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Abstract: In 2020, the first case of COVID-19 was confirmed in Korea, and social distancing was
implemented to prevent its spread. This reduced the movement of people, and changes in air quality
were expected owing to reduced emissions. In the present paper, the impact of traffic volume change
caused by COVID-19 on air quality in Seoul, Korea, is examined. Two regression analyses were
performed using the generalized additive model (GAM), assuming a Gaussian distribution; the
relationships between (1) the number of confirmed COVID-19 cases in 2020–2021 and the rate of
change in the traffic volume in Seoul, and (2) the traffic volume and the rate of change in the air
quality in Seoul from 2016 to 2019 were analyzed. The regression results show that traffic decreased
by 0.00431% per COVID-19 case; when traffic fell by 1%, the PM10, PM2.5, CO, NO2, O3, and SO2

concentrations fell by 0.48%, 0.94%, 0.39%, 0.74%, 0.16%, and −0.01%, respectively. This mechanism
accounts for air quality improvements in PM10, PM2.5, CO, NO2, and O3 in Seoul during 2020–2021.
From these results, the majority of the reduction in pollutant concentrations in 2020–2021 appears to
be the result of a long-term declining trend rather than COVID-19.
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1. Introduction

In December 2019, a novel coronavirus (COVID-19) was first reported in Wuhan,
China [1]. COVID-19 has spread to more than 210 countries and territories [2], and on 11
March 2020, the World Health Organization declared COVID-19 a pandemic [3]. As of
29 June 2021, the cumulative number of COVID-19 cases worldwide reached more than
180 million, and the cumulative number of deaths was nearly 4 million [4].

Many countries have implemented measures, such as lockdowns, to prevent the spread
of COVID-19, including regulations on social distancing that limit human activities [5].
These measures have had an impact on improving air quality by reducing the emissions of
pollutants from human activities [6]. The decreases in surface NO2 and PM2.5 concentra-
tions, and increases in O3 concentrations in 34 countries were reported [7]. Several studies
evaluated the effect of lockdown on the air quality in each country. In the United States,
during the lockdown period, NO2 and CO decreased by 49% and 37%, respectively, from
2017 to 2019. This trend increased with the increase in the local population density [8]. In
Seattle, Washington, roadside (near I-5 Express) pollutant concentrations of BC, PM2.5, NO,
NO2, NOx, and CO decreased by 25%, 33%, 33%, 29%, 30%, and 17%, respectively, after the
Washington Stay Home Order was enacted [9]. Owing to the partial lockdown of São Paulo,
Brazil, the CO concentration in urban areas decreased by 64.8% compared with the average
of the past 5 years; the NO and NO2 concentrations along urban roads decreased by 77.3%
and 54.3%, respectively; and the ozone concentration increased [10]. In Barcelona and
Madrid, Spain, radical decreases in traffic owing to the lockdown in March 2020 resulted
in a decrease in NO2 concentrations [11]. In Bari, Italy, NO2 concentrations decreased by
22.5% in March 2020, compared with that in March 2019 [12]. During the lockdown period
in Almaty, Kazakhstan, concentrations of PM2.5, CO, and NO2 decreased by 21%, 49%, and
35%, respectively, compared with 2019. However, the concentration of benzene and toluene
was 2–3 times higher than that in 2015–2019 [13]. Following 4 days of lockdown in 2020,
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India experienced a 40–50% improvement in PM10 and PM2.5 concentrations, compared
with 2019 [14]. Lockdowns in some areas of China significantly improved the air quality,
compared with the cities in which lockdown was not implemented [15]. Among them, in
the Yangtze River Delta (YRD) region, as human activities decreased, SO2, NOx, PM2.5,
and VOC concentrations decreased by 16–26%, and the ozone concentration increased [16].
A full lockdown in Shanghai resulted in reductions in PM10, PM2.5, CO, NO2, and SO2
of 34–48% in roadside stations and 18–50% in non-roadside stations [17]. In South Korea,
the average concentrations of PM2.5, PM10, NO2, and CO in March 2020 decreased by
45.45%, 35.56%, 20.41%, and 17.33%, respectively, compared with those in March 2019 [18];
another study found that the average concentration of PM2.5 in February and March of
2020 decreased by 21%, compared with that in February and March of 2017–2019 owing to
COVID-19 [19]. In Seoul, South Korea, 30-day average concentrations of PM2.5, NO2, and
CO after social distancing (from 29 February to 29 March 2020) decreased by 10.4%, 16.4%,
and 16.9%, respectively, compared with before the social distancing (from 30 January to 28
February 2020) [20]. In Seoul and Daegu, South Korea, the average concentrations of PM2.5
in March 2020 decreased by 36% and 30%, respectively, compared with those in March of
2017–2019 [21].

To the best of our knowledge, most of the previous studies estimated the effect of
COVID-19 on air pollutant concentrations by comparing the concentrations before and
after the outbreak of the COVID-19 pandemic. Only two previous studies further excluded
climate- and policy-driven impacts from the total reduction in order to estimate COVID-19-
driven reductions more accurately [9,19]. However, all of these studies were conducted
without demonstrating the extent to which the reduction can actually be attributed to
COVID-19. Therefore, the present study aims to examine the impact of COVID-19 on air
quality by studying the variation in traffic volume. Traffic volume is one of the most known
routes through which COVID-19 impacts air quality. This study identifies the relationship
between traffic and air quality during 2016–2019. Subsequently, we study the relationship
between the number of COVID-19 cases and traffic after 2020 in Seoul, South Korea.

2. Materials and Methods
2.1. Data Collection

The daily average concentrations of six major air pollutants (PM10, PM2.5, CO, NO2,
O3, and SO2) in Seoul, South Korea, between January 2016 and June 2021 were obtained
from the Korea Environment Corporation (https://www.airkorea.or.kr/web (accessed on
31 July 2021)). These values were calculated by averaging the concentrations measured
every hour from each of the 25 urban monitoring stations located in Seoul.

The daily average weather data on the temperature, precipitation, and wind speed in
Seoul between January 2016 and June 2021 were obtained from the Korea Meteorological
Administration (https://data.kma.go.kr/cmmn/main.do (accessed on 31 July 2021)). They
were calculated by averaging the data measured every hour from the single official station
located in the center of Seoul.

Daily mobility data in Seoul between February 2020 and June 2021 were obtained
from the Google Mobility database. These data show the percentage change in Seoul traffic
compared with the median traffic between 2 January 2020 and 6 February 2020, in six
categories: grocery and pharmacy, parks, transit stations, residential, workplaces, and retail
and recreation [22]. The detailed information about these categories is available on the
Google Mobility website (https://www.google.com/COVID19/mobility/ (accessed on 31
July 2021)).

The daily traffic volume (number of cars) on four arterial roads in Seoul between Jan-
uary 2016 and June 2021 was obtained from the Seoul Transport Operation and Information
Service. These four arterial roads were the Dongbu Expressway, Gangbyeon Expressway,
Gyeongbu Expressway, and Naebu Expressway, which run through Seoul, vertically and
horizontally (see Figure S1 for a map of these arterial roads).

https://www.airkorea.or.kr/web
https://data.kma.go.kr/cmmn/main.do
https://www.google.com/COVID19/mobility/
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The daily number of new COVID-19 cases in South Korea from January 2020 to June
2021 was obtained from Our World in Data (https://ourworldindata.org/COVID-cases
(accessed on 31 July 2021)). We chose the data to represent the severity of the COVID-19
situation, and because these data are widely available (not only for South Korea, but also
for all countries across the world). We studied the COVID-19 cases for the whole of South
Korea, not just those in Seoul, since the number of COVID-19 cases outside Seoul also
affected mobility and traffic in Seoul. For example, during the first surge of COVID-19
cases in March of 2020 in Daegu, the traffic in Seoul was reduced even though Daegu is
~240 km away, and even before any social distancing measures were enacted.

Information on social distancing measures enacted in South Korea from January 2020
to June 2021 was obtained from the website managed by the Ministry of Health and
Welfare in South Korea (http://ncov.mohw.go.kr/tcmBoardList.do?brdId=3&brdGubun=
(accessed on 31 July 2021))

2.2. Regression Analysis

COVID-19 restrictions affected traffic volume and, in turn, affected the air quality.
To quantitatively understand this chain of effects, we performed two regression analyses.
We first extracted the relationship between the number of new COVID-19 cases and the
percentage change in traffic from 2020 to 2021 in Seoul. In the present study, we chose the
number of new COVID-19 cases rather than the social distancing policy as an independent
variable. This was because the former is a quantitative variable, while the latter is a
qualitative variable. The second analysis extracted the relationship between the percentage
change in the traffic and air quality from 2016 to 2019 in Seoul. The data from after
2020 were not included in the second analysis in order to reveal the association before
the COVID-19 pandemic. In these analyses, we removed outliers (data points located
outside the average ± 3 standard deviations) from the air pollutant concentration and
traffic data to ensure that they did not influence the regression results. We used R software
version 4.0.4 and the “gam” function in the “mgcv” package to use a generalized additive
model (GAM) [23]. GAM is commonly applied when using penalized splines, which help
modeling nonlinearity without overfitting. [24].

In the first regression analysis, the association between COVID-19 and the percentage
change in traffic was extracted using GAM with the assumption of a Gaussian distribution.
The model used in this analysis is as follows:

E[Tra f f ic] = β1COVID19 + s(Temperature, k = 5)
+s(Precipitation, k = 5) + β2DOW + s(Date, k = 6)
+β3Holiday

(1)

where E[Tra f f ic] is the expected daily traffic volume of the four expressways in Seoul;
βi represents the regression coefficients; COVID19 represents the daily number of new
COVID-19 cases in South Korea; s(Temperature, k = 5) and s(Precipitation, k = 5) are the
smooth functions of the temperature and precipitation to control their effects on the traffic
(we chose temperature and precipitation because they are the most basic meteorological
factors); parameter k represents the number of basis functions used in the model (it was
set to 5 to prevent overfitting); DOW is the day of the week to control the daily variation;
s(Date, k = 6) is a smooth function of the date with 6 basis functions to control the seasonal
variations (the number of basis functions were chosen to be equal to the number of seasons
from January 2020 to June 2021); and Holiday is a categorical variable that indicates
whether it is a non-holiday, a holiday on weekdays, or a holiday on weekends to control
the extraordinary traffic patterns on holidays.

https://ourworldindata.org/COVID-cases
http://ncov.mohw.go.kr/tcmBoardList.do?brdId=3&brdGubun=
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In the second regression analysis, we extracted the association between the percentage
change in traffic and air pollutant concentrations using GAM with the assumption of a
Gaussian distribution. The model used in this analysis is as follows:

E[Conc.] = γ1Tra f f ic + s(Temperature, k = 5) + s(Precipitation, k = 5)
+s(WindSpeed, k = 5) + γ2DOW + s(DOY, k = 4)
+s(Date, k = 2)

(2)

where E[Concentration] is the expected daily concentration of pollutants in Seoul; γi repre-
sents the regression coefficients; Tra f f ic is the daily traffic volume at the 4 expressways in
Seoul; s(WindSpeed, k = 5) is a smooth function of the wind speed functions to control the
effect of wind on air pollutant concentrations; to temperature and precipitation, we added
wind speed, since wind can affect pollutant concentrations via mixing; s(DOY, k = 4) is
a smooth function of the day of year (DOY, from day 1 to day 365) with 4 basis functions
to control the seasonal variation within a year (the number of basis functions was set to
4, which is identical to the number of seasons in a year—this method of modeling sea-
sonal variability has been widely used in previous studies [25–28]); and s(Date, k = 2) is a
smooth function of the date to control long-term variations, which occur over a few years.
By setting k = 2, s(Date, k = 2) can only model the long-term variations.

2.3. Calculation of COVID-19-Attributable Air Quality Change

The relationship between COVID-19 cases and air pollutant concentrations through
traffic reduction can be calculated based on the coefficients obtained from the two regression
analyses as follows:

Concentration changes
COVID − 19 cases

=
tra f f ic changes

COVID − 19 cases
· concentration changes

tra f f ic changes
(3)

Then, the COVID-19-attributable change (CAC) in air quality can be calculated by

CAC =
Concentration changes

COVID − 19 cases
·Mean COVID − 19 cases (4)

In addition, the COVID-19-attributable change fraction (CACF) in air quality can be
calculated as:

CACF =
CAC

Mean air pollutant concentration
(5)

3. Results
3.1. Association of Traffic with COVID-19

Figure 1 shows the percentage change in the traffic measured at four expressways in
Seoul and the number of new COVID-19 cases in South Korea since 2020. The baseline of
the traffic data was the median traffic volume between 2016 and 2021 (see Figure S2 for the
traffic volume of the four expressways separately). The discontinuous points in the traffic
data were either missing from the original data or outliers that were excluded from the
analysis. The periodic spikes observed in the traffic data were caused by weekends and
holidays. Note that a decrease in Seoul traffic corresponds to a surge in COVID-19 cases.
There were approximately four surges, those in around March 2020, August 2020, December
2020, and June 2021. During these surge periods, the Seoul traffic volume decreased; the
scale of the decrease was especially high in the second and third surges. This was partly
because of the increased level of social distancing policies applied during the second and
third surge periods, and the difference in people’s perceptions about the severity of the
COVID-19 pandemic. Figure 2 shows the relationship between the number of COVID-19
cases and the percentage change in traffic based on the GAM. The blue curve, which shows
the linear regression result, clearly demonstrates that the traffic volume decreased with the
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increase in COVID-19 cases (coefficient of −0.00431%/case). This means that the traffic
volume reduced by 0.431% each increase of 100 new COVID-19 cases.
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Figure 2. Relationship between the number of new COVID-19 cases and the percentage change in
traffic from January 2020 to June 2021. Black dots show the daily relationship, and the blue solid line
represents the linear regression.

In addition to the association analysis between the traffic and COVID-19 cases, based
on Google Mobility data, we analyzed the categories of peoples’ movements that were
most affected by COVID-19. Figure S3 shows the Google Mobility data and new daily
cases of COVID-19. Several spikes observed in the mobility data coincided with holidays.
Among the six categories of mobility, retail and recreation, transit stations, and workplaces
had strong negative correlations with the COVID-19 cases, while mobility in residential
areas showed a strong possible correlation with COVID-19 cases. This was partly because
social distancing policies were strengthened with the surge, the number of people working
from home increased, and people became more reluctant to use public transportation
and retail stores. Unlike other categories, the mobility to grocery and pharmacy were
not significantly impacted by the surge of COVID-19 cases since these are necessities; the
relationship between mobility to parks and COVID-19 cases remains unclear owing to large
seasonal variations.
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3.2. Association of Air Pollutant Concentrations with Traffic

Figure 3 shows the air pollutant concentrations and the percentage change in the
expressway traffic volume in Seoul from 2016 to 2019 (Figure S2 shows the separate traffic
volumes of each expressway). As observed from the time-series plot, the air pollutant
concentrations exhibited significant daily and seasonal variations. These variations are
mostly due to daily and seasonal variations in weather conditions, which determine the
rate of spatial mixing and pollutant formation. To extract the relationship between the
traffic and pollutant concentrations, we used GAM with various confounding factors, as
shown in Equation (2).
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Figure 4 shows the relationship between traffic change and air pollutant concentrations
based on the GAM; the blue lines show the linear regression results. Table 1 summarizes
the coefficients of the regressions, along with the mean pollutant concentrations. The ratio
in Table 1 shows the percentage of air pollutant change with a 1% change in traffic. Our
results show that a 1% change in traffic resulted in the largest variation, in PM2.5 (0.94%),
followed by a variation in NO2 (0.74%). Unlike other pollutants, the concentration of
SO2 was not significantly affected by traffic (−0.01%). Table S1 shows the fitness test of
the models and the significance test of the traffic factor. The models for CO, NO2, and
O3 showed a relatively better fit (R2 of 0.62–0.70), while the models for PM10 and PM2.5
showed a relatively poorer fit (R2 of 0.37–0.44). The p-values for PM2.5, CO, and NO2 were
less than 0.05, rejecting the null hypothesis, while the p-values for O3 and SO2 indicated
that the relationships between traffic volume and concentrations of O3 and SO2 were week
(if any).
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Table 1. Coefficients of linear regressions between the traffic and pollutant concentrations based
on the generalized additive model (GAM), along with mean pollutant concentrations in Seoul from
2016 to 2019. The ratio shows the percentage change in the pollutant concentrations with 1% change
in traffic.

Pollutant Coefficient Mean Concentration Ratio

PM10 0.219 µg/m3/% 45.5 µg/m3 0.48%
PM2.5 0.233 µg/m3/% 24.9 µg/m3 0.94%

CO 2.161 ppb/% 553.8 ppb 0.39%
NO2 0.257 ppb/% 34.6 ppb 0.74%
O3 0.033 ppb/% 21.5 ppb 0.16%

SO2 −0.0007 ppb/% 4.6 ppb −0.01%

3.3. COVID-19-Attributable Air Quality Changes via Traffic Reduction

The increase in COVID-19 cases reduced the traffic volume and, in turn, improved
the air quality. Based on the two regression results, we calculated the extent to which
the changes in air quality may have been attributable to traffic reduction caused by the
COVID-19 pandemic. Table 2 shows the CAC and CACF changes in the air quality due
to traffic reduction in Seoul from 2020 to 2021 (see Section 2.3). The COVID-19 pandemic
affected the concentrations of PM10, PM2.5, CO, NO2, and O3 by −0.67%, −1.33%, −0.54%,
−1.20%, and −0.16%, respectively, while it had little impact on the SO2 concentration.

Table 2. COVID-19-attributable change (CAC) and change fraction (CACF) in air quality due to
traffic reduction in Seoul from 2020 to 2021. Concentration changes per COVID-19 case and mean
concentration during 2020–2021 are also shown. In the CAC calculation, the daily mean COVID-19
cases of 288.3 people during 2020–2021 were used.

Pollutant Concentration Change Per
COVID-19 Case

Mean
Concentration

COVID-19-Attributable
Air Quality

CAC CACF

PM10 −0.00094 µg/m3/case 40.4 µg/m3 −0.27 µg/m3 −0.67%
PM2.5 −0.00100 µg/m3/case 21.8 µg/m3 −0.29 µg/m3 −1.33%

CO −0.00931 ppb/case 501.7 ppb −2.68 ppb −0.54%
NO2 −0.00111 ppb/case 26.6 ppb −0.32 ppb −1.20%
O3 −0.00014 ppb/case 25.3 ppb −0.04 ppb −0.16%

SO2 0.000003 ppb/case 3.2 ppb 0.00 ppb 0.02%

3.4. Projection of Air Pollutant Concentrations in 2020–2021

Figure 5 shows the measured monthly concentrations (black points) of various air
pollutants in Seoul in 2016–2021, along with the modeled concentrations (green lines) in
2016–2019 and predicted concentrations (blue lines) from 2020 to 2021. Since the model used
in the prediction was extracted based on the data from 2016 to 2019 (before the COVID-19
pandemic), only the traffic-associated impact of COVID-19 was included in the prediction.
Table 3 shows numerical comparisons between the measured, modeled, and predicted
yearly pollutant concentrations. We observed deviations between the measured and pre-
dicted concentrations in 2020–2021. Such deviations may partly stem from the simplicity
of the model in Equation (2) and the variability of the yearly reduction trend. However,
despite such an uncertainty, there is no point of inflection in long-term concentration trends
near initial outbreak of COVID-19 (December 2019). Rather, it appears that most of the
concentration reduction in 2020–2021, compared with that in 2016–2019, was not due to
COVID-19, but instead reflects a long-term trend of a reduction in air pollutants.
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Figure 5. (a–f) Measured concentrations (black points) and predicted concentrations (blue lines) of
pollutants in 2020–2021 based on the extracted models (green lines) of 2016–2019: (a) PM10, (b) PM2.5,
(c) CO, (d) NO2, (e) O3, and (f) SO2. Equations in brackets describe the linear long-term trends shown
in black lines.
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Table 3. Comparison between the measured (2016–2021), modeled (2016–2019), and predicted
(2020–2021) pollutant concentrations.

Type Pollutant (Unit) 2016 2017 2018 2019 2020 2021

Measured

PM10 (µg/m3) 49.4 45.5 40.5 41.0 37.0 41.8
PM2.5 (µg/m3) 25.9 23.2 22.9 23.4 21.1 20.8

CO (ppb) 569.8 537.8 534.1 551.6 510.9 474.6
NO2 (ppb) 37.7 35.0 32.6 32.9 27.2 25.2
O3 (ppb) 21.0 21.3 20.8 22.6 23.1 28.8

SO2 (ppb) 5.2 4.8 4.4 4.0 3.3 3.2

Modeled
(2016–2019)

and predicted
(2020–2021)

PM10 (µg/m3) 49.2 44.3 42.6 39.9 33.5 36.5
PM2.5 (µg/m3) 25.7 22.9 23.9 22.4 17.8 19.1

CO (ppb) 569.9 526.3 553.9 539.4 493.4 496.2
NO2 (ppb) 38.0 33.3 34.6 32.1 26.3 26.6
O3 (ppb) 20.9 21.6 20.4 22.7 24.5 27.8

SO2 (ppb) 5.1 4.8 4.5 4.0 3.4 3.3

Deviation

PM10 (µg/m3) −0.4% −2.7% 5.2% −2.7% −9.5% −12.7%
PM2.5 (µg/m3) −0.8% −1.3% 4.6% −4.4% −16.0% −7.8%

CO (ppb) 0.0% −2.1% 3.7% −2.2% −3.4% 4.5%
NO2 (ppb) 0.9% −5.0% 6.3% −2.6% −3.2% 5.7%
O3 (ppb) −0.6% 1.7% −1.9% 0.3% 6.3% −3.3%

SO2 (ppb) −0.8% −1.0% 0.8% 0.0% 5.7% 5.5%

4. Discussion

In this study, the traffic-associated impacts of COVID-19 on the air pollutant con-
centrations of PM10, PM2.5, CO, NO2, and O3 were −0.67%, −1.33%, −0.54%, −1.20%,
and −0.16%, respectively, in Seoul during 2020–2021. These reductions are much smaller
than those demonstrated by Ju et al. [15], Kang et al. (2021) [16], Han et al. [17], and
Seo et al. [18]. These differences reflect two main factors. First, the present study focused
only on traffic-related impacts that are 100% attributable to COVID-19, while previous
studies compared concentration differences before and after the outbreak of COVID-19
pandemic. The approach taken by the present study may underestimate the total impact of
COVID-19 by not considering other possible routes that may relate COVID-19 to air pollu-
tant concentrations, while the approach taken by the previous studies may overestimate the
total impact of COVID-19 by not successfully excluding all other reduction causes. Second,
the present study estimated the impact of COVID-19 on 18-month-average (January 2020 to
June 2021) concentrations of air pollutants, while previous studies focused on the impacts
on concentrations over 1 or 2 months after a COVID-19 outbreak or social distancing.

There are a few limitations to this study. First, we used the non-linear regression
model in Equation (2) to rule out the confounding effects of climate when extracting the
relationship between traffic and air pollutant concentrations. Although this is a widely used
method to exclude the confounding effects of climate, there may be a possibility to improve
the accuracy of the relationship by using models based on atmospheric science and physics,
such as Community Multiscale Air Quality (CMAQ). Second, the deviance of pollutant
concentrations explained by traffic volume is small (see Figure 4). This implies that there
may be other confounding factors (e.g., industrial emissions, long-range transport from
other countries, and other meteorological parameters) in the relationship between traffic
and pollutant concentrations (Figure 4). A successful consideration of such confounding
factors could improve the accuracy of the analysis. Third, the relationship between traffic
and pollutant concentrations is not reliable outside the range of historical data points (±10%
of traffic change). Lastly, we assumed that the traffic along four expressways, climate data
measured by the single official site in Seoul, and the air quality data measured by 25 official
sites spread in Seoul can represent the total traffic, climate, and air-quality conditions
in Seoul. Any inaccuracy originating from this assumption may limit the accuracy of
the analysis.
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We will address these limitations in future work. In addition, we also plan to focus on
other possible routes where COVID-19 impacted on air quality, including the reduction
in anthropogenic emissions due to economic slowdown driven by COVID-19-related
lockdowns or socio-economic changes, such as unemployment.

5. Conclusions

This study analyzed the change in the concentrations of air pollutants as a function of
the number of confirmed COVID-19 cases. COVID-19-attributable air quality improvements
through traffic reduction were found to be 0.67%, 1.33%, 0.54%, 1.20%, and 0.16% for PM10,
PM2.5, CO, NO2, and O3, respectively, in Seoul during 2020–2021. This study is the first to
demonstrate the traffic-associated impacts of COVID-19 on air quality, and the methodology
used in the study could be further applied to quantify the real contribution of COVID-19
on air quality changes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijerph19031718/s1, Figure S1: Map of Seoul with four expressways; Figure S2: Daily traffic
volume at four expressways in Seoul from 2016 to 2021; Figure S3: (a)–(f) Google Mobility data in
Seoul: (a) Grocery and Pharmacy, (b) Parks, (c) Residential, (d) Retail, (e) Transit, (f) Workplaces.
(g) the number of new COVID-19 cases in South Korea between February 2020 and June 2021; Table
S1: Fitness test (R2) of the models and significance test of the traffic factor.
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