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Abstract

Many organizational principles of structural brain networks are established before

birth and undergo considerable developmental changes afterwards. These include

the topologically central hub regions and a densely connected rich club. While several

studies have mapped developmental trajectories of brain connectivity and brain net-

work organization across childhood and adolescence, comparatively little is known

about subsequent development over the course of the lifespan. Here, we present a

cross-sectional analysis of structural brain network development in N = 8066 partici-

pants aged 5–80 years. Across all brain regions, structural connectivity strength

followed an “inverted-U”-shaped trajectory with vertex in the early 30s. Connectivity

strength of hub regions showed a similar trajectory and the identity of hub regions

remained stable across all age groups. While connectivity strength declined with

advancing age, the organization of hub regions into a rich club did not only remain

intact but became more pronounced, presumingly through a selected sparing of rele-

vant connections from age-related connectivity loss. The stability of rich club organi-

zation in the face of overall age-related decline is consistent with a “first come, last

served” model of neurodevelopment, where the first principles to develop are the

last to decline with age. Rich club organization has been shown to be highly beneficial

for communicability and higher cognition. A resilient rich club might thus be protec-

tive of a functional loss in late adulthood and represent a neural reserve to sustain

cognitive functioning in the aging brain.
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1 | INTRODUCTION

The human brain is an intricate network whose complex wiring dia-

gram can be reconstructed in vivo from magnetic resonance imaging

(MRI) data and abstracted in a connectome network map

(Hagmann, 2005; Hagmann et al., 2007; Park & Friston, 2013;

Sporns, 2011; Sporns et al., 2005). The application of network analyt-

ics to such connectome maps has revealed that brain-wide topology

of structural fiber connections follows several principles (Bullmore &

Sporns, 2009): Across the brain, regions differ considerably in the

number of their interconnections with other regions. Few regions

claim the lion's share of connections (Hagmann et al., 2008) and act as

hubs in the brain network (van den Heuvel & Sporns, 2013a). Hubs

are multi- and transmodal regions that are topologically central in the

network (Gong et al., 2009; Sporns et al., 2007), metabolically expen-

sive (Collin et al., 2014), and involved in the integration of modular

and segregated brain function (Bertolero et al., 2015; Cohen &

D'Esposito, 2016; Sporns, 2013; van den Heuvel & Sporns, 2013b).
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Highly connected brain regions tend to connect stronger to other

highly connected regions than expected by their high number of con-

nections alone, ultimately forming a rich club of densely inter-

connected brain regions that form the backbone for global brain

communication (van den Heuvel et al., 2012; van den Heuvel &

Sporns, 2011).

The human brain undergoes developmental changes across the

lifespan (Sowell et al., 2004). While gray matter volume decreases

nonlinearly from childhood to old age, white matter volume and the

integrity of fiber connections follow an “inverted U”-shaped trajec-

tory with increases into mid-adulthood and a decline thereafter

(Kochunov et al., 2012; Sowell et al., 2003). This raises the question

whether topological features of brain network organization follow

similar lifespan trajectories. Major organizational principles of the

structural connectome such as network hubs and a rich club are

already present as early as gestational week 30, suggesting that net-

work formation occurs prenatally during the second trimester (Ball

et al., 2014). During the third trimester, major maturation occurs on

connections from the rich club to the rest of the connectome network

(i.e., on so-called feeder connections), a pattern that continues across

childhood (Wierenga et al., 2018). The overall tendency of high-

degree nodes to connect preferably to other high-degree nodes

which gives rise to the rich club phenomenon, however, does not

seem to change between childhood and adulthood (Grayson

et al., 2014), even though the connectivity strength between rich club

areas increases during adolescence (Baker et al., 2015). These findings

are in line with a developmental model where qualitative principles

are present from very early on and then develop quantitatively in two

subsequent stages with connections of unimodal and peripheral brain

regions maturing during childhood, and connections of multimodal

and central hub regions maturing during adolescence (Wierenga

et al., 2015). While network maturation during childhood and adoles-

cence has received considerable attention (see also Hagmann

et al., 2010), less is known about developmental trajectories across

the adult lifespan. One report has found “inverted U”-shaped trajec-

tories for nodal connectivity strength and efficiency (Zhao

et al., 2015). Maturation of connections between hub regions peak

earlier (i.e., late 20s/early 30s) than connectivity between hubs and

the periphery (late 30s), resulting in a linear decrease of rich club

organization across the lifespan. This finding stands in contrast to

lifespan evidence on functional connectivity that suggests an

“inverted U”-shaped trajectory (with peak at around age 40) for rich

club organization (Cao et al., 2014). Given the paucity of lifespan data

on connectome organization, the present report seeks to re-examine

the lifespan trajectory of network hubs and the rich club in structural

brain networks. We will go beyond previous studies by dramatically

increasing the sample size and utilizing a large cross-sectional dataset

with structural connectomes of N = 8066 participants aged 5–80

years. Specifically, we seek to map the lifespan trajectories of hub

connectivity, the identity of hub regions according to data-driven

criteria for hub definition, and rich club properties of the brain

network.

2 | METHODS

2.1 | Participants

We used openly available connectome data from the 10kin1day

dataset (van den Heuvel et al., 2019). This dataset contains structural

connectome data from N = 8168 participants (n = 3824 females,

n = 4339 males, n = 5 no gender specified) who are classified either

as healthy controls or as patients with psychiatric or neurological ill-

ness (n = 4481 controls, n = 3668 patients, n = 19 no disease status

specified). Patient status is given as binary category and no details on

the precise diagnosis are given. The connectome dataset contains par-

ticipants aged 0–90 years in 19 age groups (see Table 1). Quality

assurance and outlier removal have been performed by the curators

of the dataset. For our analysis, we additionally excluded the age

groups 0, 0–5, 80–85, and 85–90 due to their small sample size, as

well as the participants with unknown disease status or gender,

resulting in a sample of N = 8066 participants (n = 3776 females,

n = 4290 males). The 10kin1day dataset is the result of a 3-day pop-

up data processing event and contains jointly analyzed data from

42 different research groups. Informed written consent was obtained

from all participants at each acquisition site and the protocols were

approved by the local ethics committees at the independent research

institutions.

2.2 | Data acquisition and processing

The 10kin1day dataset includes imaging data from 42 different groups

acquired on different scanners with varying field strength (1.5 and 3T)

and acquisition parameters. Data were processed with a unified pipe-

line. Details on the processing pipeline and quality control are given in

van den Heuvel et al. (2019). In brief, connectomes were assembled

by first obtaining a cortical and subcortical gray matter parcellation

from running T1-weighted structural images through Freesurfer

(Fischl et al., 2004) and then collating the resulting parcellation with

DTI data. Diffusion data were first corrected for susceptibility and

eddy current distortions. Then each voxel's main diffusion direction

was obtained via robust tensor fitting. Large white matter pathways

were formed by deterministic fiber tractography (Mori et al., 1999).

Fiber streamlines were propagated along each voxel's main diffusion

direction after originating from eight seeds evenly distributed across

each white matter voxel until a stopping criterion was met (hitting a

voxel with FA < .1, a voxel outside the brain mask, or making a turn of

>45�). A pair of regions from the gray matter parcellations was consid-

ered connected when both regions were touched by a reconstructed

streamline. Connections were weighted with different metrics, of

which we used three in the present report: the total number of

streamlines (NOS) that touched both ROIs, mean fractional anisotropy

(FA) of white matter voxels in reconstructed fiber tracts, and

streamline-volume density (SVD, which is the number of streamlines

normalized to the region volume). Gray matter regions were defined
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according to the Desikan-Killiany standard Freesurfer parcellation

(aparc, Desikan et al., 2006) with 82 regions of interest. This resulted

in three weighted (NOS, FA, and SVD) and undirected connectome

matrices for each individual. Unless stated otherwise, we present

results from the NOS-weighted connectome matrices. To assess

reproducibility with a different parcellation of higher resolution, we

repeated all analyses with the Lausanne-250 parcellation (Cammoun

et al., 2012). Results from these analyses (233 regions of interest) are

documented in Figures S3 and S4.

2.3 | Network analysis

Network analyses were performed in MATLAB (MathWorks, version

20a), using the Brain Connectivity Toolbox (BCT, Rubinov &

Sporns, 2010). The network analyses were used to first compare the

average network connectivity between the different age groups.

Then, the rich club property was analyzed for each individual and

compared between age groups. Finally, based on the network connec-

tivity and different criteria, including the rich club results, hub regions

of each individual were defined, to also compare the average hub

region connectivity between different age groups.

2.3.1 | Connectivity analysis

We calculated average connectivity weights (excluding nonexistent

connections) per region and participants and connection weight: NOS,

FA, and SVD. Average-whole brain connectivity was computed by

averaging across regions within each participant. To account for dif-

ferences in NOS and SVD weights based on brain region volume,

regional volumes were averaged for all subjects. Also, the network

density, maximum node degree and maximum connection weight

(NOS) of each network were computed with their respective BCT

functions (density_und.m, degrees_und.m). The calculations were

done to later model connection weights and brain region volume for

all age groups, while still accounting for interindividual variability.

2.3.2 | Rich club analysis

We followed standard procedures for rich club analysis (van den

Heuvel et al., 2013). A network is said to have rich club properties

when high-degree nodes show a higher level of interconnectedness

than expected from their high-degree alone (van den Heuvel &

Sporns, 2011), across a range of degree thresholds. The rich club

regime was established as follows: We first computed the weighted

rich club coefficient (using the BCT function rich_club_wu.m) across

the full range of levels k from the network's degree distribution (k = 1,

…, n). Because high-degree nodes have a high likelihood to connect to

other high-degree nodes by chance alone, it is necessary to establish

that the empirical level of interconnectedness exceeds the level of

interconnectedness in random networks. We created 2500 random

networks per participant by reshuffling all connections in the matrix

while preserving the degree distribution of the network (BCT function

randmio_und.m). Each connection was rewired 10 times. At each level

TABLE 1 Age, gender, and patient
status distribution of the participants
included in the 10kin1day dataset

Gender Patient status

Age group Females Males Unknown Controls Patients Unknown

0 3 9 0 0 12 0

0–5 14 20 1 0 35 0

5–10 57 75 0 76 56 0

10–15 182 201 0 316 66 1

15–20 389 398 0 567 220 0

20–25 666 637 0 854 445 4

25–30 446 639 0 658 422 5

30–35 300 424 1 380 342 3

35–40 223 319 0 258 283 1

40–45 265 291 0 249 307 0

45–50 272 248 0 258 262 0

50–55 272 249 1 224 298 0

55–60 226 211 0 163 271 3

60–65 191 217 0 121 287 0

65–70 162 206 1 186 183 0

70–75 100 120 1 95 124 2

75–80 39 60 0 51 48 0

80–85 14 14 0 21 7 0

85–90 3 1 0 4 0 0
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k, normalized rich club coefficients were then obtained by dividing

empirical coefficients by the mean coefficient from all 2500 iterations

of the random network. We also used the distribution of random net-

work coefficients to derive a p-value of the probability that the empir-

ical rich club coefficient resulted from the nonselective high

interconnectedness of high-degree nodes. We corrected the full range

of p-values with the Benjamini and Hochberg (1995) procedure to

keep the false discovery rate (FDR) below 5% (Groppe, 2020). As a

result, we obtained three curves across all levels k: a curve for the

empirical rich club coefficient, a curve for the mean random rich club

coefficient, and a curve for the normalized rich club coefficient. We

derived our main outcome measures of individual rich club organiza-

tion from these curves. We determined the rich club regime as the

largest series of subsequent k, where the empirical rich club coeffi-

cient was larger than the rich club coefficient in 95% of all random

networks (p-value <.05, FDR-corrected). We used the following algo-

rithm to identify the rich club regime: We first selected the lowest

and highest k-level with p < .05. If all interjacent p-values were also

<.05, we defined the range between the two k-values as the rich club

regime. If this was not the case, we applied the following: If only one

single or two non-neighboring p-values within this range were >.05,

we still considered the range as rich club regime (thus considering

these data points as outliers). In case that two or more neighboring p-

values exceeded the .05 threshold (i.e., cutting the range between the

lowest and highest k-level with p < .05 in two or more), we assessed

whether any of the ranges' length exceeded the other ones by a factor

of 1.5. If this was the case, we assumed this range as the rich club

regime. If no range was 1.5-times larger, we assumed the range with

larger k values (i.e., at the upper end of the normalized rich club curve)

as the rich club regime. If none of the criteria applied, we did not

assume a valid continuous rich club regime for this participant. This

was the case in 362 participants (~4.5%) who were excluded from fur-

ther analysis. Once a valid rich club regime was established, we com-

puted the following measures for each participant: We defined the

length of the rich club regime as the difference between the upper

and lower end of the rich club regime (if, e.g., the empirical rich club

coefficient exceeded the random rich club coefficient with p < .05,

corrected, on all k-levels between k = 12 and k = 27, the length of

the rich club regime was determined to be 15). A longer rich club

regime might imply that more brain regions belong to the rich club.

We also assessed this directly by determining how many nodes had a

nodal degree equal to or larger than the first k-level belonging to the

rich club regime. While these measures inform us on the size of the

rich club in terms of its members, it does not give us information on

the strength of the rich club effect, that is, on how much the empirical

rich club coefficient exceeds the rich club coefficient in comparable

random networks. We therefore extracted the peak of the normalized

rich club curve as a point estimate and also calculated the area under

the normalized rich club curve above 1 with the trapezoidal method

(trapz.m). The latter measure scales both with the number of rich club

members and the strength of the rich club effect. Because the normal-

ized rich club coefficient is a ratio between empirical and random

coefficients, a separate analysis of the numerator and denominator

can also be of interest. We therefore extracted additionally the areas

under the empirical and random rich club curves (including the area

below 1).

To distinguish the effect of changes in nodal degree or connec-

tion weights on the rich club results, the same analysis as described

above was performed on binary connectome matrices. We used the

respective BCT function (rich_club_bu.m) to compute binary rich club

coefficients for each participant's empirical network and for 2500 per-

muted versions of the network. As the intention for this analysis was

a direct control-comparison for the weighted rich club results, we

based all outcome measures on the rich club regimes from the

weighted analysis. We extracted the peak of the normalized binary

rich club curve and the area under the normalized, empirical, and ran-

dom binary rich club curves for each individual.

2.3.3 | Hub analysis

Hub definition is commonly based on different centrality-related net-

work metrics and statistical criteria (van den Heuvel &

Sporns, 2013b). We defined hub participation according to five sepa-

rate criteria: Brain regions were classified as hubs when they either

belonged to the top 15% of the degree distribution (criterion a), to the

top 15% of the strength (i.e., weighted degree) distribution (criterion

b), when their nodal degree was equal to or larger than the nodal

degree of the starting point of the rich club regime (criterion c), equal

to or larger than the nodal degree of the peak of the normalized rich

club curve (criterion d), or based on hub scores (criterion e). The hub

score measure (criterion e) was composed of five centrality measures:

nodal degree, betweenness centrality, nodal path length, between-

module participation coefficient, and within-module degree z score.

Nodal degree and betweenness centrality were calculated with their

respective BCT functions (betweenness_wei.m, degrees_und.m).

Between-module participation coefficient and within-module degree

z score were calculated with BCT functions (participation_coef.m and

module_degree_zscore.m) based on module parcellations for each

combination of age group and disease status. Module partitions were

identified with the Louvain method and subsequent consensus-clus-

tering: We obtained 100 partitions of a group connectome that con-

tained the average connection weights for all connections present in

at least 60% of the group's participants (using BCT's com-

munity_louvain.m). We then derived a consensus partition by comput-

ing the agreement matrix across all partitions (agreement.m), scaling

the agreement matrix to unity, removing weak elements (tau = .6),

and iteratively applying the Louvain algorithm for 100 times until a

single representative partition was achieved (BCT function con-

sensus_und.m). Nodal path length was calculated as the sum of the

node's distances to other nodes (as given by the BCT function dis-

tance_wei.m) divided by the number of all other nodes. Betweenness

centrality and nodal path length used the connectivity-length matrix

(as given by 1/connection weight) to represent higher connection

weights as shorter distances. Brain regions present in the top 33% of

at least four out of five centrality measures were defined as hub

4242 RIEDEL ET AL.



regions according to hub scores (van den Heuvel et al., 2015). We ver-

ified this hub-definition by a complementary approach that used the

k-means algorithm (with k = 2) to partition all nodes into hub and non-

hub regions based on all five centrality measures from the hub score

measure (criterion e) (Markett et al., 2020).

We defined hubs in each individual brain network according to

the criteria outlined above. For each hub definition, we then defined

group level hubs as those 12 brain regions (i.e., ~15%) that were most

consistently identified across participants. We derived hub definitions

for each age group and for the whole sample. Pairwise similarity

between different hub definitions was assessed across hub-criteria

and across age groups with the Jaccard index (Steen et al., 2011). We

used the hub definitions to compute the average connection weight

of hub regions, the average gray matter volume of hub regions, and

normalized versions of these measures by dividing by hub connection

weights (and hub gray matter volume, respectively) by the mean con-

nection weight (gray matter volume) across the entire brain.

2.4 | Statistical analysis

Statistical analysis was performed in R Studio (version 1.3.1056, R

version 4.0.2). All lifespan changes were modeled with generalized

additive mixed-effect models (GAMM; Lin & Zhang, 1999) using the

gamm4 toolbox. GAMMs are based on linear mixed-effect models

(gamm4 is based on the lme4 package) but with multiple sinusoidal

base functions, whose number is automatically selected during the

modeling process and is represented by the estimated degree of free-

dom (EDF) of each respective model. This allows the modeling of

nonlinear relationships without any a priori assumptions on the model

type. Similar to linear mixed-effect models, GAMMs can include facto-

rial variables and random effects. We modeled age nonparametrically,

with gender and disease status as factorial variables. The age of each

age group was set to the mean value of the range it covers, therefore

representing the participants in each age groups at the same age.

Research center and participants were included as a random term. To

assess differences between gender and patient groups, we set up

additional models differentiating all factors of the respective variable.

The used model function was:

y� s Age,byGender=DiseaseStatus=noneð ÞþGenderþDiseaseStatus
þ 1þParticipants jResearchCenterð Þ:

All models were plotted with the mgcv toolbox, including the 95%

confidence interval (CI) as shading. The fitted values and confidence

intervals were extracted from the plotted models to assess peak

values and their respective age value within the separate models.

2.5 | Code and data availability

All data analyzed in the present report can be obtained upon request

at dutchconnecomelab.nl. All analysis scripts are available on the open

science framework (https://osf.io/wf4tv/).

3 | RESULTS

3.1 | Rich club properties over the lifespan

A significant rich club regime was present in the connectomes of

N = 7704 participants (i.e., 95.5%). All subsequently reported analyses

on rich club organization are focused on this group. We evaluated six

summary measures from the rich club curve: The normalized rich club

coefficient at the peak of the curve (i.e., the maximum difference

between the empirical rich club coefficient and the null models), the

length of the rich club regime (i.e., the range of the degree distribution

for which the empirical rich club coefficient exceeded the rich club

coefficient in the null models), the number of nodes with a nodal

degree equal to or larger than the nodal degree of the starting point

of the rich club regime (i.e., the number of nodes which qualify for the

rich club), the area under the normalized rich club curve above 1 (i.-

e., the combination of the rich club regime length and peak value), and

the area under the empirical and random rich club curves (i.e., the

properties of the empirical and random networks defining the rich

club property). Fitted values for all six measures across the lifespan

and the control analyses with binary connectome matrices are shown

in Figure 1.

GAMM-modeling revealed an increase in rich club organization

across the lifespan: the peak of the normalized rich club curve

increased with age (Figure 1a; EDF = 3.21, F = 18.92, p = 1.39e�12),

that is, the difference between empirical rich club organization and

rich club organization in random null networks became more pro-

nounced. At its peak, the empirical rich club coefficient exceeded the

null models' mean coefficient by a factor of 3.66 ± .05 in childhood

and by 4.44 ± .22 in late adulthood. With increasing age, the rich club

regime also became more widespread (Figure 1b; EDF = 3.684,

F = 19.62, p = 1.76e�14), that is, regions within the rich club would

differ more in their nodal degree. The length of the rich club regime

increased from 17.1 ± .72 (mean ± 95% CI) in childhood to 20.1 ± .79

in late adulthood. Contrary to the increasing rich club regime, the

number of nodes qualifying for the rich club decreased with age

(Figure 1c; EDF = 3.68, F = 61.62, p < 2e�16), that is, fewer nodes

within the brain network show higher interconnectedness to other

high-degree nodes than expected by their nodal degree alone with

increasing age. The number of nodes with a nodal degree equal to or

larger than the nodal degree at the starting point of the rich club

regime decreased from 51.2 ± 1.4 in childhood to 42.3 ± 1.52 in late

adulthood. Of note, the observed increased difference for the rich

club regime and peak value was also present in the whole area under

the curve (Figure 1d, red; EDF = 2.96, F = 45.95, p < 2e�16), with an

increase in the area under the curve above 1 from 18.3 ± 1.27 in child-

hood to 26.1 ± 1.46 in late adulthood, indicating that the rich club

becomes relatively richer. The area under the empirical rich club curve

(Figure 1d, black; EDF = 7.876, F = 25.32, p < 2e�16) and the random

rich club curve (Figure 1d, gray; EDF = 4.739, F = 26.37, p < 2e�16)

also increased with increasing age, but at different rates. The area

under the empirical rich club curve increased from 17.7 ± .11 at age

20 to 19.7 ± .43 in late adulthood, while the area under the average

random rich club curve only increased from 14.6 ± .09 at age 17 to
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15.4 ± .13 in late adulthood, resulting in an increase of the overall rich

club property with increasing age.

As network metrics are known to relate to network density, we

modeled average network density and maximum nodal degree over

the lifespan. Here, no age effect was detectable for the average net-

work density (Figure S1A; EDF = 1.784, F = 2.874, p = .0608) but

the maximum nodal degree increased across the lifespan (Figure S1B;

EDF = 6.45, F = 67.23, p < 2e�16). To control for the increase in

maximum nodal degree across the lifespan we performed the rich

club analyses also on binary connectome matrices. The peak of the

normalized binary rich club curve actually decreased with age

(Figure 1e; EDF = 5.093, F = 5.583, p = 3.39e�5), but the area under

the normalized (Figure 1f, red; EDF = 1.009, F = 316.4, p < 2e�16),

empirical (Figure 1f, black; EDF = 6.456, F = 97.93, p < 2e�16) and

random (Figure 1f, gray; EDF = 7.004, F = 82.65, p < 2e�16) binary

rich club curves increased. It must be noted though, that the overall

quantity of the normalized binary rich club curve peak value (child-

hood: 1.29 ± .02; late adulthood: 1.25 ± .02) and the area under the

normalized binary rich club curve (childhood: .06 ± .09; late adult-

hood: 2.08 ± .13) was very low. The latter is also represented by the

very similar trajectory and quantity of the areas under the empirical

and random binary rich club curves and indicates little to no rich club

property observed using the binary connectome matrices. Taken

together, these results show that the observed increase in the peak

value of the normalized weighted rich club curve is not driven by the

increase in the maximum nodal degree over the lifespan, as this

increase would have been observed using binary connectome matri-

ces, whereas the increase in the area under the different rich club cur-

ves and the rich club regime might in part by driven by this increase.

From these results we conclude that rich club organization in struc-

tural brain networks is preserved over the lifespan, which is in con-

trast to previous reports suggesting a decrease or an “inverted U”-
shaped pattern.

3.2 | Hub regions over the lifespan

We computed hub scores to classify brain regions into likely hubs and

nonhubs for each individual in the dataset (see Section 2). The map in

Figure 2a shows the brain-wide distribution of hub-ness at the group-

level, that is, percentages of participants in the entire sample in which

a given brain region was classified as a hub (see also Table S1). At the

F IGURE 1 Rich club organization across the lifespan. Rich club organization as indexed by the maximal normalized weighted rich club
coefficient increases with age (a). The rich club regime becomes longer with age, indicating a higher variance in nodal degree across rich club
members (b) while the size of the rich club in terms of implicated brain regions decreases with age (c). The overall increase in rich club
organization (area under the normalized rich club curve) is likely to result from a selective sparing of connections between rich club members as
indicated by a less steep increase of rich club organization in the random null models (d). The analysis of binary versions of the networks (e,f)
indicates that the observed changes in rich club organization are not reflected in the presence or absence of connections but rather reflect
quantitative changes in connectivity strength. The color coding distinguishes the area under the normalized rich club curve (red) and areas under
the rich club curve for the empirical networks (black) and the random null models (gray). Plotted are fitted values from GAMMs with 95%
confidence intervals as shading. GAMMs, generalized additive mixed-effect models
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group level, we defined hubs as those 12 brain regions (~15%) that

were most consistently classified as hubs at the individual level (see

Figure 2b). This resulted in the following hub regions: left and right

thalamus, left and right putamen, left and right superior frontal as well

as superior parietal gyrus, left and right precuneus, and left and right

insula. These brain regions represent the upper left quadrant in the

agreement matrix shown in Figure 2c, confirming high agreement of

hub assignments across all participants. Alternative methods for indi-

vidual hub detection via nodal degree, the starting point of the rich

club regime, or the peak value of the normalized rich club curve

resulted in the same hub versus nonhub partition (all pairwise Jaccard

indices J = 1). Only the hub definitions via the strength (weighted

degree) distribution and via k-means clustering of the hub score cen-

trality measures resulted in a slightly different group-level hub assign-

ment comparing to all other criteria (J = .5, equivalent to 4/12

different hubs), but were more similar comparing to each other

(J = .71, equivalent to 2/12 different hubs). Given the largely consis-

tent results across partitioning approaches, we decided to retain the

F IGURE 2 Hub regions:
(a) shows the relative frequencies
(in percent) by which a brain
region was classified as a hub
across all participants (showing
only >.01%). We considered the
top 12 regions group level hubs
(b). (c) Shows the agreement
matrix of individual hub

assignment in the entire sample.
Matrix elements reflect the
likelihood by which two regions
co-occurred as hubs or nonhubs,
that is, larger numbers reflect
either a higher agreement as a
hub or a higher agreement as a
nonhub. For visualization
purposes, matrix elements are
ordered by their mean across
region, positioning the smaller
group of hubs in the upper left
corner. Labels are shown for the
first 44 nodes, the full label list is
given in Table S1. Similar high
agreement in hub assignment was
present in all age groups. We
show agreement matrices for four
age groups (d) with the same
ordering of matrix elements.
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hub definition based on hub scores for further analyses. The partition

of brain regions into hubs and nonhubs was highly similar across age

groups (see Figure 2d for agreement matrices in four age groups),

resulting in an identical hub vs. nonhub partition for almost all age

groups (with hub regions as listed above; all pairwise Jaccard indices

J = 1). The only differences were observed in the age groups 5–10,

10–15, 15–20, and 75–80 (J = 0.85, equivalent to 1/12 different

hubs, or J = .71, equivalent to 2/12 different hubs).

3.3 | Nodal and hub connectivity across the
lifespan

We computed average connectivity in all individuals by averaging con-

nection weights across all nodes or across all 12 hubs (see Section 2).

Nonlinear relationships between connectivity and participant's age

were modeled with GAMMs for 8066 participants between the ages

of 5–80 years.

Average connectivity across brain regions varied significantly with

age (Figure 3a; EDF = 7.424, F = 45, p < 2e�16) and followed an

“inverted U”-shaped trajectory across the lifespan. Average connec-

tivity increased slightly from age 5 onwards, peaked at age 32, and

showed a steep decline afterwards. We observed a similar trajectory

for hub connectivity (Figure 3b; EDF = 4.961, F = 72.16, p < 2e�16)

with a peak value at age 27. The direct comparison of hub connectiv-

ity and average connectivity indicated lifespan changes (Figure 3c;

EDF = 6.537, F = 40.46, p < 2e�16): The relationship between hub-

and average connectivity slightly increases between ages 5 and

22, with 2.75 ± .02-fold higher connectivity for hub regions at age 22.

From 22 years onwards, the ratio between hub- and average connec-

tivity decreased until age 67 to 2.37 ± 0.05-fold higher hub connectiv-

ity and again increased slightly afterwards. Note that the decreasing

ratio reflects relative changes in the connectivity of hubs versus aver-

age connectivity and could be a consequence of the earlier apex of

hub connectivity observable in the present data and as reported in

previous work (Zhao et al., 2015). Unsurprisingly, the maximum con-

nection weight demonstrated a very similar trajectory across the

lifespan (Figure S1C; EDF = 6.402, F = 12.09, p = 4.77e�14).

As larger brain regions are more likely to be touched by more

reconstructed streamlines, it is necessary to evaluate connectivity

changes from the perspective of changes in regional gray matter vol-

umes. We found regional brain volume to decrease across the lifespan

(Figure 3d,e; all regions: EDF = 7.503, F = 369.9, p < 2e�16; hub

regions: EDF = 7.645, F = 359.4, p < 2e�16). The direct contrast of

hub versus whole brain regional volumes revealed small lifespan

changes of the ratio (Figure 3f; EDF = 6.12, F = 3.769, p = 8.81e�4)

that followed an “inverted U”-shaped trajectory. The fitted values,

however, showed almost no difference with a minimum value of 1.7

F IGURE 3 Average nodal and hub properties across the lifespan. Panels in rows correspond to: NOS-connection weights (row 1, a–c),
regional gray matter volume (row 2, d–f), and SVD-weighted connection weights (row 3, g–i). Panels in columns refer to averages across all brain
regions (column 1), averages across all hub regions (column 2), and averages of hub regions relative to all brain regions (column 3). Plotted are
fitted values from GAMMs with 95% confidence intervals shaded in gray. GAMMs, generalized additive mixed-effect models; NOS, number of
streamlines; SVD, streamline-volume density
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± .004 and a maximum value of 1.71 ± .003, indicating little evidence

for relative changes in hub regional volumes.

Given the lifespan changes of regional brain volume and the con-

found of the NOS measure with regional brain volume, we further

modeled lifespan trajectories of SVD-weighted connectivity. SVD-

weighted connectivity followed an “inverted U”-shaped trajectory

similar to NOS-weighted connectivity. Both average and hub connec-

tivity, however, had a more pronounced increase with a peak at age

37 (average connectivity) and age 36 (hub connectivity). After this,

average connectivity decreased moderately and remained at a rela-

tively high level, while hub connectivity showed a more rapid decline.

This was also reflected in a decrease in the ratio between hub and

average connectivity from 1.65 ± .01 at age 21 to 1.51 ± .02 at age 61.

All three measures (average connectivity, hub connectivity, ratio)

increased again in late adulthood, with the average connectivity

increasing further than its original peak at age 37 (Figure 3g–i; all

regions: EDF = 6.477, F = 31.88, p < 2e�16; hub regions:

EDF = 7.271, F = 13.29, p < 2e�16; ratio: EDF = 6.499, F = 20.38, p

< 2e�16).

All hub analyses reported in this paragraph were based on the

12 brain regions that were most consistently identified as hubs across

the entire sample. Because of subtle differences in hub regions in the

age groups below 20 and above 75 (see Figure 2), we explored two

alternative hub partitions: Treating only those nine brain regions as

hubs that were identified as hubs in each age group and using a

group-specific hub definition of those 12 regions most consistently

identified as hubs in the respective age groups lead to highly similar

results. Refer Figure S5 for details.

3.4 | Further analyses

All analyses reported above were statistically controlled for partici-

pants' gender and patient status and for different study sites. To dem-

onstrate that the main findings are not biased by disease status, we

present a version of Figure 1 based on the healthy subsample in

Figure S2. Repeating our analyses with the high-resolution

parcellation yielded highly similar results (see Figure S3 and S4). We

document fitted GAMM models for interactions between age and

gender, and between age and patient status in Figure S6–S10. If not

stated otherwise, all analyses reported above were based on weighted

structural networks with NOS as connection weights. We document

GAMM models for an alternative connection weight (i.e., FA) in

Figure S11. Due to the large number of age-binned data points, we

refrained from including individual data points in our graphs to ease

interpretability. For transparency, we show one example of the indi-

vidual data points with the fitted GAMM model in Figure S12.

4 | DISCUSSION

We present a cross-sectional analysis of lifespan trajectories of struc-

tural brain networks in N = 8066 individuals aged 5–80. Our main

findings are (1) structural connectivity across brain areas in general,

and of highly connected hub regions in particular, follows an “inverted
U”-shaped trajectory with an increase until middle adulthood and a

decline afterwards, (2) regional gray matter volume decreases with

age, and (3) rich club organization of the structural connectome is con-

served across the lifespan. While the first two observations are confir-

matory findings for previous literatures, the finding of conserved rich

club organization is a novel discovery with implications for healthy

brain aging, and neurological as well as cognitive reserve.

4.1 | Lifespan trajectories in structural brain
networks

The “inverted U”-shaped trajectory in structural connectivity confirms

previous reports that either showed a similar trajectory across the

lifespan (Kochunov et al., 2012; Zhao et al., 2015; see Collin & van

den Heuvel, 2013, for review), or revealed consistent changes across

selected age ranges such as increase in structural connectivity across

childhood and adolescence (Baker et al., 2015; Hagmann et al., 2010;

Wierenga et al., 2015), or decrease in measures of white matter integ-

rity from middle to late adulthood (Burzynska et al., 2010; Gong

et al., 2009; Otte et al., 2015). The observed decrease in gray matter

volumes is consistent with a large body of literature that reports such

structural decline across the lifespan (see Sowell et al., 2003

and 2004, for review). Structural rich club organization has been

shown to increase during childhood and adolescence (Baker

et al., 2015; Wierenga et al., 2018), which is consistent with the pre-

sent findings. One previous lifespan study, however, has described

decreasing rich club organization in structural brain networks across

the lifespan, an opposite pattern to the present finding, while

reporting a similar “inverted U”-shaped trajectory for structural con-

nectivity of hub regions (Zhao et al., 2015). This study, however, did

only evaluate the normalized rich club coefficient at one statistically

defined degree-level. The present findings provide a more detailed

analysis by integrating rich club coefficients across the entire rich club

regime derived from the normalized rich club curve.

Many network neuroscience studies define the rich club as a

group of highly interconnected hub regions. Rich clubs, however, are

not necessarily a nodal property of a few highly connected brain

regions. Rather, the rich club reflects the organizational principle of

the entire network that nodes prefer connecting to other nodes of

equal or higher degree (van den Heuvel & Sporns, 2011). We found

that rich club organization of the network as a whole is not only pre-

served but becomes even more pronounced in late adulthood. At first

glance, this might appear at odds with the observed connectivity

decrease of the most pronounced hub regions which started even ear-

lier than the decrease in average connectivity across all nodes, as visi-

ble in the declining ratio of hub- over average connectivity (see

Figure 3c). The normalized rich club coefficient which quantifies rich

club organization, however, relies on a within-subject comparison of

empirical rich club connectivity with random network null models. The

null networks are obtained by randomly shuffling edges while
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preserving the strength distribution of network nodes and are there-

fore similarly affected by changes in average connectivity. Our main

finding of stronger rich club organization in older age is therefore a

likely result from a targeted sparing of relevant connections of rich

club members. Support for this explanation comes from the separate

modeling of the empirical and random rich club curve across age: The

increase of the empirical rich club curve is steeper than the random

curve which leads to higher normalized rich club coefficients (see

Figure 1d). A second explanation is the decreasing number of nodes

qualifying for club membership (Figure 1c): Rich club coefficients

become larger when fewer nodes are retained at a given threshold k,

a pattern that also contributes to preserved rich club organization in

Alzheimer's disease (Daianu et al., 2013). It is important to note, how-

ever, that we only found an age-related increase in rich club organiza-

tion when analyzing weighted networks. No such effect was

observable in binary versions of the networks that only distinguished

whether regions were connected by reconstructed fiber tracts but did

not contain information on connectivity strength. The age-related

increase in rich club organization is thus mainly reflected in a change

of connectivity strength rather than in a qualitative remodeling of the

brain network which would imply a loss of existing or a (biologically

implausible) creation of new connections.

4.2 | Development of rich club organization—First
come, served last?

The process of aging has been described as reversed ontology, where

the last systems to mature are the first to decline. This observation of

retrogenesis has been discussed in the context of dementia (Reisberg

et al., 1999) but also regarding normal aging (Tamnes et al., 2013;

Toga et al., 2006), together with the implicit assumption that the

higher plasticity of late-maturing structures leaves them more vulner-

able to degeneration. When also considering previous findings on rich

club organization across childhood, the current observation that rich

club organization is not only retained but enhanced in aging aligns

with the concept of retrogenesis and suggests that rich club organiza-

tion develops in a “first come, served last” principle across the

lifespan. Rich club organization in structural brain networks has been

observed as early as gestational week 30, suggesting that relevant

connections are among the first that are created in the developing

brain (Ball et al., 2014). Rich club organization remains stable between

child and adulthood (Grayson et al., 2014) and, according to our pre-

sent finding, increases with advancing age, presumingly due to a

targeted sparing of relevant connections from age-related decline. It

remains open, however, if the persistence of rich club organization

from the prenatal period to elderliness is supported by the same fiber

connections and is thus a systems-level consequence of local develop-

mental trajectories, or whether the organizational principle of the

brain network is preserved through a systems-level reorganization.

While the current investigation looked solely into anatomical

principles of structural brain network development, the rich club find-

ing may still have important implications for brain function and

cognitive aging. Higher rich club organization in the aging connectome

could reflect a form of neural reserve or compensation to maintain

function (Fornito et al., 2015). It has, for instance, been shown that

stronger rich club organization in middle and late adulthood relates to

better performance in cognitive domains (Baggio et al., 2015). The rich

club provides a communication backbone which is relevant for the

integration of segregated functional networks (de Reus & van den

Heuvel, 2014; van den Heuvel et al., 2012; van den Heuvel &

Sporns, 2013a). The functional brain network seems to become less

modular and more segregated in aging (Cao et al., 2014; Geerligs

et al., 2015), and it has been suggested that the modular reorganiza-

tion of the brain network could reflect compensatory efforts to main-

tain function in old age (Song et al., 2014). This could be attributable

to the stronger rich club organization of the aging brain. The distinc-

tion between nodal changes and network-level changes has also been

noted regarding network efficiency: local efficiency, that is, the

inverse of the average shortest path of one node to its neighbors,

declines with age, while global efficiency, that is., the inverse of the

average shortest path in the entire network, is typically unaffected

(Cao et al., 2014; Geerligs et al., 2015; Song et al., 2014). From a

methodological perspective, it is important to note that we did not

observe age-related changes in network density. Network density can

have marked influences on network metrics in brain networks (van

Wijk et al., 2010) and needs to be accounted for when comparing dif-

ferent groups (van den Heuvel et al., 2017). Unfortunately, our pre-

sent dataset did not include cognitive or other function-related

outcome measures. We can therefore only speculate whether pre-

served or increased rich club organization in the aging brain comes

with functional benefits such as slower cognitive aging or a higher

overall-functionality. This, however, would be an exciting prospect.

4.3 | Methodological considerations

Both linear and nonlinear lifespan trajectories for brain development

have been reported in the literature (Faghiri et al., 2019; Ziegler

et al., 2012). Trajectories have often been described to follow an

“inverted U”, but this does not necessarily imply strict quadratic

development and it is generally recommended against parametric sta-

tistical models when modeling brain development as a function of age

(Fjell et al., 2010). We addressed this issue by adapting generalized

additive mixed-effect modeling (Wood & Scheipl, 2017). GAMMs are

well suited to model lifespan brain trajectories (Sørensen et al., 2021;

Walhovd et al., 2016) because they do not enforce parametric repre-

sentations of age–brain relationships while additionally allowing fixed

and random linear effect structures to control for possible confounds

such as sex, patient status, and study site.

Inference on network topology such as rich club organization

requires network null models, that have the same basic properties as

the empirical network but are otherwise random (Fornito et al., 2013).

Our null model was generated by randomly shuffling the network's

edges while preserving the network's degree distribution. While this

approach is most common in network neuroscience and therefore
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provides a solid foundation and embedding into the literature (Fornito

et al., 2016), it does not account for constraints imposed by the spatial

embedding of the brain network into the constrained volume of the

skull (Samu et al., 2014). The null model choice has to be taken into

account when interpreting the present findings.

Through the 10kin1day dataset, we were able to utilize the larg-

est openly available structural connectome dataset and to increase

the sample size substantially in comparison to previous studies. The

resulting increase in statistical power addresses a crucial methodologi-

cal issue in neuroimaging (Button et al., 2013), particularly in the field

of individual differences (Dubois & Adolphs, 2016). Achieving such

sample size is virtually impossible without curated data from large

consortia (Miller et al., 2016; Thompson et al., 2020; Van Essen

et al., 2013), or open data sharing (Poldrack & Gorgolewski, 2014;

Poline et al., 2012), an approach we benefited from in the present

study. Through collaborative data sharing and unified preprocessing,

the 10kin1day dataset adapts an approach that has previously been

successfully applied to functional brain networks (Bellec et al., 2017;

Biswal et al., 2010). Connectome matrices from 10kin1day data show

high correspondence with connectome matrices from the Human

Connectome Project (HCP) which provides strong support for the

validity of data (van den Heuvel et al., 2019). Nevertheless, combining

imaging data from several centers comes of course with several chal-

lenges that cannot be fully compensated by the increase in sample

size: Participants were scanned at different centers with different

acquisition protocols and at different field strength. A wide range of

data harmonization procedures have been proposed (Pinto

et al., 2020), but most methods require access to the actual diffusion

data (and not only the derived network matrices), which are unfortu-

nately not shared trough the 10kin1day dataset. We were only able

to harmonize the data by controlling statistically for different study

sites. We cannot exclude the possibility of selection biases regarding

different age groups at different centers. The apparent increase in

connectivity in SVD-weighted connectomes after age 60, for instance,

is likely a selection bias towards higher functional status in older par-

ticipants, which is a common problem with convenience samples in

aging research (Hultsch et al., 2002). Furthermore, the dataset

includes patient and nonpatient data and no further information on

specific diagnoses or assessments is given. We decided to include all

participants and to control statistically for patient status. We are opti-

mistic that the observed trajectories apply to both healthy people and

people with neurological or psychiatric disorders. A more careful per-

spective on different conditions, however, would have been desirable.

Also, the age variable was only available in bins (i.e., in age groups

spanning 5 years). While this is an important measure towards

protecting participants' identity in a shared and widely accessible

dataset, it is of course a short coming when addressing developmental

research questions. Finally, we need to emphasize that our results rely

on a cross-sectional comparison which cannot exclude cohort effects

and does not allow for inferences on causality or the succession of

age-associated alterations in network organization. The majority of

published work on lifespan connectomics is based on cross-sectional

data (Zuo et al., 2017), but it has become clear that this constitutes a

limitation. Even though it is challenging to realize longitudinal designs

with several assessment points, recent work has emphasized that such

work is actually needed, given reported discrepancies between cross-

sectional and longitudinal designs, and given reports that cross-

sectional designs cannot distinguish between aging effects and early

life risk factors (Vidal-Pineiro et al., 2021; Xing, 2021). We therefore

consider our current findings as tentative and encourage replication,

for instance with data from the HCP lifespan project (Bookheimer

et al., 2019) and in combined cross-sectional and longitudinal designs

(Fotenos et al., 2005).

4.4 | Brain aging

The present study adds to the literature on changes in brain structure

and organization across the lifespan. While early and late-life develop-

ment of the structural connectome have been studied in isolation

before, only few studies have taken a lifespan perspective from early

childhood to late adulthood in one dataset. Taking a lifespan perspec-

tive on brain development, however, is crucial as the pattern of early-

life development and late-life decline shows a certain degree of over-

lap (Tamnes et al., 2013) and early-life development seems to set the

stage for late-life decline (Deary et al., 2006; Walhovd et al., 2016).

While previous studies also suggest an “inverted U”-shaped trajectory

of white matter connectivity (Kochunov et al., 2012; Zhao

et al., 2015), the apex of the developmental curves was found to vary

between the late 20s and early 30s. Our data from a larger sample

suggest that decline in average connectivity and hub connectivity

might even begin a few years later. Future work will want to address

the question how such decline is triggered, if there are ways to slow it

down, and at which point possible interventions would be most effec-

tive. The biological aging process is characterized by a build-up of

damage and limits of somatic maintenance throughout adulthood

(Ferrucci et al., 2020; Hamczyk et al., 2020; Kirkwood, 2005). This

leaves aging as a major risk factor for several prevalent conditions

(Niccoli & Partridge, 2012), including neurodegenerative disorders

whose incidence increase dramatically in older age (Querfurth &

LaFerla, 2010). Timed interventions at an age where no functional loss

has occurred as of yet might be most effective towards counteracting

developmental decline and prolonging health over the lifespan

(Ferrucci et al., 2020). It is an important observation in lifespan

research that age-related loss of function is highly individual

(Lindenberger, 2014). While some individuals seem to age early,

others maintain a high level of functioning into very old age. Several

studies have therefore followed the approach to estimate individual

brain age, which is thought to reflect the aging process better than

chronological age (Cole & Franke, 2017; Franke & Gaser, 2019). The

current dataset did not allow us to adapt a similar individualized

approach and assess individual differences in aging trajectories. We

encourage future work into this direction, particularly regarding our

finding of increasing rich club organization throughout life. If increas-

ing rich club organization was indeed a compensatory effort to main-

tain functional capacity as structural connectivity strength decreases,
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it should become particularly pronounced in individuals who age

faster. Future work will also want to include multimodal imaging data

to assess relationships between structural and functional network

development, and to assess codevelopment between the brain net-

work and behavior (Zuo et al., 2017). The main principles of structural

brain network organization are already present at birth and show little

qualitative change over childhood and adolescence, but functional

brain networks undergo more widespread change during development

while increasing their coupling to the underlying structural networks

(Cao et al., 2016; Vértes et al., 2016). Combining imaging data from

different modalities and behavioral data is thus well positioned to lay

the fundaments for a more holistic and clinically relevant approach to

lifespan connectomics (Tymofiyeva et al., 2014).

5 | CONCLUSION

We utilized the largest developmental sample with structural con-

nectomes across the lifespan so far and applied nonlinear statistical

modeling to study lifespan trajectories of brain connectivity, network

hubs, and rich club organization in the structural connectome. We

confirmed “inverted U”-shaped trajectories for brain connectivity,

found highly consistent network hubs across age groups, and found

that rich club organization may remain relatively preserved in the

aging brain. This might have implications for neural reserve and resil-

ience in the aging brain and individual differences in biological and

cognitive aging.
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