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Abstract

When aerial cameras get aerial remote sensing images, the defocus will occur because of

reasons such as air pressure, temperature and ground elevation changes, resulting in differ-

ent image sharpness of continual aerial remote sensing images. Nowadays, the rapidly

developing feature matching algorithm will rapidly reduce the registration rate between

images with different image sharpness. Therefore, in order to enable aerial cameras to get

image sharpness parameters according to the locations of aerial image feature points with

inconsistent sharpness, this paper proposes a feature matching algorithm between aerial

images with different sharpness by using DEM data and multiple constraints. In this paper,

the feature matching range is extended according to the modified aerial imaging model and

the nonlinear soft margin support vector machine. Then the relative moving speed and its

variation of the feature points in the image are obtained by using the extended L-k optical

flow, and finally the epipolar geometric constraint is introduced. To locate the feature points

is obtained under multiple constraints, there is no need to calculate the feature point descrip-

tors, and some mismatched point pairs are corrected, which improves the matching effi-

ciency and precision. The experimental results show the feature matching precision of this

algorithm is more than 90%, and the running time and matching precision can meet various

application needs of aerial cameras.

Introduction

Aerial camera has become the main means to get geographic information because of its flexi-

bility and timeliness, and it is commonly used in military reconnaissance, topographic map-

ping, disaster early warning and other fields [1–4]. According to its different working mode,

aerial camera can be subdivided into push-broom type, swing-sweep type and frame-spoke

type. When the swing-sweep type aerial camera gets the aerial remote sensing image, oblique

camera swings perpendicular to the flight direction to get the ground information during the

forward flight of the aircraft, to expand the field of view [5]. In the process of getting aerial

remote sensing images, aerial cameras will produce defocus because of the influence of tem-

perature, pressure and ground elevation difference, resulting in different sharpness of

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0274773 September 19, 2022 1 / 29

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Dai D, Zheng L, Yuan G, Zhang H, Zhang

Y, Wang H, et al. (2022) Real-time and high

precision feature matching between blur aerial

images. PLoS ONE 17(9): e0274773. https://doi.

org/10.1371/journal.pone.0274773

Editor: Xuejian Wu, Rutgers University Newark,

UNITED STATES

Received: June 9, 2022

Accepted: September 3, 2022

Published: September 19, 2022

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0274773

Copyright: © 2022 Dai et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting information

files.

Funding: The authors received no specific funding

for this work.

https://orcid.org/0000-0003-2529-6998
https://doi.org/10.1371/journal.pone.0274773
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0274773&domain=pdf&date_stamp=2022-09-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0274773&domain=pdf&date_stamp=2022-09-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0274773&domain=pdf&date_stamp=2022-09-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0274773&domain=pdf&date_stamp=2022-09-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0274773&domain=pdf&date_stamp=2022-09-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0274773&domain=pdf&date_stamp=2022-09-19
https://doi.org/10.1371/journal.pone.0274773
https://doi.org/10.1371/journal.pone.0274773
https://doi.org/10.1371/journal.pone.0274773
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


continual aerial remote sensing images [6, 7]. Commonly used aerial camera image sharpness

detection methods include photoelectric auto-collimation method, program control method

and image processing method. Because the image processing method can use the computer to

complete the task of image sharpness detection of aerial camera in real-time, and the mechani-

cal structure is simple, it has become the principal method for the use and research of aerial

camera [8–11]. However, the image processing method is influenced by the proportion of high

frequency information in aerial remote sensing images. In the area where the ground scenery

is rich, aerial remote sensing images got by aerial cameras are rich in high frequency informa-

tion. Therefore, the method based on image processing is usually used to detect the clarity of

aerial images, and adjust the mechanical structure to get clear aerial remote sensing images.

However, in the areas such as oceans and deserts, which occupy more than half of the earth,

there are few ground scenery and less high frequency information of aerial remote sensing

images, so the image processing method can’t be used to detect the image sharpness. To meet

the demand of real-time sharpness detection of aerial camera in weak feature area, the method

of feature matching offset is used to get sharpness detection parameters. Its important premise

is to realize the feature matching algorithm in two aerial remote sensing images with different

sharpness.

Image registration is an essential precondition for image processing, especially for image

mosaic, 3D reconstruction and object tracking [12]. Image registration is commonly used in

medical images, remote sensing images, video surveillance, computer vision and other fields.

The purpose of remote sensing image registration is to geographically align two or more

images containing overlapping scenes. Remote sensing image registration methods can be sub-

divided into feature-based methods and region-based methods. Among them, the region-

based method realizes the correspondence by evaluating the similarity of the window pairs in

the two images. In spatial domain, the commonly used similarity measures are Sum of Square

Differences (SSD), Normalized Cross-Correlation (NCC) and Mutual Information (MI). The

calculation of the Sum of Square Differences (SSD) is easy and fast, but it is sensitive to noise

and intensity differences [13]. Normalized Cross-Correlation (NCC) is robust to linear

strength changes, but it can’t adapt to complex strength changes [14]. Mutual Information

(MI) can solve the nonlinear intensity difference, but it ignores the spatial information of adja-

cent pixels, reduces the quality of image registration, and its computational cost is high [15].

In the frequency domain, the commonly used similarity measure is Phase Correlation (PC).

Phase Correlation (PC) uses image intensity information and spatial similarity measurement

to evaluate similarity. It has high computational efficiency, but can’t deal with significant

intensity differences [16]. Y. X. Ye proposes a multimodal image local descriptor: Chanel Fea-

ture of Orientated Gradient (CFOG), which describes the image pixel by pixel, and uses Fast

Fourier Transform (FFT) to define a fast feature-based similarity measure. Chanel Feature of

Orientated Gradient (CFOG) has the characteristics of high computational efficiency, but it

can’t deal with large differences in the rotation and scale [17]. H. M. Mohammed introduces

the geometric and radiation characteristics of image pairs, and combines the region-based

matching method to achieve uniformly distributed feature matching with more numbers and

higher precision [18]. The region-based method calculates the similarity measure of image

intensity, which evaluates the similarity measurement of all positions in the image region and

search window by brute force search method, which can achieve high precision, but its run-

ning time is long.

The feature-based method is to determine the corresponding relationship by matching the

local features between the images. The main local features include point features, contour fea-

tures, edge features and regional features. Because local invariant features are robust to geo-

metric and illumination differences, most image registration algorithms are based on local
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invariant features. In general, the image registration method based on local features mainly

includes three steps: 1. feature extraction; 2. feature description; 3. feature matching. The most

popular local descriptor based on distribution is Scale Invariant Feature Transform (SIFT)

proposed by Lowe. SIFT has strong discrimination capacity, and it is robust to scale change,

rotation, illumination and so on, but its computational complexity is high [19, 20]. Gradient

Location-Orientation Histogram (GLOH) proposed by K. Mikolajczyk, it uses the logarithmic

polar coordinate position grid of 17 location elements instead of the 4 � 4 grid defined in the

SIFT as the descriptor structure, but its computational cost is too high [21]. Partial Intensity

Invariant Feature Descriptor (PIIFD) proposed by J. Chen uses symmetrical gradient direction

histogram for remote sensing image registration. It uses the position and direction of edges in

the spatial structure of SIFT to generate scalable binary edge images [22]. Speeded Up Robust

Features (SURF) proposed by H. Bay is the accelerated version of SIFT, which uses Haar wave-

let response, but its running speed still lags behind the current application needs [23]. DAISY

proposed by E. Tola is a fast computing local feature descriptor for dense feature extraction. It

uses Gaussian convolution to block aggregation the gradient direction histogram and quickly

extract the feature descriptor [24]. Based on SIFT, A. Sedaghat proposes Uniform Robust Scale

Invariant Feature Transform (UR-SIFT), which improves the distribution quality of SIFT in

image space and scale [25]. G.-R. Cai proposed the Perspective Scale Invariant Feature Trans-

form (P-SIFT), which simulates the deformation of the scene in the multi-view image through

the perspective sampling of the virtual camera, which effectively improves the robustness of

the algorithm to the perspective change [26]. In order to address the problem of geometric dis-

tortion in remote sensing images, A. Sedaghat proposed Adaptive Binning Scale Invariant Fea-

ture Transform (AB-SIFT). According to the adaptive histogram quantization strategy, Hesse

affine algorithm descriptor is utilized to make the local descriptor highly unique and robust to

geometric distortion and radiation distortion [27]. Scale Invariant Feature Transform (SIFT)

class descriptors have high matching precision and are robust to scale, rotation and illumina-

tion, but even SURF is still difficult to satisfy the real-time needs. The binary descriptor came

into being to reduce the computational cost and improve the matching efficiency. Because the

binary descriptor uses hamming distance for matching and image pixel pairs for comparison,

it has considerable advantages in memory use and matching speed. Binary Robust Indepen-

dent Elementary Features (BRIEF) [28] uses a fixed 9 � 9 smooth convolution kernel, which

has faster descriptor establishment speed, but does not have rotation invariance. Fast Retina

Key point (FREAK) [29] adopts a sampling mode which is close to the image information

received by the human retina, which has the advantages of fast calculation and small memory

consumption. Binary Online Learning Descriptor (BOLD) [30] is independently optimized for

each image block to get a more robust descriptor. At present, BinBoost [31] and LATCH [32]

are the most stable. Based on SIFT and orientation function analysis system technology, Y.

Zhang improves ORB algorithm [33]. This algorithm realizes large-size ultra-high resolution

image registration algorithm from coarse to fine, and accelerates the acquisition of feature

points and image correction [34]. Center-Symmetric Local Binary Pattern (CS-LBP) [35] pro-

posed by M. Heikkila is a variant of SIFT and local binary. Boosted Efficient Local Image

Descriptor (BELID) [36] proposed by I. Suárez utilizes the integral image calculates the differ-

ence of the average gray value of the square region of the image. This method improves the cal-

culation speed, the precision is comparable to that of SIFT, and the running speed is close to

ORB. In order to further improve the computational efficiency, I. Uárez proposes Boosted Effi-

cient Binary Local Image Descriptor (BEBLID) [37] based on BELID. It uses AdaBoost to

improve the feature selection process of BELID, gets better local matching, and is more effi-

cient than ORB. To generate key points efficiently, S. Leutenegger proposes Binary Robust

Invariant Scalable Key points (BRISK) [38], which greatly reduces the computational cost.
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Based on BRISK, C. H. Tsai improves the running speed again, and proposes Accelerated

Binary Robust Invariant Scalable Key points (ABRISK) [39]. Uncorrected feature pairs are

screened out as early as possible by sorting ring, which effectively improves the matching loga-

rithm after image enhancement processing. The author verifies that this method is insensitive

robust to image size changes and radiation changes. Based on ABRISK and combining the dis-

tribution of human retinal ganglion cells and visual regulation, M. L. Cheng proposes a Inverse

Sorting Ring (ISR), which rearranges ABRISK, and proposes Enhanced Accelerated Binary

Robust Invariant Scalable Key points (EABRISK) [40], which improves the matching precision

of high similarity pixel intensity. To improve the robustness of image features, the number of

matching and the efficiency of data processing again, M. L. Cheng adds color information to

the descriptor. Based on EABRISK, Synthetic-Colored Enhanced Accelerated Binary Robust

Invariant Scalable Key point (SC-EABRISK) [41] is proposed, which runs 20 times faster than

EABRISK.

The region-based method has high matching precision, but the computational cost is high.

Among the feature-based methods, SIFT matching method is robust to illumination, scale,

rotation and so on, but its running speed is slow. Binary matching method sacrifices the

matching precision in exchange for higher algorithm efficiency. Even with the continuous

development of region-based and feature-based methods, however, remote sensing image reg-

istration still has the following difficulties: 1. diversity of sensor data types and conditions dur-

ing data acquisition; 2. data size; 3. lack of known image model; 4. lack of uniformly

distributed feature datum points. The ways to get remote sensing images mainly include satel-

lite camera, drone camera, aerial camera and so on. Aerial camera has become the main means

to get geographic information because of its strong flexibility and high efficiency of getting

information. In the process of continuously getting aerial remote sensing images, the swing-

sweep type aerial camera expands the field of view, but brings significant local geometric dis-

tortion to the aerial remote sensing images because of the change of camera swinging angle.

For the images in the same swinging strip, the larger the swinging angle is, the higher the

degree of local geometric distortion is. Although the method of Gaussian weighting function,

which is typically used, can reduce the influence of local geometric distortion to some extent, it

reduces the significance of the descriptor. At present, by using modern remote sensing sensors

and navigation devices such as Global Position System (GPS) and Inertial Navigation System

(INS), registration can be achieved by direct geographic reference. This registration method

can eliminate obvious global geometric distortion, but dozens of pixels will still be offset by

this method, and the overall registration effect is poor [42–44]. However, multitime effect and

terrain fluctuation will lead to the registration error because of the radiation and geometric dif-

ferences between the images to be registered. At present, region-based methods and feature-

based methods often have many mismatching in image blur, which can’t be applied to feature

matching between aerial images with different sharpness.

Therefore, this paper proposes a feature matching algorithm between aerial images with dif-

ferent sharpness by using DEM data and multiple constraints. In this paper, to solve the prob-

lem of pixel offset in registration using GPS and INS, lie group is used to represent the relative

motion and coordinate transformation of aerial camera, and the aerial imaging model is modi-

fied to reduce pixel offset based on eliminating global geometric distortion. However, the

modified aerial imaging model still contains residual errors, which can’t accurately confirm

the location of feature matching points, and if the nearest neighbor algorithm is utilized

directly according to the pixel coordinate position, it will cause about 27.43% mismatching.

Therefore, in order to better determine the search location of feature matching points, nonlin-

ear soft margin support vector machine is utilized to expand the modified aerial imaging

model, so point-to-point matching is extended to point-to-surface matching to make the
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surface become the search range of the feature matching point. To further determine the loca-

tion of feature points, the epipolar geometric constraint is introduced to reduce the search

range from surface search to line search. The L-k optical flow method after velocity compensa-

tion is used to determine the most suitable location of feature matching points. To reduce the

registration error caused by multitime effect and terrain relief, this algorithm introduces DEM

data with millimeter accuracy. In this paper, the feature extraction algorithm uses the ABRISK

to meet the real-time needs. The feature extraction algorithm runs fast and is insensitive to the

change of image size, and can process large aerial remote sensing images got by aerial cameras

in real time.

The contribution of this work is outlined below. The “Algorithm Flow” section will briefly

introduce the overall flow of the algorithm of this paper. In the “Optimization of Imaging

Model” section, the special Euclidean group in Riemannian geometry and the concept of non-

linear soft margin support vector machine in machine learning are used to optimize the aerial

imaging model and extend the feature matching points to the search range of surfaces. The

“Feature matching algorithm” section introduces two kinds of constraints used in the feature

point extraction algorithm: polar constraint and extended L-k optical flow, and combines it

with the aerial imaging model to reduce the search range of the surface to the line search range

to determine the most appropriate feature matching position. In “Results” section, experi-

ments are carried out to verify the algorithm in this paper. The first group of experiments veri-

fies the rapidity of the feature matching algorithm when the sharpness of aerial image is

similar. Compared with the classical SURF algorithm, ORB algorithm, BRISK algorithm,

ABRISK algorithm and geographic information algorithm, it is proved the running speed of

the text algorithm can fully meet the real-time needs after being accelerated by FPGA hard-

ware. The second group of experiments compares the extraction effects of classical feature

extraction algorithms such as FAST, SURF, ORB and BRISK on blur aerial images, and dis-

cusses the reasons for using ABRISK algorithm to extract feature points in this paper. The

third group of experiments compares the feature matching effects of this algorithm with the

classical BRIEF, SURF and BRISK algorithms in different sharpness images. The fourth group

of experiments to verify the repeatability of this algorithm, repeated experiments on this algo-

rithm and a variety of classical algorithms, and calculated its matching precision. The fifth

group of experiments tested the impact of DEM image accuracy on this algorithm. The experi-

mental results show that the algorithm matches the features of aerial images with different

sharpness, and the matching precision can reach 90%. This shows the algorithm in this paper

can achieve high matching precision between two aerial remote sensing images with different

sharpness, and the running speed of the algorithm meets the real-time needs. The “Conclud-

sions” section gives the relevant conclusions.

Materials and methods

Algorithm flow

Based on the aerial camera calibrating the inner orientation elements in the laboratory and get-

ting the high-accuracy DEM image of the aerial camera photographing area in advance, the

algorithm in this paper takes the back-end model of aerial photogrammetry as a known

parameter and loads it into the preprocessing process. The specific process of the algorithm of

this paper is as follows: the swing-sweep type aerial camera takes the previous image, and

according to the position and attitude information of the previous image simultaneously got

by GPS and INS, ABRISK algorithm is used to extract the feature points and calculate the

descriptor accordingly. The extracted feature points are obtained through the back-end modi-

fied aerial imaging model and the elevation information provided by high-accuracy DEM to
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get the geographical coordinates of the spatial object points. And try to use ABRISK algorithm

to extract feature points while photographing the latter image with swing-sweep type aerial

camera. If the feature matching is successful, the latter image is clear enough and does not

belong to the scope of this algorithm. Only according to the attitude and position information

of the aerial camera provided by the aircraft orientation and positioning system, calculate the

coordinate position of the latter aerial image, search the feature points of ABRISK algorithm,

and complete the feature matching algorithm. If ABRISK algorithm fails to complete feature

matching, then the latter aerial image is not clear enough to use conventional algorithms to

achieve feature matching, using this algorithm for feature matching. That is, the point match-

ing is extended to the area search range by using the nonlinear soft margin support vector

machine extended modified aerial imaging model, and according to the epipolar geometric

constraints formed by the swing-sweep type aerial camera, the matching range of feature

points is reduced from the area search range to the line search range. Then the extended L-k

optical flow method is used to speculate the position of the previous feature points in the latter

aerial image, and the modified feature matching search point is used to realize the feature

matching algorithm between different sharpness images. The precise algorithm flow is shown

in Fig 1.

Optimization of imaging model

Using aerial imaging model for remote sensing image registration can eliminate the global

geometric distortion, and the registration error is usually about dozens of pixels, which is diffi-

cult to meet the precision requirements of aerial camera sharpness detection. Therefore, this

paper uses the special Euclidean group in Lie group to represent the relative motion and coor-

dinate transformation of aerial camera, and modifies it according to the position and attitude

information got by GPS and INS. The modified aerial imaging model improves the feature

matching effect of aerial remote sensing images. However, in the process of getting aerial

remote sensing images, in addition to the change of aircraft attitude and ground elevation,

there is also a change of swinging photography angle perpendicular to the flight direction of

the aircraft, resulting in having local geometric distortion of the got image. The distortion

reduces the feature matching precision, so the nonlinear soft margin support vector machine

is introduced to expand the search range of the feature points got by the aerial imaging model,

so the most appropriate search range is selected according to the different positions of the

camera in the swinging strip, to improve the matching precision and efficiency, and reduce the

influence of aerial camera swinging angle on feature matching precision.

Lie group representation of camera motion. There will be relative motion between the

two images taken by the swing-sweep type aerial camera, which includes not only the change

of the relative position of the camera caused by the change of the attitude and position of the

aircraft, but also the change of the swinging angle of the swing-sweep type aerial camera. The

motion of the swing-sweep type aerial camera is complex. In this paper, Lie group is utilized to

represent the relative motion of the camera before and after photographing, which can opti-

mize the imaging model and combine with nonlinear soft margin support vector machine.

Thus the feature offset caused by the residual error which is not completely removed by the

modified aerial imaging model is tolerated to a certain extent. The local geometric distortions

of aerial remote sensing images got by swing-sweep type aerial cameras at different swinging

positions in the same swinging strip are different. Therefore, the relaxation factor in nonlinear

soft margin support vector machine is utilized to expand the search range of aerial imaging

model feature points, and the point correspondence is extended to surface correspondence.
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The establishment of aerial camera imaging model is usually based on the optical imaging

principle, that is, the ground object point, photography center and the image point are located

in the same straight line. Homogeneous coordinates are used to represent the positions of

ground object points, photography centers and image points in space, and the relative coordi-

nate transformation relations of the earth-centered earth-fixed coordinate system, the geodetic

coordinate system, the aircraft coordinate system and the photographic coordinate system are

established. It is represented by the special Euclidean group in Riemannian geometry, so the

aerial imaging model of swing-sweep type aerial camera can be modified by differential

manifold.

The camera coordinate position is described by the WGS84 earth ellipsoid model the earth-

centered earth-fixed coordinate system O − XiYiZi [45], as shown in Fig 2. The coordinate of

Fig 1. Overall flow chart of algorithm.

https://doi.org/10.1371/journal.pone.0274773.g001
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the photography center S1 in the earth-centered earth-fixed coordinate system O − XiYiZi of

the swing-sweep type aerial camera photographing the previous image is ðXi
S1
;Yi

S1
;Zi

S1
Þ, and

the coordinates of the photography center S2 in the earth-centered earth-fixed coordinate sys-

tem O − XiYiZi photographing the latter image is ðXi
S2
;Yi

S2
;Zi

S2
Þ, as shown in Fig 3. The relative

translation motion of the aerial camera is because of the change of the position of the aircraft

in the two images previous and latter photographing, then the change of the position of the

Fig 2. The WGS84 earth ellipsoid model.

https://doi.org/10.1371/journal.pone.0274773.g002

Fig 3. Schematic diagram of position changes of two images between the previous and latter aerial images

photographing by swing-sweep type aerial camera.

https://doi.org/10.1371/journal.pone.0274773.g003
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aircraft can be regarded as the translation of the camera, using t to represent [46], there is:

t ¼

DXi
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The relative rotation motion of the swing-sweep type aerial camera between the previous

and latter aerial images photographing can be regarded as two parts, one part is the attitude of

the aircraft has changed between the previous and latter aerial images photographing, and the

other part is the swing-sweep type aerial camera itself will increase a certain swinging angle

between the previous and latter aerial images to expand the range of images. That is, the rela-

tive rotational motion of the camera can be expressed as:

R ¼

1 0 0

0 cosðDcþ DtÞ sinðDcþ DtÞ

0 � sinðDcþ DtÞ cosðDcþ DtÞ

2
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5
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3
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;

ð2Þ

Where, Δψ = ψ2 − ψ1 is the change of aircraft attitude roll angle between the previous and latter

aerial images photographing, Δω = ω2 − ω1 is the change of aircraft attitude pitch angle

between the previous and latter aerial images photographing, Δκ = κ2 − κ1 is the change of air-

craft heading angle between the previous and latter aerial images photographing, Δτ = τ2 − τ1

is the change of swinging angle between the previous and latter aerial images photographing

by swing-sweep type aerial camera photographing.Compared with the UAV camera and the

push-broom aerial camera, the relative rotation motion of the camera in addition to the

change of the attitude of the aircraft in the two aerial remote sensing images got by the swing-

sweep type aerial camera in the same swinging strip, it also includes the change of camera

swinging angle in the aerial remote sensing image. If the change of the angle is not measured

and corrected, it will cause serious local geometric distortion of the aerial remote sensing

image and reduce the matching precision. The camera relative motion relationship between

the two aerial remote sensing images got by the aerial camera in the same swinging strip is

shown in Fig 3. In Fig 3, when the aerial camera gets the previous aerial remote sensing image,

the photography center is located at S1. The corresponding image point of the ground scene

point P in the image plane I1 is p1, the aircraft attitude is (ψ1, ω1, κ1), and the camera swinging
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angle is τ1. After getting the image interval time ΔT, at this time, the aircraft moves ΔL in space

from the position where the previous aerial remote sensing image is obtained, and the height

moves ΔH, and the photography center is located at S2, and the corresponding image point of

the ground scene point P in the image plane I2 is p2, the attitude of the aircraft is (ψ2, ω2, κ2),

and the camera swinging angle is τ2. It is easy to know the relative translation motion t and rel-

ative rotation motion R can be expressed by Eqs (1) and (2) between the previous and latter

aerial images acquisition.

Given the relative translation motion t and relative rotation motion R in the two images

between the previous and latter aerial images by aerial camera photographing, the relative

motion of the camera can be written in the form of special Euclidean group SE(3) [47, 48], that

is:

SE 3ð Þ ¼
R t

0 1

" #

; ð3Þ

Nonlinear soft margin support vector machine. The basic form of aerial camera imaging

model based on the pinhole model is as follows:

xi
p2
� Xi

S2

Xi
P � Xi

S2

¼
yi
p2
� Yi

S2

Yi
P � Yi

S2

¼
zi
p2
� Zi

S2

Zi
P � Zi

S2

; ð4Þ

Where, ðxi
p2
; yi

p2
; zi

p2
Þ is the coordinates of the corresponding image point p2 got by the aerial

imaging model on the earth-centered earth-fixed coordinate system O − XiYiZi, and

ðXi
S2
;Yi

S2
;Zi

S2
Þ is the coordinate of the aerial camera photography center S2 got by GPS and INS

on the earth-centered earth-fixed coordinate system O − XiYiZi coordinates. ðXi
P;Y

i
P;Z

i
PÞ is the

coordinate of the precise object point got from the high-accuracy DEM image on the earth-

centered earth-fixed coordinate system O − XiYiZi.

When there is an error in the attitude or position data such as the swinging angle of the

aerial camera, the Eq (4) will be changed to:

xi
p0

2

� Xi
S0

2

Xi
P � Xi

S0
2

¼
yi
p0

2

� Yi
S0

2

Yi
P � Yi

S0
2

¼
zi
p0

2

� Zi
S0

2

Zi
P � Zi

S0
2

; ð5Þ

Where, ðxi
p0

2

; yi
p0

2

; zi
p0

2

Þ is the coordinates of the high quality feature point p0
2

got by the aerial

camera using the ABRISK algorithm on the earth-centered earth-fixed coordinate system O −
XiYiZi, and ðXi

S0
2

;Yi
S0

2

;Zi
S0

2

Þ is the real position coordinates of the aerial camera photography cen-

ter S2 in the earth-centered earth-fixed coordinate system O − XiYiZi.

Using aerial imaging model for feature matching can eliminate global geometric distortion,

but the matching effect is poor, usually with a relative offset of about dozens of pixels. In the

process of getting the aerial remote sensing image, the relative rotation motion of the swing-

sweep type aerial camera not only changes the attitude of the aircraft, but also changes the rela-

tive swinging angle, which results in the local geometric distortion of the got aerial remote

sensing image. The relative offset of the pixel will be increased, and the matching effect will be

even worse. Although the position of the feature points got by the modified aerial camera

imaging model removes the influence of external reasons such as temperature and air pressure,

there will still be a relative pixel offset because of the influence of residual error. In the experi-

ment, it is found that 27.43% of the features will be mismatched if the nearest neighbor algo-

rithm is directly used. Therefore, according to the different geometric distortion characteristics
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of the aerial remote sensing images with different swinging positions in the swinging strip, the

nonlinear soft margin support vector machine is used to expand the position of the feature

points located by the modified aerial imaging model. The point correspondence is extended to

the face correspondence. And abandon the inherent nearest neighbor location method, and

use the relaxation factors of different positions corresponding to the internal feature position

as the basis for calculating the search range of feature points. Support vector machine is a tradi-

tional machine learning classification algorithm [49], which is mainly suitable for linear binary

classification problems. Compared with the support vector machine, the soft interval support

vector machine has a certain fault tolerance due to the use of relaxation factor. In the two-clas-

sification problem, there are few models that accord with linear separability. In the process of

application, kernel techniques are usually used to improve computational efficiency. The basic

representation of the nonlinear soft margin support vector machine is:

min
g;b

1

2
kgk

2
þ C

XN

i¼1

xi s:t: yi g
T� Xi þ bð Þ½ � � 1 � xi xi � 0; ð6Þ

Where, yi(i = 1, 2, � � �, n) is the label of the feature point, and it is 1 when it is determined to

be the feature point, otherwise it is 0. γ is the vector parameter, Xi(i = 1, 2, � � �, n) = {xi1, � � �,

xim} is the feature point, xi1, � � �, xim is the characteristic factor of the feature point, b is the vec-

tor parameter, ξi(i = 1, 2, � � �, 12) is the relaxation factor, C is a constant, and C> 0, ϕ(Xi)

chooses the radial basis function kernel function, that is:

y Xj;Xk

� �
¼ e

�

kXj � Xkk
2

2s2 ;
ð7Þ

The schematic diagram of the extended and modified aerial imaging model using nonlinear

soft margin support vector machine is shown in Fig 4. In Fig 4, the position of the feature

point located by the aerial imaging model is p2, and the position of the feature point using the

nearest neighbor matching is the mismatching point. Therefore, according to the position of

the actual feature point p0
2
, the appropriate relaxation vector is obtained, which is used in the

nonlinear soft margin support vector machine, and the aerial imaging model is extended to

determine the search position of the feature point.

The image registration algorithm based on geographic information can’t make up for this

error because it ignores the rich image information, so it can’t be optimized to further improve

its precision.

When the sharpness of the two images is the same, the feature points are extracted by

ABRISK algorithm, and then matched by the aerial imaging model. Then the characteristic

factor vector of the feature point is set to ½xi1; � � � ; xim� ¼ ½xi
p0

2

; yi
p0

2

; zi
p0

2

�, and the parameters can

be solved by nonlinear soft margin support vector machine and Stochastic Gradient Descent

method (SGD) [50]. Thus, the point correspondence of the modified aerial imaging model is

extended to face correspondence by nonlinear soft margin support vector machine, and then

the surface search is reduced to line search by adding epipolar geometric constraints. Finally,

the most suitable feature point position is determined by extending the L-k optical flow, as

described below.

Feature matching algorithm

Epipolar constraint. Epipolar constraint is a common algorithm for camera motion esti-

mation after 2D-2D image registration in visual Simultaneous Localization And Mapping
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(SLAM) [51]. It has scale uncertainty because of the uncertainty of spatial point P position, so

it is one of the soft constraints.

For the swing-sweep type aerial camera, the camera position includes not only translation,

but also the change of camera swinging angle and aircraft attitude between the previous and

latter aerial images photographing, so it has the epipolar geometric constraints the vertical

push-broom aerial camera does not have. A small range of surface search is determined

according to the relaxation factor in the nonlinear soft margin support vector machine and the

point position determined by the modified aerial imaging model, which can give the possibility

of mismatching point pair correction to a certain extent. However, because the point corre-

spondence is extended to the area search scope, if the search is traversed by violence, the com-

puting time will be greatly increased. Therefore, the dimension reduction search of the

epipolar geometric constraint of the swing-sweep type aerial camera in the aerial remote sens-

ing image is used to reduce the area search range to the line search range, which greatly

reduces the operation time and improves the efficiency of feature location determination. The

epipolar constraint generation diagram of the swing-sweep type aerial camera is shown in Fig

5. In Fig 5, when the swing-sweep type aerial camera gets the previous aerial remote sensing

image, the photography center is located at S1. At this time, the swinging angle of the aerial

Fig 4. Aeronautical imaging model with soft margin support vector machine.

https://doi.org/10.1371/journal.pone.0274773.g004

Fig 5. Schematic diagram of epipolar constraint of swing-sweep type aerial camera.

https://doi.org/10.1371/journal.pone.0274773.g005
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camera is τ1, and the corresponding image point of the ground object point P on the image

plane I1 using the data provided by the high-accuracy DEM image is p1. In the two images got

by the swing-sweep type aerial camera, there is a change in the relative translation motion of

the camera and the swinging angle, so the epipolar will be produced on the image plane. After

the interval time ΔT of image acquisition, the photography center is moved to S2, and the aerial

camera is swinging to τ2. According to the spatial position of the swing-sweep type aerial cam-

era and the ground object point in getting the previous aerial image, the epipolar W2 is gener-

ated on the image plane I2. According to the epipolar geometric relationship, the

corresponding image point p0
2

of the ground object point P on the image plane I2 must be

located on the epipolar W2.

The position of aerial camera photography center S2 is reached by camera relative motion

through photography center S1. The relative motion of the camera is expressed by a special

Euclidean group SE(3), such as Eq (3). Then the classical Rodriguez formula can be used to

realize the transformation between the corresponding special Euclidean group SE(3) and its lie

algebra se(3).

The transformation of a special Euclidean group SE(3) into its lie algebra se(3) can be

derived by a perturbed model, then the epipolar geometric constraint can be expressed as:

pT
2
K � TðRþ dRÞK � 1p1 ¼ 0; ð8Þ

Where the feature point p0
2

is the pixel coordinate on the image plane I2, the calibration

matrix is K ¼

fx s cx
0 fy cy
0 0 1

2

6
4

3

7
5, and the camera translation matrix t^ is shown in Eq (1), and the

feature point p1 is the pixel coordinate on the image plane I1.

When the sharpness of two aerial images is the same, the minimum dR of Eq (8) is calcu-

lated iteratively, which is regarded as a fixed value, and when matching feature points in

images with insufficient clarity, it is directly introduced as a correction.

The epipolar geometric constraint can reduce the search range of feature points determined

by the extended aerial imaging model of nonlinear soft margin support vector machine from

surface search to line search, to reduce the search range of feature points and improve the effi-

ciency of feature point matching. And it is not affected by the image sharpness. Therefore, in

the feature matching between different images, it can increase the precision and efficiency of

feature matching as geometric constraints. Fig 6 is schematic diagrams of the form of epipolar

geometric constraints on the image plane and their combination with the aerial imaging

model extended by nonlinear soft margin support vector machine, respectively.

Extended L-K optical flow. L-k optical flow method [52] is a common method in visual

odometer in visual SLAM based on the strong assumption: gray constant assumption. How-

ever, the use of L-k optical flow method should include three premises: (1) the assumption of

constant luminance: the assumption the brightness of the feature points of the same object

should be constant in the two images taken by the camera; (2) the assumption of time continu-

ity: the objects in the image move slowly or remain the same; (3) the spatial consistency

hypothesis: the motion of the adjacent pixels in the image is consistent.

Aerial camera as a common means to get ground information, aerial images also have their

unique advantages, the photographing interval is short, and most of the objects are still scenes

on the ground, which meet the conditions of L-k optical flow method.

The ground scenes captured by aerial images are similar, and their gray scale is also close. If

gray scale is still used as the condition of L-k optical flow extraction, it will cause many match-

ing errors. Therefore, this paper calculates the optical flow according to the high-accuracy
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DEM modified feature points, that is:

Jðmþ dm; nþ dn; t þ dtÞ ¼ Jðm; n; tÞ; ð9Þ

Where, (m, n) is the pixel coordinates of the feature points extracted by the ABRISK algo-

rithm for the pervious aerial image of the aerial camera, T is the time of the pervious aerial

image of the aerial camera, and dT is the time interval between the pervious aerial image and

the latter aerial image of the aerial camera. The J function can use ABRISK feature points to

get the coordinates of ground points. As shown in Fig 7.

In little difference in the sharpness of two aerial images, the matching of corresponding fea-

ture points in different images is obtained by ABRISK algorithm, and after the matching is

modified based on geographic information, the pixel moving speed can be obtained by using

Fig 6. Form of image epipolar constraint on image plane.

https://doi.org/10.1371/journal.pone.0274773.g006
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least square method:
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Because the algorithm in this paper is based on the swing-sweep type aerial camera design,

the swinging angle of the swing-sweep type aerial camera changes, so the pixel moving speed

will change. For example, if the relative motion of the pixel is regarded as a function of time T,

the calculation will be greatly complicated. Therefore, this paper adopts different compensa-

tion for the aerial images taken by different groups of aerial cameras, that is, between the

swinging strips. The pixel coordinates position between the ith image and the i+1th image can

be calculated using the following formula:

Jðm0iþ1
; n0iþ1

; t þ dtÞ ¼ Jðmi þ ðuþ uiÞdt; ni þ ðvþ viÞdt; tÞ; ð11Þ

Summary of feature matching algorithms between aerial images with

different sharpness

In the process of aerial camera photographing, the changes of external environment, such as

pressure, temperature and ground elevation difference, lead to the difference of aerial image

sharpness between the pervious and the latter of the camera photographing. In blur image, the

method of using feature point offset to calculate the sharpness detection of aerial image will

fail because of high mismatch rate. To resist the influence of pressure, temperature and other

reasons, this algorithm uses a special Euclidean group to represent the relative motion of the

camera and modifies the imaging model. To resist the influence of ground elevation difference,

the algorithm uses high-accuracy DEM image to extract the corresponding ground point

information. In blur image, both region-based method and feature-based method will cause

poor matching effect and even unable to complete feature matching. Therefore, this algorithm

Fig 7. Schematic diagram of optical flow method between aerial camera swing scanning images.

https://doi.org/10.1371/journal.pone.0274773.g007
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uses ABRISK to extract feature points on the clear image, and utilizes the modified aerial imag-

ing model to determine the location of the feature points on the blur image. Because only the

modified aerial imaging model is used for feature matching, the local geometric distortion

can’t be removed, and the pixel offset of feature points will be caused by the residual error.

Therefore, it is unreliable to use only the modified aerial imaging model for feature matching,

especially in the aerial images with large swinging angle in the swinging strip. In this paper, the

extended modified aerial imaging model of nonlinear soft margin support vector machine is

adopted. According to aerial images got from different swinging angles, different relaxation

factors are obtained, and the matching search range of feature points is expanded. To the max-

imum extent, in ensuring the matching precision, minimize the area search range. If traversing

every point in the surface search range, the running time of the algorithm is too slow, and the

location of the feature points can’t be determined. In this paper, the epipolar geometric con-

straint is used to reduce the surface search range to the line search range, which improves the

search efficiency and precision. However, it still can’t meet the real-time needs of the algo-

rithm. In this paper, extended L-k optical flow is used to compensate the relative movement

speed of pixels in different swinging positions in the swinging strip. According to the interval

time of the image photographing, the pixel movement is obtained, and the best feature match-

ing position is determined by integrating the epipolar geometric constraints.

The overall schematic diagram of the image feature matching algorithm with different

sharpness is shown in Fig 8. Using the ABRISK algorithm to get the feature point p1 in the pre-

vious image, the coordinates of the spatial point P are calculated by the aerial imaging model

and high-accuracy DEM, and the attitude information got by GPS and INS is used to get the

relative motion of the camera and converted into the form of special Euclidean group orienta-

tion SE(3). Based on the coordinate information of spatial points, the feature matching points

that best meet the needs are obtained by nonlinear soft margin support vector machine, polar

constraint and extended L-k optical flow method. That is:

min
p2

pT
2
K � Tt^ðRþ dRiÞK

� 1p1 þ kp2 � ½p1 þ ðnþ niÞdt�k
2

s:t: gT�ðp2Þ þ b � 1þ xi � 0;

ð12Þ

Where, p2 is the pixel coordinate of the feature point determined by the aerial imaging

model Eq (5); K is the calibration matrix; t^ is the antisymmetric matrix of the relative transla-

tion motion vector between the two aerial images of the aerial camera pervious and latter pho-

tographing, see Eq (1); R is the relative rotational motion matrix between the two aerial images

pervious and latter aerial camera photographing. dRi is the relative rotation compensation

matrix between the ith image and the i+1th image determined by Eq (8) when the sharpness is

similar; p1 is the exact pixel coordinates of the feature points got by the ABRISK algorithm in

the front aerial image of the aerial camera; ν is the basic speed of the pixel movement of the fea-

ture points of the aerial camera between the two images; νi is the compensation speed of the

pixel motion of the feature points of the aerial camera between the ith image and the i+1th

image. dT is the amount of time change between the two aerial images taken by the aerial cam-

era; γ, b is the parameter vector got by using the feature point matching pair Eq (6) when the

sharpness of the image taken by the aerial camera is similar; and ξi is the relaxation factor.

The feature matching points are obtained by solving Eq (12) to complete the task of feature

matching between aerial remote sensing images with inconsistent sharpness.

PLOS ONE Real-time and high precision feature matching between blur aerial images

PLOS ONE | https://doi.org/10.1371/journal.pone.0274773 September 19, 2022 16 / 29

https://doi.org/10.1371/journal.pone.0274773


Results

In this paper, the tilt aerial image taken by the national high score special XX tilt measuring

camera on August 1st, 2021 is tested. The algorithm running computer uses the CPU for Intel

Core i7–8900X, the programming language is C++, and the OpenCV data packet is used.

The area captured by aerial remote sensing images captured by aerial cameras has a high

similarity, especially when getting images of farmland, urban buildings and other areas. Using

feature-based method for feature matching algorithm will seriously reduce the success rate of

feature matching.

To discuss the real-time performance of the aerial image feature matching algorithm, exper-

iment 1 is carried out in this paper. Experiment 1 uses scale invariant feature transform (SIFT)

algorithm, speeded up robust features (SURT) algorithm, rotated binary robust independent

elementary features (ORB) algorithm, features from accelerated segment test (FAST) algo-

rithm, binary robust invariant scalable key point (BRISK) algorithm, accelerated binary robust

invariant scalable key point (ABRISK) algorithm, geographic information feature matching

algorithm and our algorithm. According to the number of extracted feature points, the run-

ning time changes as shown in Fig 9.

Fig 9 shows that using SIFT algorithm, SURT algorithm, ORB algorithm and BRISK algo-

rithm to extract feature points can’t meet the real-time needs in aerial images with an area of

Fig 8. General diagram of feature matching algorithm.

https://doi.org/10.1371/journal.pone.0274773.g008

Fig 9. Histogram of algorithm run time change.

https://doi.org/10.1371/journal.pone.0274773.g009
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4864 � 3232 got by XX tilt camera. FAST algorithm, ABRISK algorithm and geographic infor-

mation algorithm can meet the real-time needs, and their running time changes little with the

number of feature points extracted. Because of the use of a variety of constraints to modify the

extraction position of feature points, the running time of algorithm in this paper is slightly lon-

ger than that of ABRISK algorithm, but after FPGA acceleration, the running time of this algo-

rithm meets the real-time needs of aerial camera applications. Geographic information is used

for correction, which ignores most image feature information. When the swing-sweep type

aerial camera gets the aerial remote sensing image, there is local geometric distortion in the

image because of the change of camera swinging angle. When the sharpness of the image is

gradually blur, the success rate of feature matching decreases gradually, and the change trend

of the success rate is shown in Fig 10.

It is not difficult to know from Fig 10. Take BRIEF algorithm as an example to verify the

geographic information correction algorithm can improve the success rate of matching. When

the image is clear enough, it can be improved by 15% and 25%, while the running time is

almost unchanged, as shown in Fig 10. However, the image is gradually blur, and the aerial

image captured by the swing-sweep type aerial camera has local distortion, so the success rate

of matching will be greatly reduced. Therefore, in the swing-sweep type aerial camera to get

different sharpness of aerial images, using this algorithm for feature point matching, can

improve the success rate of matching, and the running time is better than the classical feature

matching algorithm, slightly longer than the geographic information correction algorithm.

Considering the running time and matching precision, the algorithm can well meet the needs

of aerial cameras.

To verify the feature point extraction of classical algorithms in blur aerial image, experi-

ment 2 is designed. In the experiment, the blur aerial remote sensing image got by XX tilt mea-

surement camera is extracted, the clear image and the blur original image are shown in Fig 11,

and the extraction results of each algorithm are shown in Figs 12 and 13.

From the effect images of feature points extracted by various algorithms in blur aerial

images, we can see that SURF algorithm has the largest number of feature points, and it is

robust to image blur, but its extraction speed is slow, so it is difficult to meet the real-time

needs. FAST algorithm and ORB algorithm are affected by image blur, the number of feature

Fig 10. Trend chart of matching success rate of sharpness reduction algorithm.

https://doi.org/10.1371/journal.pone.0274773.g010
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Fig 11. The clear and the blur original aerial remote sensing images.

https://doi.org/10.1371/journal.pone.0274773.g011

PLOS ONE Real-time and high precision feature matching between blur aerial images

PLOS ONE | https://doi.org/10.1371/journal.pone.0274773 September 19, 2022 19 / 29

https://doi.org/10.1371/journal.pone.0274773.g011
https://doi.org/10.1371/journal.pone.0274773


points extraction is sharply reduced, and even the possibility of extraction failure may occur in

individual images. BRISK algorithm has a certain robustness to image blur, but its extraction

speed still can’t meet the real-time needs, so this paper uses the ABRISK algorithm which has

the same extraction effect but faster extraction speed as the feature point extraction algorithm.

To verify the matching effect of this algorithm in aerial images with inconsistent sharpness,

experiment 3 is designed. This experiment uses the clear aerial image of Fig 12 and the blur

aerial image of Fig 13, and uses the classical feature matching algorithm and the algorithm in

this paper. Fig 11 is aerial tilt images got by XX tilt camera, in which the swinging angle range

of tilt aerial camera is 18˚� 55˚. High-accuracy DEM images are obtained by using InSAR tilt

photography point cloud data. When the sharpness of the image is consistent, the pixel moving

speed is calculated by using the extended L-k optical flow, and the pixel moving speed is calcu-

lated by using multiple swinging stripe images. The basic speed parameter is u = 13.025pixel/
ms, v = 0.775pixel/ms velocity, and the pixel movement speed change compensation curve

between every two aerial images is shown in Figs 14 and 15.

Fig 12. The extraction results of BRISK and FAST algorithm.

https://doi.org/10.1371/journal.pone.0274773.g012
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Fig 13. The extraction results of ORB and SURF algorithm.

https://doi.org/10.1371/journal.pone.0274773.g013
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When the sharpness of the image is consistent, the nonlinear soft margin support vector

machine is used to calculate the error correction of the imaging model and record it, in which

the feature point label is mainly generated automatically, followed by manual marking.

The classical feature matching algorithm and this algorithm are used to register Fig 11, in

which the pixel relative compensation speed of the algorithm of this paper uses the value in

Tables 1 and 2, and its effect is shown in Figs 16–19.

As can be seen from Fig 16, BRISK algorithm can still extract a considerable number of fea-

ture points in blur aerial images, but its descriptor calculation is affected by the image blur,

which greatly reduces the matching precision. In the registration of multiple groups of images,

it is found the precision of BRISK algorithm for registration between aerial images with incon-

sistent sharpness is unstable, which is greatly affected by the photographing area and blur. In

addition, the FAST algorithm itself is difficult to extract feature points in blur aerial remote

sensing images, so the extracted feature points are used to calculate descriptors for inconsistent

aerial image registration, and there are often no correct matching point pairs. In Fig 17, the

ORB algorithm is usually described by BRIEF descriptors, but because the image is blur, the

gray level of the image pixel changes, which is usually different from that in the clear image, so

most of the mismatched point pairs are obtained. In Fig 18, SURF algorithm extracts many

Fig 14. Variation curve of pixel speed compensation in X direction calculated by extended L-K optical flow.

https://doi.org/10.1371/journal.pone.0274773.g014

Fig 15. Variation curve of pixel speed compensation in Y direction calculated by extended L-K optical flow.

https://doi.org/10.1371/journal.pone.0274773.g015
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feature points from blur aerial images, but its matching time is longer, and because SURF algo-

rithm uses Haar wavelet to get its descriptors, it is also affected by the gray change of image

pixels, so there are most mismatches. Fig 19 shows the effect of feature matching using the

algorithm in this paper. To ensure the position of the feature points is as uniform as possible,

when utilizing ABRISK algorithm to extract the feature points, the feature points which are

less than 5 pixels around the extracted position are removed. The algorithm in this paper does

not rely on feature descriptor calculation, and uses geometric constraints to search, so its

matching precision and computational efficiency are high. However, the modified aerial imag-

ing model is used in this algorithm, and the local geometric distortion is too large, especially

the image quality is reduced because of the large jitter or angle change of the camera in the

process of getting the image, which will lead to a large matching error.

In inconsistent image sharpness, the previously got imaging model correction and the

image pixel movement speed compensation in Tables 1 and 2 are used as known quantities.

According to the feature points extracted from the previous image, the coordinates of the

ground points are calculated by using the imaging model combined with high-accuracy DEM

images, and make full use of the advantage of accurate geographic information to calculate the

search range of the feature points in the later image. The algorithm determines the location of

the feature points within the range determined by the relaxation factor around the image point

calculated by the imaging model, and use epipolar geometric constraints to reduce the dimen-

sion. Finally, the best position is determined according to the pixel moving speed determined

by the extended L-k optical flow. After the location of the feature points is finally determined,

the sequential probability ratio test method is used to remove mismatched point pairs [53]. To

verify the algorithm is not affected by the swinging position of the swinging strip, many match-

ing experiments are carried out on the aerial remote sensing images got by the aerial camera

when the swinging angle is large, and the matching results are shown in Fig 20.

To ensure the versatility of this algorithm, experiment 4 is designed. In this experiment,

10%, 30%, 50% Gaussian blur is added to different aerial tilt measurement images, and each

feature point matching algorithm is used for feature matching. Ten groups of experiments are

repeated, and the matching precision is shown in Table 3.

Experiments show the classical SURF algorithm and BRIEF algorithm can reduce the

matching precision afterimage blurring, and can’t complete image feature matching after blur-

ring up to 30%. However, geographic information aided feature matching algorithm and the

algorithm designed in this paper still keep the basic success rate of feature matching when the

image blurring degree is less than 50%. However, geographic information aided feature

Table 1. Compensation amount of pixel moving speed in X direction between different images in swinging strip.

u u1 u2 u3 u4 u5 u6

value 13.025 0.100 0.060 0.120 -0.040 -0.110 -0.070

u u7 u8 u9 u10 u11 u12

value 13.025 -0.130 -0.070 -0.150 -0.115 -0.100 -0.175

https://doi.org/10.1371/journal.pone.0274773.t001

Table 2. Compensation amount of pixel moving speed in Y direction between different images in swinging strip.

v v1 v2 v3 v4 v5 v6

value 0.775 0.200 0.150 0.100 0.040 0.030 -0.030

v v7 v8 v9 v10 v11 v12

value 0.775 -0.030 -0.050 -0.080 -0.050 -0.110 -0.205

https://doi.org/10.1371/journal.pone.0274773.t002
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matching algorithm can’t correct the registration error caused by the imaging model, and it is

affected by the local geometric distortion in the image got by the swing-sweep type aerial cam-

era. So in the swing-sweep type aerial camera swinging process, with the increase of swinging

angle and the comprehensive influence of image blur, the image registration rate will be low-

ered. In the algorithm of this paper, the modified aerial imaging model is used to determine

the preliminary search position, and the geometric constraint and extended L-k optical flow

are used to determine the location of feature points, which is not affected by the blur degree of

Fig 16. Matching results of aerial images with different sharpness by BRISK algorithm.

https://doi.org/10.1371/journal.pone.0274773.g016

Fig 17. Matching results of aerial images with different sharpness by BRIEF algorithm.

https://doi.org/10.1371/journal.pone.0274773.g017

Fig 18. Matching results of aerial images with different sharpness by SURF algorithm.

https://doi.org/10.1371/journal.pone.0274773.g018
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the image, and because the modified aerial imaging model and high-accuracy DEM image

data are introduced, it overcomes the influence of air pressure, temperature and ground eleva-

tion difference to some extent, and further improves the success rate of registration. However,

pixel movement speed compensation in the X direction calculated by this algorithm includes

the influence of the forward flight speed of the aircraft, and the effect is better when the flight

speed of the aircraft is almost constant. However, in sudden change of flight speed, the number

of feature points will be decreased, which will lead to the failure of registration.

In this paper, high-accuracy DEM images are introduced to eliminate the influence of

ground elevation difference. To verify the impact of DEM image accuracy on this algorithm,

experiment 5 is designed. The experiment uses millimeter-level DEM images, centimeter-level

DEM images, decimeter-level DEM images and 30-meter DEM images got by InSAR to repeat

40 experiments, and the root mean square error is calculated accordingly. The results are

shown in Fig 21.

As can be observed in Fig 21, the algorithm in this paper has certain needs for the accuracy

of DEM images. To ensure the success rate of feature matching, millimeter DEM images and

Fig 19. Matching results of aerial images with different sharpness by algorithm in this paper.

https://doi.org/10.1371/journal.pone.0274773.g019

Fig 20. Matching results of this algorithm for aerial images with different sharpness when the swinging angle is large.

https://doi.org/10.1371/journal.pone.0274773.g020
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their data are utilized to calculate. In the figure, the influence of meter-scale DEM image data

on elevation difference is small, and there is migration of geographic information, so its root

mean square error is up to 43.02, which is difficult to meet the need of this algorithm.

Discussion

Combined with the above experiments, when the number of features is 100, it takes about 1.5s

to extract feature points and match them in 4864 � 3232 aerial tilt images. To ensure the real-

time needs of this algorithm, hardware acceleration can be utilized to meet the real-time

needs. The experimental results show the comprehensive feature matching precision of this

algorithm for blur aerial images is greater than 90%.

Conclusions

Because of air pressure, temperature, ground elevation difference and other reasons, aerial

remote sensing images will be blur. When the image is blur, the matching success rate of the

classical feature matching algorithm decreases rapidly, and the image sharpness detection

result can’t be obtained according to the feature point matching. Therefore, an algorithm is

needed to maintain a high feature matching rate when aerial images are blur to meet the

needs. In this paper, according to the characteristics of overlapping area between the two

images pervious and latter photographing by swing-sweep type aerial camera, the algorithm is

designed by using geographic information and high-accuracy DEM image. To solve the prob-

lem of feature matching between aerial images with different sharpness, an aerial image feature

matching algorithm based on multi-constraints is proposed. That is, on the premise of getting

high-accuracy DEM images and photographing a series of clear images, using a variety of

Table 3. Matching precision of each feature matching algorithm in different image sharpness.

Image blur degree Clear 10% blur 30% blur 50% blur

BRIEF 70% 34% × ×
SURF 84% 66% × ×
Geographic 100% 88% 70% 40%

this paper’s algorithm 94% 92% 90% 90%

https://doi.org/10.1371/journal.pone.0274773.t003

Fig 21. Histogram of root mean square error of DEM image accuracy versus matching result.

https://doi.org/10.1371/journal.pone.0274773.g021
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classical computer vision algorithms, such as nonlinear soft margin support vector machine,

extended L-k optical flow, polar constraint and so on, in modifying the imaging model and

obtaining the relative compensation of pixel moving speed, the feature matching between

aerial images with different sharpness is realized. It can achieve 90% of the feature matching

precision in the case of blur, and the speed can reach 1.5s when the number of features is 100.

After hardware acceleration such as FPGA, it can fully meet the real-time needs of aerial cam-

eras, which provides a necessary prerequisite for aerial cameras to use feature point matching

to get image sharpness detection results.

Supporting information

S1 Data.

(ZIP)

Author Contributions

Data curation: Dongchen Dai, Yu Zhang, Haijiang Wang.

Methodology: Dongchen Dai.

Resources: Lina Zheng, Guoqin Yuan, He Zhang.

Software: Dongchen Dai, Guoqin Yuan, He Zhang, Qi Kang.

Supervision: Lina Zheng, Guoqin Yuan.

Validation: Lina Zheng, Guoqin Yuan, Haijiang Wang.

Visualization: Dongchen Dai, Yu Zhang, Qi Kang.

Writing – original draft: Dongchen Dai.

Writing – review & editing: Dongchen Dai.

References
1. Wu HS. Research on image motion compensation of TDICCD panoramic aerial camera. Beijing: Gradu-

ate School of Chinese Academy of Sciences (Changchun Institute of optics, precision mechanics and

Physics), 2003.

2. Xu YS, Tian HY, Hui SW, Dong B, Ding YL. Development status and Prospect of foreign transmission

aerial cameras. Opto electromechanical information, 2010, 27 (12): 6.

3. Tian YM, Sun AF, Luo N, Gao Y. Aerial image mosaicking based on the 6-DoF imaging model. Interna-

tional Journal of Remote Sensing, 1–16. https://doi.org/10.1080/01431161.2019.1657602

4. Huang LF, Dong F, Fu YT. Time sharing integral image offset restoration based on the attitude informa-

tion of imaging system. Acta optica Sinica, 2022, 42 (24): 1.

5. Li S. Research on key technologies for data preprocessing of area array swing-sweep type aerial cam-

era. University of Chinese Academy of Sciences (Shanghai Institute of Technical Physics, Chinese

Academy of Sciences), 2020. https://doi.org/10.27581/d.cnki.gksjw.2020.000029

6. Li FD. Research on scanning image stabilization and image motion compensation technology of aerial

long distance tilt camera. Heilongjiang: Harbin Institute of technology, 2015.

7. Ye YQ, Yi DR, Zhang YZ, Kong LH, Jiang W. Micro auto focusing method based on tilt camera. Acta

optica Sinica, 2019, 39 (12):1218001.

8. Wang HJ, Zheng LN, Kang Q. An aerial camera image focus detection method based on multiple differ-

ential filtering effect. Acta optica Sinica, 2022, 42 (4): 68–74.

9. Zhai XY. Research on real-time synchronous positioning and mapping based on single purpose. Hei-

longjiang: Harbin Institute of technology, 2012.

10. George V, Carlos H. Video-based, real-time multi-view stereo. Image and vision computing, 2011, 29

(7):434–441. https://doi.org/10.1016/j.imavis.2011.01.006

PLOS ONE Real-time and high precision feature matching between blur aerial images

PLOS ONE | https://doi.org/10.1371/journal.pone.0274773 September 19, 2022 27 / 29

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0274773.s001
https://doi.org/10.1080/01431161.2019.1657602
https://doi.org/10.27581/d.cnki.gksjw.2020.000029
https://doi.org/10.1016/j.imavis.2011.01.006
https://doi.org/10.1371/journal.pone.0274773


11. Qi XS. Research on slam technology of UAV Based on monocular vision. Sichuan: University of Elec-

tronic Science and technology, 2020.

12. Chiu MT, Xu XQ, WeiYC, HuangZL, Schwing AG, Brunner R, et al. Agriculture-vision: A large aerial

image database for agricultural pattern analysis. IEEE 2020 IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR)—Seattle, WA, USA (2020.6.13-2020.6.19), 2825–2835. https://doi.

org/10.1109/CVPR42600.2020.00290

13. Barbara Z, Jan F. Image registration methods: a survey. Image and Vision Computing, 2003, 21

(11):977–1000. https://doi.org/10.1016/S0262-8856(03)00137-9

14. Ma J, Chan CWJ, Canters F. Fully automatic subpixel image registration of multiangle CHRIS/Proba

data. IEEE Transactions on Geoscience & Remote Sensing, 2010.

15. Fan XF, Rhody H, Saber E. A spatial-feature-enhanced MMI algorithm for multimodal airborne image

registration. IEEE Transactions on Geoscience & Remote Sensing, 2010, 48(6):2580–2589. https://

doi.org/10.1109/TGRS.2010.2040390

16. Wong A, Orchard J. Efficient FFT-accelerated approach to invariant optical–LIDAR registration. IEEE

Transactions on Geoscience & Remote Sensing, 2008, 46(11):3917–3925.

17. Ye Y, Bruzzone L, Shan J, Bovolo F, Zhu Q. Fast and Robust Matching for Multimodal Remote Sensing

Image Registration. IEEE Transactions on Geoscience and Remote Sensing, 2019, PP(99):1–12.

18. Mohammed HM, El-Sheimy N. A descriptor-less well-distributed feature matching method using geo-

metrical constraints and template matching. Remote Sensing, 2018, 10(5).

19. Ng PC, Henikoff S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids

Research, 2003, 31(13):3812–3814. https://doi.org/10.1093/nar/gkg509 PMID: 12824425

20. Lowe DG. Distinctive image features from scale-invariant keypoints. International Journal of Computer

Vision, 2004, 60(2):91–110. https://doi.org/10.1023/B:VISI.0000029664.99615.94

21. Mikolajczyk K, Schmid C. A performance evaluation of local descriptors. 2003 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, 2003. Proceedings., 2003, pp. II-II. https://

doi.org/10.1109/CVPR.2003.1211478

22. Chen J, Tian J, Lee N, Zheng J, Smith RT, Laine AF. A partial intensity invariant feature descriptor for

mul-timodal retinal image registration. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING,

2010, 57(7):1707–1718. https://doi.org/10.1109/TBME.2010.2042169 PMID: 20176538

23. Bay H, Ess A, Tuytelaars T, Gool LV. Speeded-up robust features (SURF). Computer Vision & Image

Understanding, 2008, 110(3):346–359. https://doi.org/10.1016/j.cviu.2007.09.014

24. Tola E, Lepetit V, Fua P. Daisy: An efficient dense descriptor applied to wide-baseline stereo. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 2010. https://doi.org/10.1109/TPAMI.2009.

77 PMID: 20299707

25. Sedaghat A, Mokhtarzade M, Ebadi H. Uniform robust scale-invariant feature matching for optical

remote sensing images. IEEE Transactions on Geoscience& Remote Sensing, 2011, 49(11):4516–

4527. https://doi.org/10.1109/TGRS.2011.2144607

26. Cai GR, Jodoin PM, Li SZ, Wu YD, Su SZ, Huang ZK. Perspective-SIFT: An efficient tool for low-altitude

remote sensing image registration. Signal Processing, 2013, 93(11):3088–3110. https://doi.org/10.

1016/j.sigpro.2013.04.008

27. Sedaghat A, Ebadi H. Remote sensing image matching based on adaptive binning SIFT descriptor.

IEEE Transactions on Geoscience & Remote Sensing, 2015, 53(10):5283–5293. https://doi.org/10.

1109/TGRS.2015.2420659

28. Calonder M, Lepetit V, Strecha C, Fua P. BRIEF: Binary robust independent elementary features. Com-

puter Vision—ECCV 2010, 11th European Conference on Computer Vision, Heraklion, Crete, Greece,

September 5-11, 2010, Proceedings, Part IV. 2010.

29. Alahi A, Ortiz R, Vandergheynst P. FREAK: Fast retina keypoint. IEEE Conference on Computer Vision

& Pattern Recognition. IEEE, 2012.

30. Balntas V, Tang L, Mikolajczyk K. BOLD—Binary online learned descriptor for efficient image matching.

IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2015.

31. Trzcinski T, Christoudias M, Lepetit V. Learning image descriptors with boosting. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 2014.

32. Levi G., Hassner T. LATCH: Learned arrangements of three patch codes. IEEE Computer Society,

2015.

33. Rublee E, Rabaud V, Konolige K, Bradski G. ORB: An efficient alternative to SIFT or SURF. IEEE Inter-

national Conference on Computer Vision, ICCV 2011, Barcelona, Spain, November 6-13, 2011. IEEE,

2011.

PLOS ONE Real-time and high precision feature matching between blur aerial images

PLOS ONE | https://doi.org/10.1371/journal.pone.0274773 September 19, 2022 28 / 29

https://doi.org/10.1109/CVPR42600.2020.00290
https://doi.org/10.1109/CVPR42600.2020.00290
https://doi.org/10.1016/S0262-8856(03)00137-9
https://doi.org/10.1109/TGRS.2010.2040390
https://doi.org/10.1109/TGRS.2010.2040390
https://doi.org/10.1093/nar/gkg509
http://www.ncbi.nlm.nih.gov/pubmed/12824425
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1109/CVPR.2003.1211478
https://doi.org/10.1109/CVPR.2003.1211478
https://doi.org/10.1109/TBME.2010.2042169
http://www.ncbi.nlm.nih.gov/pubmed/20176538
https://doi.org/10.1016/j.cviu.2007.09.014
https://doi.org/10.1109/TPAMI.2009.77
https://doi.org/10.1109/TPAMI.2009.77
http://www.ncbi.nlm.nih.gov/pubmed/20299707
https://doi.org/10.1109/TGRS.2011.2144607
https://doi.org/10.1016/j.sigpro.2013.04.008
https://doi.org/10.1016/j.sigpro.2013.04.008
https://doi.org/10.1109/TGRS.2015.2420659
https://doi.org/10.1109/TGRS.2015.2420659
https://doi.org/10.1371/journal.pone.0274773


34. Zhang Y, Zhou P, Ren Y, Zou Z. GPU-accelerated large-size VHR images registration via coarse-to-

fine matching. Computers & Geosciences, 2014, 66(MAY):54–65. https://doi.org/10.1016/j.cageo.

2014.01.011
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