specific CTL responses in a subset of individuals taking PD-L1–blockade [100]. However, ret-

inal toxicity in a parallel macaque model study led to this human trial being stopped. This

adverse event slowed IC-blockade research for HIV and warrants caution, although a recent

similar study witnessed no side effects [90]. It is unclear whether IC-blockade for HIV is any

less safe than for cancer; however, HIV necessitates a different risk–benefit calculus for IC-

blockade compared to cancer, with similar risk but lower benefit considering the alternative

of lifelong ART. LAG3-blockade may be relatively safe because LAG3 knockout mice do not

readily exhibit immunopathology, in contrast to PD1 and CTLA-4 deficient mice [101–103].

Indeed, preliminary trial results show LAG3+PD1 combination blockade has a similar safety

profile to PD1 monotherapy in advanced melanoma patients [104]. Furthermore, when PD1

is blocked, LAG3 and other ICs are often up-regulated in compensation and vice versa

[62,105,106]. Therefore, although PD1-blockade is promising for HIV cure, other ICs or an

IC combination blockade may improve safety or efficacy. Indeed, animal models of chronic

viral infection and cancer have demonstrated that PD1+LAG3 combination blockade is more

effective than either alone [107,108], and of the 33 ongoing registered clinical trials of LAG3--

blockade, all but two are testing LAG3+PD1 combination blockade. Preliminary results of

one such clinical trial demonstrates striking efficacy of LAG3+PD1-blockade (BMS-986016

and nivolumab, respectively) for treatment of advanced melanoma patients whom PD1/

PD-L1-blockade previously failed (16% objective response rate and 45% disease control rate)

[104].
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Conclusion

Despite LAG3’s importance in cancer, allergy, autoimmunity, and infectious disease, much

about its function is undefined. Although mechanisms and functions of LAG3 remain contro-

versial, LAG3 clearly inhibits immune responses. Therefore, a main concern surrounding IC-

blockade for HIV is that it may increase inflammation and immune activation, thereby accel-

erating disease. Although a valid concern, the preliminary successes of PD1-blockade support

the argument that reversing immune exhaustion will result in favorable outcomes. Regardless,

LAG3 and other IC-blockades should be investigated in HIV models with and without viral

suppression to understand their roles during disease.

If LAG3-blockade improves immune function during HIV infection, it could help deplete

the HIV reservoir by reversing latency and restoring immunity of exhausted cells. Providing

ART is a priority; therefore checkpoint inhibition should be pursued for individuals with

ART-suppressed virus. For untreated individuals, checkpoint blockade may increase cellular

production of and susceptibility to HIV by enhancing immune activation. Furthermore,

replicating HIV can evolve under selective pressure to evade CTL responses, an issue

resolved by ART. However, few HIV antigens are exposed when HIV is suppressed. There-

fore, during viral suppression, IC-blockades would likely be most effective when combined

with triggers or other immunotherapies (Fig 2). Immunotherapies like IC-blockade have

advantages, including almost no risk of HIV resistance and potentially improved broad

immunity, particularly against coinfections. These advantages and the potential for a func-

tional cure justify cautious optimism and further research of LAG3 expression, mechanism,

and function.

Fig 2. Potential role for checkpoint blockade in combination immunotherapy for a functional cure. A therapeutic vaccine (1) would enhance HIV-specific CTL

number and function. Because many HIV-specific CTLs are exhausted during HIV, IC blockade could enhance the activating effect of the vaccine and the function of

the CTL after activation. After administering this vaccine, checkpoint blockade could feasibly enhance LRAs (2) activity as previously demonstrated for PD1 [91].

During LRA treatment, broadly neutralizing antibodies (3) could bind to HIV polypeptide expressed on the infected cell’s surface and activate antibody dependent cell

cytotoxicity activity by NK cells, which may also be enhanced by checkpoint blockade [110]. CD4, cluster of differentiation 4; CTL, cytotoxic T lymphocyte; HLA,

human leukocyte antigen; IC, immune checkpoint; LRA, latency reversing agent; NK, natural killer; PD1, programmed cell death-1; TCR, T-cell receptor.

https://doi.org/10.1371/journal.ppat.1007429.g002
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