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Abstract

Breathing is maintained and controlled by a network of automatic neurons in the brainstem that generate respiratory
rhythm and receive regulatory inputs. Breathing complexity therefore arises from respiratory central pattern generators
modulated by peripheral and supra-spinal inputs. Very little is known on the brainstem neural substrates underlying
breathing complexity in humans. We used both experimental and theoretical approaches to decipher these mechanisms in
healthy humans and patients with chronic obstructive pulmonary disease (COPD). COPD is the most frequent chronic lung
disease in the general population mainly due to tobacco smoke. In patients, airflow obstruction associated with
hyperinflation and respiratory muscles weakness are key factors contributing to load-capacity imbalance and hence
increased respiratory drive. Unexpectedly, we found that the patients breathed with a higher level of complexity during
inspiration and expiration than controls. Using functional magnetic resonance imaging (fMRI), we scanned the brain of the
participants to analyze the activity of two small regions involved in respiratory rhythmogenesis, the rostral ventro-lateral
(VL) medulla (pre-Bötzinger complex) and the caudal VL pons (parafacial group). fMRI revealed in controls higher activity of
the VL medulla suggesting active inspiration, while in patients higher activity of the VL pons suggesting active expiration.
COPD patients reactivate the parafacial to sustain ventilation. These findings may be involved in the onset of respiratory
failure when the neural network becomes overwhelmed by respiratory overload We show that central neural activity
correlates with airflow complexity in healthy subjects and COPD patients, at rest and during inspiratory loading. We finally
used a theoretical approach of respiratory rhythmogenesis that reproduces the kernel activity of neurons involved in the
automatic breathing. The model reveals how a chaotic activity in neurons can contribute to chaos in airflow and reproduces
key experimental fMRI findings.
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Introduction

Complexity is a universal phenomenon widely described in

physics as well as in living organisms in biology and physiology. In

the human brain, neural networks are complex [1] and

communication between neurons occurs through a wild variety

of codes such as bursting oscillations, which is a brief epoch of

rapid firing. Such bursting behavior of the neuron oscillations may

exhibit nonlinear deterministic chaos [2]. The human respiratory

system displays several level of complexity: the bronchial tree has a

fractal structure with various degrees of self-similarity and the

airflow dynamics inside exhibits chaos during rhythmic breathing

[3]. Why rhythmic breathing generates chaos in human airflow

remains unknown. Breathing is maintained and controlled by a

network of neurons in the brainstem that generate respiratory

rhythm while receiving regulatory inputs. Pace-maker like neurons

generating rhythmic breathing have been identified in 2 brainstem

regions in rodents, one located in the rostral ventro-lateral (VL)

medulla, the pre-Bötzinger complex [4–8], and the other close to

this region, the parafacial respiratory group [9–13]. Recent

evidence suggests that both groups of neurons are coupled

oscillators that work in tandem to synchronize respiratory rhythm

[9,10,13]. Moreover, these automatic neuronal groups have two

important properties: they are capable of different synchronization

regimes depending on the level of their excitabilities [13] and their

dynamics exhibit chaotic spike-bursting oscillations in some

circumstances [14]. Indeed, neural population activity recorded

locally in the pre-Bötzinger complex of neonatal rat brainstem

slices exhibit chaotic dynamics, when neuronal excitability is

progressively elevated [14]. This is a strong argument to

hypothesize that the chaos-like complexity of airflow in humans

is an intrinsic property of central respiratory generators. In

addition, both respiratory rhythm and airflow control have

common genetic determinants [15]. However, breathing is also

modulated by the state of airways [16], by the chest wall [17], the

lung, by chemical afferents sensitive to hypercapnia, hypoxia or

acidosis [3] and by mechanical afferents from the airway, lung,
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chest wall, respiratory muscles as well as by supra-pontine

commands. A previous study has shown that the structural and

mechanical properties of the bronchial tree, lung and chest wall in

humans are not sufficient to generate chaos in airflow in the

absence of a central neural drive [18]. Nevertheless, it is still

unclear in humans to what extent the complex dynamics of the

respiratory center contributes to airflow complexity.

We used both experimental and theoretical approaches to

decipher the brainstem neural substrates of ventilatory complexity

in humans. Complexity of airflow was estimated during inspiration

and expiration at rest, and during an inspiratory effort with

resistive load, used as an indirect neural stimulus. Brainstem

regions of interest of the respiratory pacemakers were located with

fMRI [19] in the rostral ventro-lateral medulla containing the pre-

Bötzinger complex, and in the caudal ventro-lateral pons

containing the parafacial group. Our goal was to evidence

brainstem neural correlates of airflow complexity. We also

analyzed airflow in a disease state in patients with chronic

obstructive pulmonary disease (COPD). COPD is the most

frequent chronic lung disease in the general population and is

mainly due to tobacco smoke. Patients with COPD have an

impaired lung function with an increased respiratory load due to

small airways obstruction by inflammation and remodeling. Lung

parenchyma destruction or emphysema is often associated with

distal obstruction. Airflow obstruction associated with hyperinfla-

tion and respiratory muscles weakness are key factors contributing

to load-capacity imbalance and hence increased respiratory drive

[20]. At the end stage of the disease, the patients have respiratory

insufficiency with home oxygen therapy while the neural

respiratory drive is extremely high. We hypothesized that chaos

in airflow should be altered in COPD patients but that such

alterations should still correlate with the activity of the brainstem

respiratory centers. Further, we developed a mathematical model

of respiratory rhythmogenesis to reproduce the basic activity

modes of neurons involved in the automatic breathing in healthy

subjects and COPD patients. The model therefore reveals how a

chaotic activity in neurons can contribute to chaos in airflow and

reproduces key experimental fMRI findings.

Results

The characteristics of the whole population, healthy subjects

and patients with chronic obstructive pulmonary disease (COPD),

are shown in Tables 1 and S1. No difference was noted in end-

tidal PCO2 (PETCO2) measurements between healthy subjects and

COPD patients either during resistive load or during resting state

fMRI (Figure 1).

Chaos in Airflow during Inspiration is Higher than during
Expiration in Healthy Subjects

Linear and nonlinear measurements of the airflow. The

linear estimates (coefficient of variation (CV) and autocorrelation

coefficient (AC)) of the airflow during inspiration and expiration

are shown in Table S2. In the 25 healthy subjects, inspiratory flow

yields higher variability (p,0.001) and lower value of the AC

(p,0.001) than expiratory flow during unloaded breathing.

The number of time series that exhibits a positive noise limit

value characterizing chaos in airflow is equivalent for inspiration

and expiration (Table S3). In the time series with positive noise

limit, chaos in airflow is increased during inspiration as compared

with expiration (largest Lyapunov exponent (LLE) and the

correlation dimension (CD), p,0.05) (Figure 1). The attractor of

the airflow is reconstructed in the phase plane during inspiration

with the corresponding time series in one healthy subject

(Figure 2A).

Cerebral fMRI results. In healthy subjects, we found that

neural activity assessed in terms of the amplitude of low frequency

oscillations (AlFO) of the BOLD signal located in the VL medulla

is significantly higher than neural activity of the VL pons

(p,0.001, n = 16) (Figure 3top, Figure 4). In COPD patients,

the AlFO of the BOLD signal located in the VL pons, which

contains the parafacial group, is significantly higher than the

ALFO of the VL pons of healthy subjects (p,0.001, n = 16)

(Figure 3top).

COPD Patients Breathe with a Higher Level of Complexity
during Expiration than Healthy Subjects

Linear and nonlinear measurements of the airflow. The

linear estimates (CV and AC) of the airflow during inspiration and

expiration are shown in Table S2. In the 25 patients with COPD,

expiratory flow yields higher variability (p = 0.06) and AC

(p,0.001) than inspiratory flow during unloaded breathing. The

number of time series that exhibits a positive noise limit value

characterizing chaos in airflow is equivalent for inspiration and

expiration in COPD patients (Table S3). However, the number of

chaotic time series during expiration is higher in COPD patients

than healthy subjects (p = 0.001, Table S3). The attractor of the

airflow is reconstructed in the phase plane during expiration with

the corresponding time series in one COPD patient (Figure 2B).

In the time series with positive noise limit, chaos in airflow is

increased during expiration as compared with inspiration (NL

values, p = 0.05, Figure 1A). Moreover, as compared with controls,

the levels of airflow complexity of expiration (NL value, p,0.001;

LLE p,0.001; CD, p,0.01) as well as inspiration (LLE, p,0.05;

CD, p,0.05) is higher (Figure 1B–C).

COPD patients having hypoxia (n = 10) do not exhibit

differences from those being normoxic (n = 15) in terms of

ventilatory complexity (noise limit value, largest Lyapunov

exponent and correlation dimension). Furthermore, when com-

paring the chaotic indexes in the control group (n = 25) and in the

COPD patients being normoxic (n = 15), (PETCO2 being equivalent

for both group), significant differences are evidenced with the noise

limit value (NL controls: 567, NL COPD: 13612 p,001) and the

largest Lyapunov exponent (LLE controls: 0.1560.08, LLE

COPD: 0.2760.1, p,0.001) of the expiratory flow.

Besides, COPD patients that exhibit severe dyspnea (Borg scale)

have a significant higher level of expiratory flow chaos (correlation

dimension) and AlFO of the VL pons than those with moderate

and mild dyspnea (Figure S2).

Airflow complexity correlates with cerebral fMRI BOLD

signal. Univariate analysis in the whole population shows that

the NL and the LLE values of the expiratory flow both positively

correlates with AlFO of the VL pons (R2 = 0.4, p = 0.05 and

R2 = 0.5, p = 0.04 for the NL and LLE respectively), the higher the

complexity of expiration, the higher the neural activity of the VL

pons. There is also an inverse relationship between the NL and the

LLE of the expiratory flow and the pulmonary function index

FEV1/FVC in the whole population (R2 = 0.45, p,0.05; R2 = 0.5,

p,0.05, respectively, Figure S3). In healthy subjects, the chaotic

level (NL) of airflow during inspiration strongly correlates with the

neural activity of the VL medulla (R2 = 0.75, p = 0.01). In COPD

patients, chaos (NL) during expiration correlates with the neural

activity of VL pons (R2 = 0.4, p = 0.03). No correlation was

evidenced between complexity of airflow and oxygen or carbon

dioxide arterial pressures (PaO2, PaCO2). Multivariate analysis in

the whole population showed that both neural activity of the VL

pons and pulmonary function FEV1/FCV significantly predict the
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chaos of expiration (R2 = 0.4, F = 5.2 with p,0.01): the lower the

pulmonary function, the higher the neural activity of the VL pons,

the higher the chaotic level of expiration (Figure 5).

Airflow complexity and cerebral fMRI results during

inspiratory load. Loading inspiration significantly increases

the variability of the inspiratory flow, and the AC of the

inspiratory as well as expiratory flows in both healthy subjects

and patients with COPD (Table S2). In healthy subjects,

inspiratory resistance significantly reduces airflow complexity

during inspiration (Figure 6). Interestingly in COPD patients,

loading inspiration leads to a diminution of complexity of

inspiration (NL, LLE, CD) as well as expiration (NL, CD). Of

note, loading inspiration did not change the PETCO2 (Figure S1)

and saturation of both populations. Loading inspiration in healthy

subjects and COPD patients also leads to a diminution of fMRI

BOLD responses in the VL medulla (healthy subjects and COPD)

and pons (COPD) (Figures 7 and S4). During inspiratory loading

in the whole population, the mean negative BOLD signal of the

VL pons correlates with the CD of the expiratory flow (R2 = 0.7,

p,0.01) while the mean negative BOLD signal of the VL medulla

correlates with the LLE of the inspiratory flow (R2 = 0.6, p = 0.05).

Of note, healthy subjects and COPD patients also exhibit

positive BOLD signal in the activated brain regions known to be

involved in the voluntary control of respiratory muscles, i.e.

sensory-motor, premotor and supplementary motor cortex area

(data not shown).

Comparison of the correlation dimension of the original

time series with surrogates. The correlation dimensions of

the 137 experimental time series were compared with 5 surrogates

(685 simulated time series) that match each original signal. Those

surrogates were computed after assigning random phase. Signif-

icant differences were obtained between the original data paired

with the corresponding average correlation dimension values from

the matching surrogate (p,0.01, Wilcoxon signed-rank test),

reinforcing the nonlinear features of the inspiratory and expiratory

flows time series.

Mathematical Model of Respiratory Rhythmogenesis
The present model is the first attempt to reproduce respiratory

rhythmogenesis in healthy humans and COPD patients with

experimental data. The model considers two chaotic pacemakers,

the inspiratory (Pre-Bötzinger) and expiratory (parafacial) gener-

ators that work together via chemical synaptic connection, either

activated or inhibited, to synchronize the respiratory cycle.

Different dynamics are evidenced depending on the excitability

level of the neurons. In the model, the parameters J1 and J2

represent the excitability level of the parafacial and pre-Bötzinger

respectively. Experimental results show that healthy subjects

display more complexity during inspiration than expiration and

that the low frequency oscillations of the BOLD signal located in

the rostral VL medulla have higher amplitude than oscillations of

the caudal VL pons. From this, we postulate that the pre-Bötzinger

complex is highly likely more excitable than the parafacial group,

and drives the respiratory rhythm (active inspiration). Simulation

of this network scheme is shown in Figure 8 with two possible

regimes depending on the parameter values J1 and J2. In the first

regime (Figure 8A), the parafacial has a very low excitability and is

entirely depressed with no action potential. This network scheme

is similar to the one described in adult rats, the ‘‘no-handshake

process’’ [13]. The corresponding attractor of this scheme entirely

relies on the pre-Bötzinger dynamics (Figure 9A). In the second

regime (Figure 8B), while the pre-Bötzinger is the dominant

pacemaker still driving the respiratory cycle, the parafacial group

is occasionally relieved by specific physiological conditions [21].

Experimental results show in COPD patients that airflow

complexity is higher during expiration than inspiration and that

the low frequency oscillations of the BOLD signal located in the

VL pons have higher amplitude than the oscillations of the VL

pons of healthy subjects. In patients, we therefore hypothesize that

the expiratory neurons located in the VL pons are more excitable

than the pre-Bötzinger and drive the respiratory cycle. In this

network scheme (Figure 8C), the more excitable parafacial group

triggers the pre-Bötzinger which in turn inhibits the parafacial

with a post-inhibitory rebound burst. The parafacial then switch-

off inspiration. This network scheme is similar to the ‘‘full-

handshake process’’ described in neonatal rats [13]. The

corresponding attractor of this synchronization process mainly

relies on the parafacial neurons dynamics (Figure 9C). Another

synchronization regime may coexist in the disease state, when the

excitability level of the expiratory group is slightly lower: the ‘‘half-

handshake’’ process in which the parafacial still triggers the pre-

Bötzinger which in turn induces a delayed post-inhibitory rebound

burst that triggers a new pre-Bötzinger activation (Figures 8D and

9D).

Modeling fMRI signal based on simulated neural activity

in healthy subjects and COPD patients. To confirm our

hypotheses on respiratory rhythmogenesis in healthy subjects and

COPD patients, we performed 5 runs of simulations (250 action

potentials with chaotic bursting oscillations for both pacemakers)

of the synchronization regimes shown in Figure 8B–C. fMRI

signals can then be modeled as a result of the convolution of the

obtained neural states with a hemodynamic response function and

Figure 1. Chaos characterization of airflow during inspiration (Vt/Ti) and expiration (Vt/Te) in the controls and COPD patients. A:
Noise Limit value (%), B: largest Lyapunov exponent, C: correlation dimension. The boxes encompass the interquartile range with indication of the
median, the whiskers delimit the 95th percentile of the data distribution. Paired and unpaired Ttest.
doi:10.1371/journal.pone.0075740.g001

Table 1. Characteristics of the participants.

Controls
(n = 25)

COPD
(n = 25) pvalue

Age (yr) 52611 5669 p = NS

Gender (M/F) 14/11 14/11 p = NS

Height (m) 1.7160.09 1.7160.25 p = NS

Weight (Kg) 69615 67615 p = NS

Body mass Index 2363 2363 p = NS

FEV1/FVC (% predicted) 7965 44614 p,0.001

FEV1 (% predicted) 106611 52622 p,0.001

RV (%predicted) 103617 182656 p,0.001

TLC (%predicted) 110613 122622 p,0.001

PaO2 (kPa) 12.361 1061.4 p,0.001

PaCO2 (kPa) 5.360.4 560.5 p = NS

Dyspnea at rest
(Borg scale)

0 3.561 p,0.001

Values are mean 6 SD. Pulmonary function estimate: FEV1/FVC forced expiratory
volume in one sec/forced vital capacity; FEV1: forced expiratory volume in one sec;
RV: residual volume; TLC: total lung capacity.
doi:10.1371/journal.pone.0075740.t001
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added noise (see methods). The amplitude of the low frequency

oscillations of the fMRI signal is then computed and shown in

Figure 3 (bottom). The model is able to replicate the experimental

fMRI results in both healthy subjects and COPD patients.

Discussion

We are the first, to our knowledge, to identify and describe the

brainstem neural substrates underlying breathing complexity in

healthy humans and patients with lung disease. fMRI scans

revealed neural activity in the rostral ventro-lateral medulla and

caudal ventro-lateral pons fitting the neural dynamics of respira-

tory rhythmogenesis. We then provided evidence that these central

neural activities significantly correlate with the dynamical charac-

teristics of the inspiratory and expiratory airflow in healthy

humans and COPD patients (Table S4). Further, we developed a

mathematical model of chaotic pacemakers where different

neuronal excitabilities entrain different synchronization regimes

and complexities that replicate key fMRI findings in humans.

Source of Human Ventilatory Complexity
We decided to focus on the core automatic network generating

respiratory rhythmogenesis [4,5,9–12,22,23] since previous exper-

imental and clinical works highlighted its potential contribution to

airway flow complexity [14,18,24]. In the present study, ventila-

tory complexity significantly correlates with the activity of the

respiratory central pattern generators assess with cerebral fMRI: in

COPD patients, the increase in airflow complexity during

expiration comes along with the higher VL pons parafacial

activity while healthy subjects exhibit higher VL medulla activity

with greater complexity during inspiration. Such parallel changes

underline the contribution of the respiratory pacemaker neurons

in airflow complexity. Previous works analyzed the mechanisms

modulating chaos in airflow but failed to decipher the brainstem

neural contribution to airflow complexity in human. It was

previously shown that mechanical loading conditions alter chaos

with an increase complexity in circumstances improving the load

capacity-balance of the respiratory system [25], that breathing

complexity was impaired during carotid stenosis due to the effects

of autonomic baroreflex impairment on breathing control [26],

and finally that chemoreceptor stimulation of ventilation by

hypercapnia led to a high level of complexity [3]. Interestingly,

while Fiamma et al. [3] showed in one study that hypercapnia

stimulated ventilation and increased airway flow chaos, Pattinson

et al. [27] demonstrated in a neuroimaging work that carbon

dioxide stimulus activates brainstem respiratory centers of the

ventral pons, rostral pons and lateral medulla. Some of these

activated area overlapped with our regions of interest during the

block design paradigm. Besides, we used a theoretical approach of

respiratory rhythmogenesis to reproduce the core activity modes of

neurons involved in the automatic respiratory network scheme in

humans with two synchronized chaotic pacemakers, one driving

inspiration, the pre-Bötzinger complex and the other driving

expiration, the parafacial group. We chose to develop a map-based

model [28,29] for its relative simplicity compared with Hodgkin-

Huxley formalism, and for its ability to generate spontaneous

chaotic bursting activity. The model was further refined to

incorporate post-inhibitory rebound bursting behavior. The

mathematical model we propose is in line with previous

experimental and theoretical works [13,14]. In addition, it is able

Figure 2. The chaotic signatures of the airflow in one healthy subject and one COPD patient are evidenced. The reconstructed
attractors in the phase plane are shown on the left panel for one healthy subject during inspiration (A) and for one COPD patient during expiration
(B). The corresponding time series are shown on the right panel.
doi:10.1371/journal.pone.0075740.g002
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to exhibit chaotic behavior depending on the parameter value J

which is the excitability level of the neuron. Above all, it reveals

how a chaotic activity in neurons (Figure 9) contributes to chaos in

airflow (Figure 2). Through controlling the excitability levels of the

pre-Bötzinger and parafacial neurons in the mathematical model,

different synchronizations and level of complexity appear. The

choice of the parameter values, among them J1 and J2, are

motivated by 2 characteristics: the ability to exhibit chaotic spike

bursting oscillations (J value between Jmin and Jmax) and the

specific synchronization regimes. Finally we verified our hypoth-

eses on respiratory rhythmogenesis in healthy human and COPD

patients (re-activation of the parafacial) with the mathematical

model of the full handshake process and we were able to mimic the

experimentally fMRI signals of the brainstem ventro-lateral

medulla and ventro-lateral pons (Figure 3).

COPD Patients Breathe with a Higher Level of Complexity
during Expiration than Controls

We found that patients with chronic obstructive pulmonary

disease breathe with a higher level of complexity in airflow than

healthy subjects. These unexpected findings cast doubt on the

traditional view that complexity systematically degrades in disease

state [30,31]. Inspiratory and expiratory complexity changes

parallel the activity of the VL medulla and VL pons, which

contains the pre-Bötzinger and parafacial neurons respectively. It

is therefore an in vivo estimate of the respiratory center function in

humans as previously shown [18]. In healthy subjects, airflow

complexity is higher during inspiration than expiration thus

reflecting active inspiration while expiration is usually passive due

to the elastic recoil of the lung. Conversely, patients with COPD

have a higher level of complexity during expiration as compared

with healthy subjects because they actively expire. In patients,

fMRI revealed greater neuronal activity in the caudal VL pons

region than in healthy subjects. Further studies are required to

elucidate if patients having a high excitability of the caudal VL

pons with the parafacial group, are those who effectively actively

recruit their expiratory muscles, as suggested by Yan et al. [32].

We show that the excitability level of the neurons involved in

respiratory rhythmogenesis in humans may vary depending on the

physio-pathological conditions. These findings are in agreement

with previous experiments in rats. In neonates, the parafacial

expiratory group which has a high excitability level is dominant

and drives the pre-Bötzinger [9,10,13], while in adults animals the

parafacial is normally depressed and the pre-Bötzinger becomes

dominant [5,9,10,15]. Direct stimulation of parafacial neurons has

been recently shown to promote active expiration in adult rats

[33]. It is also possible to reactivate [34] the parafacial group

during hypoxia [35]. Moreover, a previous study demonstrated

that patients passively driven by a mechanical ventilator do not

exhibit complexity in airflow whereas those with signs of active

expiratory control displayed an increase complexity [18]. COPD

patients have a forced expiratory flow limitation, which promotes

the recruitment of abdominal muscles to sustain ventilation. The

expiratory oscillator is probably turned on in patients to sustain

ventilation in response to the increased respiratory load and

hypoxia. Healthy subjects and COPD patients do differ in terms of

PaO2. However, the contribution of O2 sensitive-chemoreceptors

to the increase in airflow complexity in patients is weak since no

difference between normoxic and hypoxic COPD patients is

evidenced. Moreover, expiratory flow complexity differs between

controls and normoxic COPD patients. From these results, we

postulate that mechanical abnormalities due to disordered lung

mechanics play a critical role in subsequent complexity alterations.

Indeed, we found correlations between decrease pulmonary

function and chaotic components in both univariate (Figure S3)

and multivariate analyses (Figure 5). The increase in airflow

complexity in patients is also related to systemic inflammation as

shown during COPD [36]. A previous work in rats showed that

brainstem cytokine level is high in a model of acute respiratory

failure and this was strongly related to the increase in ventilatory

complexity [24]. Finally, one additional explanation relies on the

pathological narrowing of the bronchial tree and the direct

‘‘physical’’ consequences on the airflow: it is possible that some

airflow turbulence due to local structural abnormalities and

disordered lung mechanics directly contributes to increase airflow

chaos, especially during expiration.

Figure 3. fMRI results of the brainstem respiratory centers at
rest. Top. Amplitude of the low frequency oscillations (AlFO) of the
resting state BOLD signal computed in controls and COPD patients. In
healthy subjects the AlFO of the rostral ventro-lateral (VL) medulla that
contains the pre-Bötzinger complex is higher than the VL medulla of
the patients. Conversely, the ALFO of the caudal (VL) pons, which
contains the parafacial respiratory group is higher in patients than the
VL pons of healthy subjects. Bottom. Simulated AlFO obtained after
hemodynamic convolution of the theoretical neural states. For controls,
the chosen network scheme is described in Figure 8B, while for COPD
patients, the network scheme is described in Figure 8C. Of note the
synchronization regime describe in Figure 8D gave the same results as
8C for the simulated AlFO of the BOLD signal.
doi:10.1371/journal.pone.0075740.g003

Neural Mechanisms Underlying Breathing Complexity

PLOS ONE | www.plosone.org 6 October 2013 | Volume 8 | Issue 10 | e75740



Interestingly, we could discriminate COPD patients with mild,

moderate and severe dyspnea at rest according to expiratory flow

complexity and the neural activity of the VL pons: patients with a

severe dyspnea had a higher level of expiratory flow complexity

and greater activity of the VL pons, as compared with patients

having mild dyspnea. This difference was even less sensitive for the

pulmonary function (Figure S2). Therefore, COPD patients

having a severe dyspnea unexplained by a worsening of their

pulmonary function, may exhibit an altered neuronal excitability

of the VL pons, thereby reinforcing the central determinism of

dyspnea.

Chaos in Airflow Decreases during Inspiratory Load,
While Neural Activity of the Respiratory Centers Yields
Negative BOLD Signals

Loading inspiration reduces airflow complexity with a parallel

inhibition of the BOLD signal in the rostral medulla of healthy

subjects. Our results differ from a previous study in 8 healthy

subjects that did not find any effect of inspiratory loading on

airflow chaos [37]. Differences in the experimental protocol may

explain these discrepancies, i.e. the number of subjects included

(25 healthy subjects in our study) and the duration of the load

applied (15 minutes in our protocol). Furthermore, a previous

work using fMRI found activation in the ventral pons of healthy

subjects during inspiratory loading [38]. We point out that in the

study of Gozal et al. [38] the protocol was different in terms of the

load applied (30 cmH20/L/sec in their study), fMRI image

acquisition and processing, specifically for the inclusion of

confounding statistical regressors in the model. Moreover, negative

BOLD signal changes were not specifically investigated [39].

Besides, it has been shown in 6 healthy subjects that voluntary

hyperpnea targets the superior dorsal medulla of the brainstem

[40]. In our study, the dorsal medulla showed significant de-

activation during inspiratory resistive load. Differences in the

stimulus applied (resistive load in our protocol) and in the

characteristics of the healthy controls (16 controls in our study with

older mean age 52611) may explain these discrepancies. Of note,

healthy subjects and COPD patients also exhibit activated brain

regions known to be involved in the voluntary control of

respiratory muscles, i.e. sensory-motor, premotor and supplemen-

tary motor cortex area (data not shown). The fact that the

mechanical inspiratory load activates these cortical centers and de-

activates in parallel the automatic network is physiologically

relevant.

Loading inspiration in COPD patients leads to a diminution of

airflow complexity of inspiration as well as expiration. These

results are in line with the possible dual organization of respiratory

rhythmogenesis in patients where reactivation of the parafacial

Figure 4. Localization on fMRI images of the regions of interest, the rostral ventro-lateral (VL) medulla with the pre-Bötzinger
complex and the caudal VL pons with the parafacial. The regions of interest (brain mask with 4 cubes) were computed based on the recent
article of Schwarzacher et al. (A) on individual standard images (sagittal and axial slices in B). Then the coordinates of the regions of interest were
transformed from standard space to functional space (sagittal and axial slices in C). Two regions of interest of the right VL medulla and pons are
shown in the sagittal slice (red and yellow) while two regions of interest of the VL medulla (red and blue) are shown on the axial slice. The region of
interest of the left VL pons is not shown. Finally the mean time series were extracted for subsequent analyses (D). The corresponding mean time
series of the VL medulla and VL pons are shown after extraction from the functional images, preprocessing analyses and regressing out with
physiological covariates. The oscillations of the fMRI BOLD signal of the medulla in healthy subject (time series in red) are higher than those of the
pons (time series in yellow). A: anterior, P: posterior, R: right, L: left.
doi:10.1371/journal.pone.0075740.g004
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occurred (Figure 8C–D). Once a stimulus is applied during

inspiration it echoes on the other pacemaker due to the coupling

characteristics. In addition, a diminution of fMRI BOLD

responses in the two regions VL medulla and pons occurs in

parallel in patients (Figure 7 and Table S3).

Study limitations. A major challenge in application of fMRI

to respiratory studies is the limited spatial and temporal resolutions

of the BOLD signal [41], making it difficult to pinpoint precisely

the specific brainstem respiratory related structures, which are

generally rather small and heterogeneous with time-varying

respiration related fluctuations. The pre-Bötzinger complex is a

small structure and is bordered by other respiratory related nuclei

including the Bötzinger complex. The parafacial respiratory group

is a spread-out structure and contains both expiratory-related

neurons and chemosensory neurons. We are however confident

with our fMRI measurements for three reasons: (i) the first reason

relies on the neuroanatomical paper recently published from

Schwarzacher et al. [6]. The authors accurately identify in human

brain autopsy the location of the pre-Bötzinger complex. The

diameter of the complex is around 5–6 mm, in the ventro-lateral

region of the rostral medulla, 9 mm from obex, below Fissura

Pontomedullaris. For all participants of our fMRI protocol, we

individually computed these coordinates in standard images. Then

the regions of interest were centered on these coordinates and

transformed from standard space to functional space for the

extraction of the time series. The parafacial respiratory group is

located near the pre-Bötzinger in the caudal ventro-lateral pons,

ventro-laterally to the facial nerve nucleus VII [6,7], above Fissura

Pontomedullaris. (ii) The second reason relies on the de-activation

regions evidenced during the block design paradigm with

inspiratory resistive load. Theses inhibited regions overlapped

the coordinates defined in the rest fMRI acquisition and we also

found strong correlation between the mean negative BOLD signal

and the chaotic component using the same coordinates than rest

fMRI acquisition. (iii) The third reason concerns the theoretical

part of the work. We modeled respiratory rhythmogenesis with

two pacemakers that synchronously handshake one another,

depending on their excitability level [13]. The resulting neural

time series of the pre-Bötzinger and parafacial groups, convolved

with a hemodynamic function plus noise replicate experimental

fMRI signal in healthy subjects and COPD patients.

Furthermore, we cannot exclude the potential influence of

emotion via the limbic system on the automatic network [42].

However before airflow recordings begin, the subjects were

allowed to adapt for 5 minutes to the materials and were quiet.

We also removed the first 2 minutes of recordings for subsequent

analyses. Additionally, we took time to explain the fMRI protocol

to both healthy subjects and COPD patients. For fMRI protocol,

the participants were instructed to ‘keep their eyes closed and

think of nothing in particular’. They were instructed to refrain

from cognitive, language, and motor tasks. The participants knew

that a physician was near the scanning room and they all had the

possibility to stop the images acquisition if a problem arised. We

therefore minimized as much as possible the possible influence of

emotions on our experiments.

Perspectives. In this study, we decipher the brainstem neural

substrates of airflow complexity in humans. We also shed new

lights on the brainstem neural control of respiratory muscles in

patients with COPD. The patients have an increased complexity

of the airflow during expiration that correlates with the high

activity of VL pons. COPD patients reactivate the parafacial

neuronal group, as shown with the mathematical model and fMRI

results, to sustain ventilation. These findings may be involved in

the onset of respiratory failure when the neural network becomes

overwhelmed by respiratory overload as suggested by previous

works [43,44]. Future works analyzing the relationships between

automatic and cortical network from a theoretical and experi-

mental viewpoint will help to clarify the mechanisms preceding

acute respiratory failure. Moreover, we show that COPD patients

having a severe dyspnea unexplained by a worsening of their

pulmonary function, may exhibit an altered neuronal excitability

of the VL pons, thereby reinforcing the central determinism of

dyspnea. Identifying the activity of the respiratory pacemakers

through both airflow complexity and functional imaging tech-

niques opens new strategies to refine COPD patient phenotypes.

Methods

Participants and Protocol
Stable patients (n = 25) with COPD (no exacerbation for 4

weeks) were recruited from the Physiology and Respiratory disease

departments of the Bichat University Hospital 2011–2012.

Inclusion criteria were patients above eighteen having mild to

severe COPD according to clinical and pulmonary function test

criteria [45]. Exclusion criteria were home oxygen therapy,

neurological disease, past history of stroke, psychiatric disorder,

body mass index above 30 kg/m2, contraindication to cerebral

functional magnetic resonance imaging. After given written

informed consent, patients had a clinical examination and

pulmonary function tests. In COPD patients, dyspnea was

quantified at rest using Borg scale. An age-matched control group

(n = 25) was recruited from the Centre d’ Investigation Clinique of

the Bichat Hospital. The protocol was approved by the ethics

committee Ile-de-France 1.

Subjects were comfortably seated and were asked to keep their

eyes open. They wore a nose clip and breathed through a

Figure 5. Central neural correlates of airflow dynamics in the
whole population using multiple linear regression. Both the
amplitude of the low frequency oscillations (ALFO) and the pulmonary
function index FEV1/FVC significantly predict airflow complexity in the
whole population: the lower the pulmonary function, the higher the
value of the AlFO of ventro-lateral pons and the higher the complexity
of expiration.
doi:10.1371/journal.pone.0075740.g005
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mouthpiece connected to a low resistance pneumotachograph

(MLT1000L-AD Intruments) via a two-way non-rebreathing valve

(Hans Rudolph 1410 Series). Ventilatory flow, digitized at 400-Hz

sampling rate was recorded on a PC computer in the form of data

files for subsequent analysis (Chart5, AD Instruments). Mouth

pressure was measured at the mouthpiece and connected to a

pressure transducer (MLT0699-AD Instruments). Ventilatory flow

and mouth pressure were synchronously recorded on the PC

computer via the PowerLab 4/25 (AD Instruments). End-tidal

PCO2 (PETCO2), measured from a side port of the mouthpiece and

finger oxygen saturation were connected to a portable Oxi-

capnography (MD-660P Comdek) for continuous acquisition.

Before recordings began, the subjects were allowed to adapt for 5

minutes to the materials and were quiet. Recordings were

Figure 6. Loading inspiration leads to a diminution of complexity in airflow during inspiration in healthy subjects and during both
inspiration and expiration and COPD patients. Noise Limit value, largest Lyapunov exponent and correlation dimension values are given from
top to bottom. Lo no inspiratory load; L20: loading inspiration with 20 cmH2O/L/sec. The boxes encompass the interquartile range with indication of
the median, the whiskers delimit the 95th percentile of the data distribution. Paired and unpaired Ttests.
doi:10.1371/journal.pone.0075740.g006
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performed during 15 minutes at the same time of the day for all

subjects. Two sets of measurements were performed in random

order, one with subjects breathing spontaneously and one with

subjects breathing during the continuous application of an

inspiratory resistive load of 20 cmH20/L/sec (7100R20 Hans

Rudolph). Reproducibility of our measurements was previously

tested [26]. Ventilatory flow recordings will be available upon

request to the corresponding author.

Linear and Nonlinear Analyses of Airflow
The first two minutes of recording were excluded from the

analyses. Inspiratory (Vt/Ti) and expiratory (Vt/Te) flows were

computed on a breath-by-breath basis during spontaneous

breathing and during the inspiratory effort, i.e. during continuous

application of the resistive load on the inspiratory phase of the

respiratory cycle.

Analysis of Ventilation in the Time Domain and
Autocorrelation Analyses

Fluctuations of the inspiratory and expiratory flows were first

evaluated through their coefficients of variation (the ratio of the

standard deviation to the mean). Autocorrelation of the flows was

computed at a lag of one breath. It estimated the amount of

correlated linear part of the flow [18,26,46].

Nonlinear Analyses
Chaos detection. The noise titration technique [47] was

used on the inspiratory and expiratory flow time series. This

method has already been proven its accuracy to evidence the

chaotic nature of human ventilation [3,18,26,46]. It involved the

simulation of time series with linear and nonlinear polynomial

autoregressive model (Volterra-Wiener series) [48]. The best linear

and nonlinear models are chosen according to the minimal

information theoretic criterion. The null hypothesis, a stochastic

time series with linear dynamics, is rejected if the best nonlinear

model provided a significant better fit to the data than the best

linear model using parametric (F-test) statistics at the 1%

significance level. Once nonlinear determinism is indicated, white

noise of increasing standard deviation is added to the data until

nonlinearity can no longer be detected, i.e. the nonlinearity is

‘neutralized’. The noise limit (NL) is calculated as the percent of

signal power added as noise to ‘titrate’ the data to the point of

neutrality. Typically, an average NL value is obtained by repeating

the titration procedure 5 times. Under this scheme, chaos is

indicated by NL.0, and the value of NL provides a relative

measure of chaos intensity. Conversely, if NL = 0, then it may be

inferred that the series either is not chaotic or the chaotic

component is already neutralized by the background noise (noise

floor) in the data. We then estimated the largest Lyapunov

exponent and the correlation dimension of the time series having a

positive noise limit value.

Sensitivity to initial conditions. Complex dynamical sys-

tems are sensitive to initial conditions, and exhibit an exponential

divergence in the phase space. This can be quantified through the

study of the Lyapunov exponents spectrum and the calculation of

the largest Lyapunov exponent (lL: LLE). Consider two points on

two nearby trajectories in the phase space, and assume the

distance between them to be d(0). After time t, if the distance

between the two trajectories becomes d(t), then the average

divergence (separation after time t) can be written as:

d(t)~d(0)elL(iDt):

where lL is the LLE of the system. In the present study, we used

the algorithm proposed by Rosenstein et al. that has been shown

to be particularly useful for small data series [49].

Irregularity. The correlation dimension is a fractal dimen-

sion reflecting the irregularity of the attractor of the system. It

Figure 7. Negative BOLD signal of the respiratory brainstem network during inspiratory resistive loading in healthy subjects and
COPD patients. Group analysis of healthy subjects (n = 16, left) and COPD patients (n = 17, right). Sagittal, coronal and axial slices are shown. In
controls, negative BOLD signal is mainly evidenced in the ventro-lateral (VL) and dorsal medulla. In COPD patients, inhibition is located in the caudal
lateral and dorsal pons, and in the lateral rostral medulla (color code in blue). A: anterior, P: posterior, R: right, L: left. Histograms showing the
corresponding BOLD signal changes in the rostral medulla and caudal pons for controls and patients. C. The main coordinates (x,y,z) of the clusters
that exhibit inhibitory BOLD signal are given in MNI space (Montreal neurological Institute).
doi:10.1371/journal.pone.0075740.g007
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characterizes the ‘‘aperiodicity’’ of the system in the phase space. It

is estimating by examining the scaling properties of the correlation

sum [49]. From a time series (x1,x2,::xN), where N is the total

number of points, the m dimensional vector in the phase space can

be constructed by delay embedding:

Xi~ xi,xiz1,:::,x(iz(m{1)t

� �

where, t is the fixed time lag and m is the embedding dimension.

Then the reconstructed trajectory of the actual dynamics can be

written as X~(X1; X2; X3; :::XM ) where M~N{(m{1)t:
The correlation dimension can be calculated from the

correlation integral of the time series. The correlation integral

can be computed as follows [49,50]:

C(r,m)~
2

N(N{1)

XN

i~1

XN

j~iz1
h(r{ Xi{Xj

�� ��)
where, r is scale length, and h is the Heaviside step function.

Scaling of the function C(r,m) can be written as:

C(r,m)~rD

The correlation dimension (Dcorr) can be defined by

Dcorr~ limr?? lim N??

LC(r,m)

L ln r

and for practical purpose, Dcorr can be obtained from the slope of

ln C(r) vs ln r plot.

Time lag was first estimated by a drop of the autocorrelation to

(1{ 1
e
) [49–51]. The optimal dimension was obtained after

calculating the percentage of false nearest neighbors between

points in phase space. A minimal number of false nearest

neighbors was required [52]. The embedding dimension that

adequately represents the system is the dimension that eliminates

most of the false nearest neighbors allowing an adequate phase-

space reconstruction of the underlying dynamic. An appropriate

time lag and embedding dimension were estimated for each

experimental time series.

Surrogate data. In order to test the nonlinearity that governs

the dynamics, we have applied surrogate test [53]. First the

Fourier transform of the original time series is computed. The

phase is replaced by random numbers and finally the inverse

Fourier transform is applied. Power spectrum is thus preserved

although the nonlinear structures are destroyed [51,53]. Correla-

tion dimension was estimated for both the original data and five

Figure 8. Simulations of different synchronization regimes in healthy subjects (A–B) and COPD patients (C–D) are depending on the
excitability level of the parafacial repiratory group (J1) and the pre-Bötzinger complex (J2). Other fixed parameter values of the model
are: e = 0.005, d = 0.4, b= 0.4, a = 0.2, m0 = 0.864, m1 = 0.65, d= 0.2, xth = 20.02 (threshold for calcium current), t1 = 10 and t2 = 2 for the parafacial
while t1 = 5, t2 = 10 for the pre-Bötzinger. In COPD patients, the parafacial respiratory group of the brainstem has a higher excitability level than
healthy subjects and drives the pre-Bötzinger (active inspiration and expiration). (See results for comments).
doi:10.1371/journal.pone.0075740.g008
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surrogates that match each original signal. A global test was

carried out by a Wilcoxon signed-rank test comparing the

correlation dimension values computed on the original data

paired with the corresponding average correlation dimension

values form the matching surrogate. Significant Wilcoxon rank test

between the original and surrogates implies the nonlinear

dynamics of the original data [18,26,46,53].

Cerebral Functional Magnetic Resonance Imaging
Protocol and image acquisition. Participants were imaged

while lying comfortably in the scanner. Three sets of images were

performed: structural, resting state and block design paradigm. For

the structural and functional resting state, the participants

breathed spontaneously while during the block design paradigm,

they breathed via a mouthpiece connected a two-way non-

rebreathing valve (Hans Rudolph 1410 Series) with nose clip. A

small plastic tube of one meter length was connected to the

inspiratory limb of the T-valve for application of the resistive load

(20 cm/L/sec).

Physiological monitoring synchronized with the images acqui-

sition was performed for the resting state and block design

paradigm. Chest expansion was measured with a pneumatic belt

and electrocardiogram was acquired with chest electrodes [54].

Sampling rates were 10 ms and 1 ms respectively. Respiratory

volume per time (RVT) was computed from the respiratory

waveform (chest belt) [55]. Maximum minus minimum of the

waveform was divided by the breathing period for each breath

cycle and then interpolated to the imaging repeat time (RT).

PETCO2 and saturation were also continuously recorded with

10 ms sampling rates. The RR cardiac interval, PETCO2 and

saturation (maximum values per breath), were also interpolated to

the imaging RT.

Imaging was performed using a 3 Tesla MR scanner (General

Electrics, USA) with a 64-channel head coil. T1-weight high

resolution 3D volume covering the entire brain was acquired in

controls (n = 16) and COPD patients (n = 17). Acquisition param-

eters were: 171 axial slices, 1.2 mm thickness with no gap echo

time [Te] = 3.4 ms, repeat time [TR] = 8.6 ms, flip angle = 12u,
matrix 2566256, field of view 240 mm6240 mm). The total

acquisition time was 4 min 35 s.

T2-weighted echoplanar images were acquired for the resting

state functional acquisition (52 axial slices, 4 mm thickness with no

gap echo time [Te] = 19 ms, repeat time [TR] = 2000 ms, flip

angle = 90u, matrix 64664, field of view 240 mm6240 mm, and

voxel dimension 3 mm3). Acquisition time was 10 min08 s,

yielding 300 whole brain volume. For the resting state, the

participants were instructed to ‘keep their eyes closed and think of

nothing in particular’. They were instructed to refrain from

cognitive, language, and motor tasks as much as possible, but not

to fall asleep. Resting state fMRI scans will be available upon

request to the corresponding author.

The second set of functional image was performed during a

block design, which consists in 5 cycles of rest periods (36 sec), in

alternate with active period (36 sec) during which the inspiratory

resistive load (20 cmH20/L/sec) was applied on the breathing

circuit. MRI parameters were: 52 axial slices, 4 mm thickness with

Figure 9. Chaotic attractor of the 2 synchronized pacemakers for respiratory rhythmogenesis in healthy subjects (A–B) and COPD
patients (C–D) after simulations. Each attractor is given according to the different network regime presented in Figure 8. The figure reveals that
the coupling between both neuronal pacemaker exhibit nonlinear deterministic chaos (9B–C–D).
doi:10.1371/journal.pone.0075740.g009
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no gap echo time [Te] = 33 ms, repeat time [TR] = 3000 ms, flip

angle = 90u, matrix 64664, field of view 240 mm6240 mm, and

voxel dimension 3 mm3. Total acquisition time was 6 min12 s,

yielding 120 whole brain volumes.

Image analyses. Image processing was performed using FSL

software (http://www.fmrib.ox.ac.uk/fsl, Oxford University).

Resting state fMRI. Preprocessing steps included motion

correction using MCFLIRT [56] slice timing corrections, non-

brain removal using BET [57], spatial smoothing using a Gaussian

kernel of full-width-half-maximum 6 mm, multiplicative mean

intensity normalization of the volume at each time point. A brain

mask was constructed with four regions of interest (cubes radii 6

mm) individually positioned on standard images over the

brainstem in regions known to cover the respiratory generator

nuclei in rostral ventro-lateral medulla oblongata and caudal

ventro-lateral pons according to Schwarzacher et al. (Figure 4).

These regions of interests were then transformed from standard

space to functional space and the mean BOLD signal time series

were then extracted. For all participants, the respiratory volume

per time (RVT), the RR cardiac interval, PETCO2 [58,59] and

saturation were included in a multivariate regression linear model

to account for significant influences on the BOLD signal. These

covariates were then regress out.

Low frequency oscillations have been used in resting state fMRI

in physiology and pathology to analyze the functional connectivity

among brain regions [60–62]. Amplitude of the low frequency

oscillations (AlFO) of the resulting BOLD signal time series is also

a mean to assess neuronal activation with fMRI [63,64]. BOLD

time series were detrended and filtered between 0.01 and 0.08 Hz

to remove the effects of very low-frequency drift and high-

frequency noise. Fast Fourier transform (FFT) was applied and the

power spectrum obtained. The average square root of the power

spectral density was calculated across 0.01–0.08 Hz and this

represents the AlFO. For normalization purposes, the AlFO of

each regions of interest was divided by the global mean AlFO

value of the whole brainstem. The standardized AlFO have a

value about 1 and this procedure is analogous to that used in PET

studies [65]. Finally the mean of the normalized AlFO of the 2

cubes of the medulla and the 2 cubes of the pons were averaged.

Block design fMRI. Preprocessing step were the same as

resting state fMRI with an additional high pass temporal filtering

(Gaussian-weighted least-squares straight line fitting with sig-

ma = 36 s). At the single level analysis we used a general linear

model. Confounding regressors that potentially altered cerebral

blood flow (RVT, PETCO2, RR cardiac interval, saturation) were

included. Voxel-wise statistical analysis was extended to a second

(group) level in a fixed-effects analysis. After analysis, statistical

images were registered to high resolution structural and/or

standard space images using FLIRT [66]. Registration from high

resolution structural to standard was then further refined using

FNIRT nonlinear registration.

Statistical analyses of airflow dynamics and fMRI

data. Matlab R2011a was used for statistical and signal

processing analyses (Mathworks USA). Comparisons between

clinical data among the groups were made using univariate

analysis and x2 test. The normality of the distributions of the

discrete respiratory variables was ascertained using the Kolmo-

gorov-Smirnov test. The occurrence of a positive noise limit in the

airflow time series was compared using the x2 test. Paired and

unpaired T tests were used to study statistical differences of the

linear and nonlinear measures of the inspiratory and expiratory

flows among the groups. Pearson’s correlation coefficient was

estimate for identifying significant relationships between airflow

complexity and AlFO, FEV1/FVC, PaO2, PaCO2. Among the

variables that had significant correlation with airflow complexity in

univariate analysis, we then performed a multiple linear regression

analysis to study the strength of its relation. During inspiratory

load, the correlations were established in the whole population

between airflow complexity and the mean negative BOLD signal.

Mathematical Model of Respiratory Rhythmogenesis
Two pacemaker-like neurons have been identified in mammals

in the ventro-lateral column of the brainstem, the pre-Bötzinger

complex inspiratory group and parafacial expiratory group

respectively [5–13]. Previous works showed that the parafacial

group exhibits pre-inspiratory activity [9,35] as well as a rebound

bursting after inspiration [35] while the dynamics of both

pacemakers display chaotic spike-bursting oscillations [14]. We

therefore chose to develop a map-based model for respiratory

rhythmogenesis for its relative simplicity compared with Hodgkin-

Huxley formalism, and for its ability to generate spontaneous

chaotic bursting activity [28,29]. The model is developed based on

the discrete version of FitzHugh-Nagumo model by adding

Heaviside step function H(x). Each pacemaker is modeled by the

two dimensional original Courbage-Nekorkin map [28,29] which

is further refined to incorporate post-inhibitory rebound bursting

behavior:

x~xzF (x){bH(x{d){y

y~yze(x{(JzITzIsyn))

k~kzG(k)

ð1Þ

Where x qualitatively defines the dynamics of the membrane

potential of the neuron and y is the common variable specifying

the dynamics of all outwards ionic currents (recovery variable). b
and d controls the threshold properties of the oscillation, e is a

positive parameter setting the time scale of the recovery variable y.

J is associated with excitability properties of the neuron; F(x) is a

piece-wise linear version of the cubic function in the FitzHugh-

Nagumo model:

F(x)~

{mox

m1(x{a)

{mo(x{1)

if xƒJmin

if JminvxvJmax

if x§Jmax

8><
>:

with Jmin~
am1

mozm1
, Jmax~

mozam1

mozm1
, and mo, m1.0

IT is a low-threshold calcium Ca2+ current [67] defines as:

IT~dkH(x{xth) ð2Þ

Where k in equation (2) is a slow variable representing the

inactivation of the low-threshold calcium conductance, which

involves T-type Ca2+ calcium channels and produces a trans-

membrane current IT. d represents the maximum conductance

associated with IT. G(k) represents the dynamics of IT as follow:

G(k)~

{k

t1
if x§xth

(1{k)

t2
if xvxth

8>><
>>:

ð3Þ

In this form the model is capable of post-inhibitory rebound

bursting when xth is below the resting values of x. In equation (3),
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t1 sets the duration of the burst and t2 sets the duration of the

hyperpolarization necessary to recruit a maximal post-inhibitory

rebound response.

In equation (1), Isyn is the chemical synaptic coupling between

the pre-Bötzinger complex and the parafacial group in the

following form:

Isyn~K
X

ni
vn

rect(ni,n,t)

Where K is the coupling strength which value is positive for

excitatory synapse and negative for inhibitory synapse and rect is

the rectangle function as described below:

rect(ni,n,t)~
0 if n{nij jwt

1 if n{nij jƒt

�

Where ni is the step of the ith spike in the presynaptic neuron and t
is the duration of the postsynaptic current. A post-inspiratory

inhibitory feedback is introduced from the pFRG with the same

amplitude and duration of the rebound bursts for ‘‘inspiratory off-

switch’’ to prevent the preBötC from reactivation.
Modeling fMRI signal based on simulated neural

activity. To confirm our hypotheses on different synchroniza-

tion regimes of respiratory rhythmogenesis in healthy subjects and

patients with respiratory failure, we performed 5 runs of

simulations and then convolved the simulated neural states of

the pre-Bötzinger complex and parafacial group with a hemody-

namic response function. We used Statistical Parametrics Mapping

software for the hemodynamic convolution: http://www.fil.ion.

ucl.ac.uk/spm.

Under linear assumption, fMRI signals m(t) can then be

modeled as a result of the convolution of neural states s(t) with a

hemodynamic response function h(t), e(t)is the noise.

m(t)~s(t)6h(t)ze(t)

Where t is the time and : denotes convolution, h(t) is the

hemodynamic response function which is a mixture of two gamma

functions. The parameter values of the hemodynamic response

function are: delay of response relative to onset : 6 (s), delay of

undershoot relative to onset = 16 (s), dispersion of response = 1 (s),

dispersion of undershoot = 1 (s), ratio of response to undershoot 6

(s), onset = 0, length of kernel = 32 (s); e(t) is the noise in the

measurement assumed to be Gaussian white noise with mean zero

and standard deviation 0.25. This value was chosen equal to the

standard deviation of the mean BOLD time series. We model

fMRI signal for 2 network schemes shown in figure 8 (B,C) and

compute the AlFO of the modeled fMRI signal.

Supporting Information

Figure S1 End-tidal PCO2 measurements during unload-
ed and inspiratory resistive load (ventilatory flow
measurements) as well as during fMRI acquisition.
Results are given for the 25 healthy subjects (A) and 25 COPD

patients (B). C: End-tidal PCO2 measurements during resting state

fMRI acquisition in healthy subjects (blue) and COPD patients

(red). The means and standard deviations of the healthy subjects

(n = 16) and the COPD patients (n = 17) are shown.

(ZIP)

Figure S2 Comparisons between COPD patients having
mild, moderate and severe dyspnea (Borg scale) at rest
according to expiratory flow complexity (A), the ampli-
tude of the low frequency oscillations (AlFO) of the
ventro-lateral (VL) pons (B), and the pulmonary function
index (FEV1/FVC) (C). The patients with a severe dyspnea

have a higher level of expiratory flow complexity and greater

activity of the VL pons, as compared with patients having mild

dyspnea. This difference is even less sensitive for the pulmonary

function.

(ZIP)

Figure S3 Linear correlation between expiratory flow
complexity (top: Noise limit, bottom: Largest Lyapunov
exponent) and pulmonary function index (FEV1/FVC) in
the whole population of healthy subjects and COPD
patients. COPD patients are classified according to the

diminution of their pulmonary function (GOLD classification).

(ZIP)

Figure S4 Negative BOLD signal of the cerebral fMRI
during inspiratory resistive loading in healthy subjects
(left) and COPD patients (right). Group analyses of the block

design are given for the healthy subjects (left, n = 16) and COPD

patients (right, n = 17). Sagittal and axial slices are shown on the

top panel. Bottom: The corresponding mean time series of the

ventro-lateral medulla of the 16 healthy subjects and 17 COPD

patients are shown. The figures show the diminution of the BOLD

signal during each application of the resistive load (5 cycles of rest

(R: black line) and active task (A: red line) with resistive load).

(ZIP)

Table S1 Clinical characteristics of the 25 COPD patients.

(DOCX)

Table S2 Linear measures of the ventilatory variables (mean

values, coefficients of variation and autocorrelation) during

unloaded breathing and during inspiratory resistive load

(20 cmH20/L/sec).

(DOCX)

Table S3 Number of time series that exhibit positive noise limit

value for chaos characterization in the inspiratory and expiratory

flow time series in controls and COPD patients.

(DOCX)

Table S4 Summary of the results concerning airflow complexity

and brainstem respiratory centers activity in healthy subjects and

patients with chronic obstructive pulmonary disease (COPD).

(DOCX)
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