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JIP3 links lysosome transport to regulation of
multiple components of the axonal cytoskeleton
N. M. Rafiq 1,2,3,4, L. L. Lyons1,2,3, S. Gowrishankar 1,2,3,4,6, P. De Camilli 1,2,3,4,5✉ & S. M. Ferguson 1,2,3✉

Lysosome axonal transport is important for the clearance of cargoes sequestered by

the endocytic and autophagic pathways. Building on observations that mutations in the

JIP3 (MAPK8IP3) gene result in lysosome-filled axonal swellings, we analyzed the impact of

JIP3 depletion on the cytoskeleton of human neurons. Dynamic focal lysosome accumulations

were accompanied by disruption of the axonal periodic scaffold (spectrin, F-actin and myosin

II) throughout each affected axon. Additionally, axonal microtubule organization was locally

disrupted at each lysosome-filled swelling. This local axonal microtubule disorganization was

accompanied by accumulations of both F-actin and myosin II. These results indicate that

transport of axonal lysosomes is functionally interconnected with mechanisms that control

the organization and maintenance of the axonal cytoskeleton. They have potential relevance

to human neurological disease arising from JIP3 mutations as well as for neurodegenerative

diseases associated with the focal accumulations of lysosomes within axonal swellings such

as Alzheimer’s disease.
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Neurons face major demands arising from their extreme
size, polarity and longevity. Axons in particular stand out
due to their length, which requires both long-range

transport for delivery of cargoes to and from distant locations
combined with mechanisms to ensure structural integrity1–3.
These challenges create unique vulnerabilities that are
reflected in the numerous neurodevelopmental and neurode-
generative diseases arising from defects in axonal transport and
maintenance4–6. The unique morphology and functions of
axons requires specialized organization of multiple cytoskeletal
components. Axonal microtubules, which provide the tracks on
which motors can transport organelles and other cargoes over
long distances, are polarized with their plus ends towards the
distal axon and regulated by the binding of various microtubule
binding proteins7–10. The membrane associated periodic actin-
spectrin lattice provides structural support to ensure axon
integrity and non-muscle myosin II-dependent contractility
coordinates the passage of organelles through the narrow con-
fines of axons11–15.

The vast majority of axonal proteins are synthesized in the
neuronal cell body and proximal dendritic regions, and are sub-
sequently transported into axons to meet their structural, sig-
naling, and metabolic demands and to support synaptic
transmission16. Conversely, efficient retrograde transport from
the axon periphery back to the cell body is required for the
clearance of old or damaged proteins, as well as of material taken
up by endocytosis, via endocytic and autophagic pathways17,18.
This transport is primarily mediated by immature lysosomes and
auto-lysosomes, which have a low content of lysosomal hydro-
lases and whose fate is to mature into fully degradative lysosomes
in cell bodies by fusing with hydrolases-enriched vesicles deliv-
ered from the trans-Golgi network18. The massive accumulation
of these organelles at the distal side of focal blocks of axonal
transport reveals that such lysosomes are the major retrograde
axonal cargo19.

A similar build-up of immature lysosomes is observed in axon
swellings surrounding amyloid Aβ deposits at Alzheimer’s disease
amyloid plaques (both in human patients and in mouse models of
the disease), which are putative sites of APP processing20–22. A
link between accumulation of axonal lysosomes due to their
impaired transport and amyloidogenic APP processing was fur-
ther supported by studies of neurons and mice with loss of JIP3
function23. JIP3 is a motor interacting protein that is pre-
ferentially expressed in neurons and is thought to couple cargos
such as lysosomes to dynein, the microtubule minus-end directed
motor24. JIP3 loss-of-function mutations in multiple animal
species result in the build-up of lysosomes within axons23,25,26.
For example, primary cultures of mouse JIP3 knockout neurons
exhibit a striking increase in the overall abundance of axonal
lysosomes with focal accumulations within axonal swellings that
are strikingly similar to the lysosome-filled axonal swellings
observed at amyloid plaques23. These changes raised questions
about the relationship between lysosomes and the axonal cytos-
keleton with potential implications for Alzheimer’s disease.

To address these questions, we used human JIP3 KO iPSC-
derived cortical glutamatergic neurons that we recently estab-
lished as a cellular model for investigating the impact of JIP3
depletion on neuronal cell biology27. Surprisingly, we found that
axons with lysosome-filled swellings had a massive disruption in
their actin-spectrin and myosin-II lattice organization that was
not restricted to just the local site of the swelling but which
occurred throughout each affected JIP3 KO axon. The additional
KO of JIP4 further enhanced this phenotype, consistent with an
overlapping role of the two proteins27. Axonal swellings filled
with lysosomes were not static but formed and resolved over the
course of several hours. Intriguingly, their formation coincided

with local microtubule disorganization. Our observations support
a model wherein perturbed axonal lysosome transport induced
by loss of JIP3 (or JIP3 and JIP4) is closely linked to a broad
disruption of the neuronal cytoskeleton.

Results
Global disruption of the membrane periodic skeleton in axons
with lysosome-filled axonal swellings. The axonal plasma
membrane is supported by an organized cytoskeletal network
containing actin filaments and spectrin tetramers12,28,29. This
actin-spectrin network, which has been linked to axonal
mechanical stability3,13 and signaling30, was also recently shown
to undergo transient local expansion to facilitate the transport of
large cargoes in narrow axons31. The important role of this
cytoskeletal scaffold in controlling axon diameter suggested that
lysosome-filled axonal swellings of JIP3 KO neurons might
require major rearrangement to this network. To address this
question, human induced pluripotent stem cells (iPSCs), which
can be differentiated into layer 2/3 cortical glutamatergic neurons
(i3Neurons)27,32 were used in this study. The KO of JIP3 in this
human i3Neuron model system robustly develops lysosome-filled
axonal swellings similar to those observed in primary cultures of
mouse JIP3 KO cortical neurons while overcoming practical
challenges arising from the neonatal lethality in the JIP3 KO
mouse model (Fig. 1a–c)23,27.

We next tested whether the axons of i3Neurons develop a
membrane associated periodic skeleton similar to that observed in
rodent neuron primary culture models29,33. Stimulated emission
depletion (STED) super-resolution fluorescence microscopy of
control i3Neurons after labeling with antibodies against the
C-terminus of βII-spectrin, revealed a periodic spectrin lattice
(180–200 nm intervals) (Fig. 1d-f), in agreement with previous
studies in other neuron culture systems33,34. In the control
i3Neurons, this periodic spectrin organization was apparent by
9 days of differentiation and then persisted as the neurons aged
(out to 21 days in this study; Fig. 1d). This lattice was also
observed in JIP3 KO neurons by 9 days of differentiation, a stage
at which they have undergone extensive axon growth but do not
yet display lysosome accumulations (Supplementary Fig. 1a). In
contrast, in older JIP3 KO i3Neurons that developed lysosome-
filled axonal swellings, the axonal spectrin lattice was disrupted
(Fig. 1g–j). This striking disruption was not limited to the local
site of lysosome accumulation but occurred throughout the entire
affected axon (Fig. 1g–j). This phenotype was even observed in
axons with very sparse swellings (Supplementary Fig. 1b). No
difference was observed in the overall protein levels of βII-
spectrin between control and JIP3 KO i3Neurons (Fig. 1k, l). The
apparent loss of βII-spectrin signal in the microscopy experi-
ments, therefore, most likely reflects the dispersal and washout of
unassembled spectrin under the extraction conditions employed
to enable super-resolution imaging of the rings formed by βII-
spectrin. Consistent with the disruption of the spectrin periodic
skeleton, the periodic organization of axonal F-actin was also lost
and F-actin instead accumulated at the swellings (Fig. 1m, n).
Collectively, this data indicates that the axonal actin-spectrin
lattice still formed in JIP3 KO i3Neurons but later disassembled in
parallel with the development of lysosome accumulations.

Non-muscle myosin-II associates with F-actin within the actin-
spectrin lattice and controls axon radial contractility11,31. We,
therefore, examined the impact of the absence of JIP3 on the sub-
cellular localization of myosin-II (Fig. 1m, n). In control
i3Neurons, myosin-II filaments displayed a periodic pattern with
occasional gaps along the axonal shaft (Fig. 1m). This organiza-
tion was completely lost in the axons of JIP3 KO i3Neurons that
had lysosome-filled axonal swellings (Fig. 1n). In these axons, the
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myosin-II signal, like F-actin, was instead most prominent within
the swellings.

Lysosome-filled axonal swellings coincide with sites of abnor-
mal microtubules organization. The assembly of the actin/
spectrin-based axonal periodic scaffold is dependent on intact
microtubules (Zhong et al.34). Given the drastic disruption of this

scaffold in the swollen axons of JIP3 KO i3Neurons (as well as the
essential role for microtubules in long range axonal transport of
organelles), we next investigated microtubule organization.
Remarkably, the sites at which lysosomes accumulate in JIP3 KO
axons coincided with local disorganization of microtubules, as
assessed by α-tubulin immunofluorescence (Fig. 2a–c). The dis-
organization of microtubules was further exacerbated in older
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JIP3 KO i3Neurons (Fig. 2d–f). The majority of microtubules
within the swellings were bent and looped, while axonal regions
immediately adjacent to the swellings contained microtubules
that were organized in the typical parallel bundles of control
axons (Fig. 2b). This disruption of the normal parallel arrange-
ment of microtubules throughout axons was even more striking
in cultures of JIP3+ JIP4 double KO i3Neurons, where as pre-
viously reported27, lysosome-filled swellings were larger and more
abundant (Fig. 2g–i). Of note, while lysosomes strongly accu-
mulate in JIP3 KO i3Neurons and JIP3+ JIP4 double KO
i3Neurons, mitochondria and synaptic vesicles are also present in
these lysosome-positive swellings, but to a much lesser degree
(Supplementary Fig. 2a–f).

Microtubules undergo several distinct post-translational
modifications35–37, which reflect microtubule age and the
activities of multiple tubulin-modifying enzymes38,39. Immuno-
fluorescent labeling revealed acetylation of axonal microtubules in
both control and JIP3 KO i3Neurons, and there were no noticeable
differences in the acetylation status of looped versus parallelly-
organized microtubules in the KO neurons (Fig. 3a–c). In contrast,
when microtubule tyrosination status was examined, the looped
microtubules were found to be predominantly detyrosinated
(Fig. 3d–f). While the mechanisms that underlie the relationship
between looping and detyrosination of microtubules remain
uncertain, it is possible that detyrosinated microtubules are more
stable, potentially through inhibited binding of the depolymerizing
kinesin (MCAK) to microtubules40,41. In addition, as CAP-Gly
domain containing proteins, such as the p150Glued subunit of
dynactin, prefer tyrosinated microtubules and tyrosinated micro-
tubules have been proposed to be preferred tracks for initiating
movement of axonal LAMP1-positive organelles (lysosomes)42,43,
accumulation of detyrosinated microtubules within axonal swel-
lings could have an impact on lysosome transport at such sites.

Axonal swellings are highly dynamic. We next performed long-
term live cell imaging of lysosomes and microtubules in JIP3 KO
i3Neurons to examine the dynamics of the axonal swellings. For
the purpose of microtubule visualization, we employed low
concentrations of the SiR-tubulin dye. This probe yielded a
fluorescent microtubule pattern highly similar to the pattern of
anti-α tubulin immunofluorescence (Fig. 2a, b) including the
appearance of microtubule loops within axonal swellings
(Fig. 2b, d, e). Time-lapse imaging of JIP3 KO i3Neurons stably
expressing LAMP1-GFP (lysosome marker) and labeled with
SiR-tubulin revealed that lysosome-filled axonal swellings form
and resolve over a time scale of several hours (3.77 ± 1.71 h;

Fig. 4a–d, Supplementary Movie 1). The close spatial and tem-
poral relationship between lysosome accumulation and micro-
tubule looping within these axonal swellings prevented definitive
conclusions regarding a cause-effect relationship between these
events (Fig. 4b, c).

To test whether microtubule perturbations can directly
influence the focal accumulation of lysosomes, we acutely treated
JIP3 KO i3Neurons with a low dose of taxol (10 nM) for 1 h, as
a higher concentration (1 µM) of taxol showed apparent toxicity
in these neurons. We found that low doses of taxol efficiently
mobilized large fractions of lysosomes from the axonal swellings
within a period of 1 h (Supplementary Fig. 3a, b). These results
support a coordinated role for JIP3 in the maintenance of
lysosome transport and regulation of microtubule behavior.

To test the specificity of the phenotypes observed in JIP3 KO
i3Neurons, we performed genome editing on JIP3 KO iPSCs to
remove the 1 bp insertion in our JIP3 KO line and thus restore
JIP3 expression (JIP3 Rescue). JIP3 expression was restored in
the neurons derived from these JIP3 Rescue iPSCs (Fig. 5a).
Furthermore, these JIP3 Rescue i3Neurons did not exhibit
lysosome-positive focal swellings nor any disruptions to the
microtubule organization (Fig. 5b–e). In addition, the disrup-
tions to the axonal spectrin lattice in swollen JIP3 KO axons
(Fig. 1g–i) were not found in JIP3 Rescue i3Neurons, as indicated
by the βII-spectrin staining (Fig. 5f–j). Collectively, these results
demonstrate that both the lysosome accumulations and the
cytoskeletal disorganization arose specifically due to the loss of
JIP3 rather than any off-target effect of the genome editing
strategy that was employed to generate the JIP3 KO line.

Discussion
Our investigation of the relationships between lysosome axonal
transport and multiple components of the axonal cytoskeleton in
neurons that lack JIP3, or both JIP3 and its paralogue JIP4, revealed
that focal lysosome accumulations are accompanied by major dis-
ruptions in organization of the axonal membrane associated periodic
skeleton. Furthermore, the accumulation of lysosomes in focal
swellings of mutant neurons coincided both spatially and temporally
with local microtubule disorganization. These observations reveal
major unexpected relationships between axonal lysosome transport
and the organization of multiple aspects of the axonal cytoskeleton.
They furthermore raise new questions about the chain of events that
link lysosome transport, microtubule organization and the cytoske-
letal machinery that controls axon diameter.

Although impacts of JIP3 depletion on axonal lysosome
abundance and/or transport have been observed in multiple

Fig. 1 Lysosome-filled axonal swellings in JIP3 KO axons correlate with global disruption of the membrane periodic skeleton. a, b Airyscan imaging of
control i3Neurons and JIP3 KO i3Neurons (13 days of differentiation). Yellow arrowheads highlight lysosome-positive axonal swellings in the KO neurons
(scale bars, 15 μm). c Percentage of i3Neurons containing at least one lysosome-positive axonal swelling represented as mean ± SD, pooled from four
independent experiments (n≥ 32 per experiment, 13 days of differentiation). d, e STED microscopy images of βII-spectrin immunofluorescence in the
axons of control i3Neurons (day 17). (Scale bars, d: 5 μm; e: 1 μm). f Graph demonstrating the longitudinal distance between peaks in the βII-spectrin signal
from the boxed region in (e). g Airyscan microscopy images of control i3Neurons show regular distribution of lysosomes (LAMP1, white) and intact
periodic membrane skeletons (βII-spectrin, green). h JIP3 KO i3Neurons (day 15) exhibit disruption in the spectrin organization in axons positive for
lysosome accumulations (scale bars, 5 μm). i Percentage of swollen axons with disrupted periodic membrane skeleton represented as mean ± SD pooled
from three independent experiments (≥20 axons analyzed per experiment). Lysosomes and the periodic membrane skeleton were labeled with LAMP1
and βII-spectrin antibodies, respectively. j Graph depicting the mean βII-spectrin fluorescence intensity of JIP3 KO neurites with and without lysosome-
filled axonal swellings (≥35 µm in length) represented as mean ± SD, pooled from three independent experiments (n≥ 20 in total). Note the possible
contribution of some dendrites to the “No swellings” group. k, l Immunoblots showing levels of βII-spectrin in control and JIP3 KO i3Neurons (day 15);
ribosomal protein S6 was used as loading control (k), and their normalized expression levels is shown in (l). m STED microscopy images of myosin-II
filaments (green) show a periodic distribution similar to that of F-actin (magenta) in control i3Neurons. nMyosin-II and actin organization is lost in JIP3 KO
i3Neurons (day 15) and both were enriched at the lysosome-positive axonal swellings (white). Lysosomes and myosin-II filaments were labeled with
antibodies against LAMP1 and non-muscle myosin-IIA respectively, while rhodamine phalloidin was used to label F-actin. Scale bars, 5 μm. p-values were
calculated using two-tailed Student’s t-test.
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species23,25,26,44, broader effects of JIP3 mutation on the axonal
abundance of multiple organelles have also been reported45–49.
Our new observations of the dramatic cytoskeleton disruption
that correlates with focal lysosome accumulations in both JIP3
KO (and JIP3+ JIP4 double KO) neurons provide a potential
explanation for the broad requirement for JIP3/4 for the axonal
transport of multiple organelles that would not require a
direct involvement of JIP3/4 in the transport of each class of
organelles.

The focal accumulations of lysosomes coincide spatially and
temporally with local disorganization of microtubules in JIP3 KO
i3Neurons and the overall severity of this phenotype is further
exacerbated in the JIP3+JIP4 double KO i3Nneurons. Our initial
interpretation of these lysosome phenotypes was that lysosomes
fall off their microtubule tracks due to a loss of JIP3+4-depen-
dent connections to motors. The surprising discovery that these
sites of lysosome accumulation were accompanied by extensive
looping of microtubules suggests a more complex relationship

a

b

c

Control

JIP3 KO

d Control JIP3 KOe

f
SiR-Tubulin

LAMP1 α-tubulin Merged

Control JIP3 KO
0

20

40

60

80

100

%
 o

f n
eu

rit
es

 w
ith

 m
ic

ro
tu

bu
le

 lo
op

s p < 0.0001

Lysotracker SiR-Tubulin Merged
Control

JIP3+JIP4 KO

g

h

i

LAMP1 α-tubulin Merged

SiR-Tubulin

Lysotracker SiR-Tubulin Merged

Control JIP3 KO
0

20

40

60

80

100

%
 o

f s
w

ol
le

n 
ax

on
s 

w
ith

 
m

ic
ro

tu
bu

le
 lo

op
s

p < 0.0001

0

20

40

60

80

100

120
%

 o
f n

eu
rit

e s
 w

ith
 m

ic
ro

tu
bu

le
 lo

op
s p < 0.0001

Control JIP3+JIP4 
KO

Fig. 2 Lysosome-filled axonal swellings in JIP3 KO axons coincide with sites of abnormal microtubule organization. a, b Airyscan imaging of LAMP1
(green) and α-tubulin (magenta) immunofluorescence in control and JIP3 KO i3Neurons (day 13), respectively (scale bars, 5 μm). c Percentage of swollen
axons with abnormally looped microtubules presented (mean ± SD; pooled from three independent experiments, ≥30 axons per experiment). d, e Control
and JIP3 KO i3Neurons after 22 days of differentiation labeled for microtubules (SiR-tubulin; yellow arrowheads highlight examples of severe microtubule
looping; scale bars, 5 μm). f The percentage of neurites (mean ± SD) with disorganized microtubules pooled from four independent experiments of 22 day
old cultures (≥34 neurites per experiment). g, h Lysotracker (green) and SiR-Tubulin (magenta) in control and JIP3+ JIP4 double KO i3Neurons (day 12)
respectively (scale bars, 5 μm). i The percentage of neurites (mean ± SD) with disorganized microtubules pooled from four independent experiments (≥22
neurites per experiment). p-values in all experiments were calculated using two-tailed Student’s t-tests.
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between lysosome transport and microtubule organization. It
remains to be determined whether this reflects an impact of forces
exerted on microtubules by lysosome movement versus a
potential signaling mechanism controlled by JIP3.

It was particularly striking that the dynamic formation of
local axonal swellings with lysosome accumulation and micro-
tubule looping in JIP3 KO neurons was accompanied by a
widespread disruption of the integrity of the axonal membrane
associated periodic skeleton. This all-or-none effect is consistent
with two distinct interpretations. One is that the focal swellings
elicit changes that are propagated along the entire axonal shaft.
Another is that loss of JIP3 results in an age-dependent dis-
ruption of the periodic actin/spectrin-based scaffold that facil-
itates formation of the focal swellings where lysosomes
accumulate. Interestingly, the assembly of the axonal membrane
associated periodic skeleton is dependent on microtubule
integrity34,50, suggesting that the cytoskeletal changes observed
in JIP3+ JIP4 KO neurons may be interconnected. Interaction
between the periodic membrane skeleton and microtubules may

occur via several linker proteins, including ankyrins, which bind
both spectrin and microtubules34,51,52. More recently, dynein
has been implicated in the maintenance of the actin-spectrin
cytoskeleton at the axon initial segment through endocytosis-
related mechanisms53. This provides another means through
which the integrity of the actin-spectrin rings can be regulated
by motor proteins. The elucidation of the precise sequence of
events will require further experimentation.

The phenotypes that we observed in JIP3 KO axons are
reminiscent of axonal beading that arises in response to mul-
tiple forms of axonal perturbation54–56. It was recently shown
that changes in the local tension of the axonal membrane leads
to the propagation of such “beads”57. Myosin-II filaments
within the periodic membrane skeleton contribute to con-
tractility and may control tension homeostasis along the axonal
shaft31. Hence, if the dilations are upstream events, the all-or-
none disruption of the axonal periodic scaffold within swollen
JIP3 KO axons may be a consequence of tensional instability
along the axons.
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Fig. 5 Rescue of JIP3 KO phenotypes. a Immunoblots showing levels of JIP3 in control, JIP3 KO and JIP3 Rescue (gene-edited to WT) i3Neurons (day 17).
Ribosomal protein S6 immunoblots served as loading controls. b–d Airyscan imaging of Lysotracker (green) and Sir-tubulin (magenta) in control (b), JIP3
KO (c) and JIP3 Rescue d) i3Neurons (day 17), respectively (scale bars, 5 μm). e Percentage of i3Neurons containing at least one lysosome-positive axonal
swelling represented as mean ± SD, pooled from three independent experiments (n≥ 20 per experiment, 17 days of differentiation). f–h Airyscan
microscopy images of lysosomes (white) and βII-spectrin (green) in control (f), JIP3 KO (g) and JIP3 Rescue (h) i3Neurons (Day 17), respectively. (yellow
arrowheads highlight lysosome-filled swellings; scale bars, 5 μm). Lysosomes and the periodic membrane skeleton were labeled with LAMP1 and βII-
spectrin antibodies, respectively. i Percentage of swollen axons with disrupted periodic membrane skeleton represented as mean ± SD pooled from two
independent experiments (≥8 analyzed per experiment). p-values were calculated using two-tailed Student’s t-tests.
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Loss of JIP3 could also have signaling consequences that could
propagate beyond its direct subcellular site of action. In addition
to interactions with motors, JIP3 (and JIP4) also intersect with
signaling in the JNK pathway by acting as a scaffold that regulates
the subcellular position and activity of DLK and JNK25,58–60.
Additionally, transport defects could impede the ability of lyso-
somes to act as sites for nutrient and growth factor-dependent
activation of the mTORC1 signaling pathway61,62.

In conclusion, our findings have revealed new reciprocal
interrelations between lysosome transport and the structure and
the dynamics of the axonal cytoskeleton. The stalling of lyso-
somes during their retrograde journey correlated with profound
changes in axons. A priority for future work will be to determine
cause-effect relationships between the multiple tightly linked
changes that we have observed here. In addition to advancing
our knowledge about fundamental aspects of cell function, these
studies may provide new insight into mechanisms relevant to
Alzheimer’s disease pathology as well as to human intellectual
disabilities arising from mutations in the MAPK8IP3/JIP3
gene63,64.

Methods
Human iPSC culture and neuronal differentiation. Human iPSCs were differ-
entiated into cortical i3Neurons according to a previously described protocol based
on the doxycycline inducible expression of Ngn232. Briefly, the iPSCs were cultured
on human embryonic stem cell (hESC)-qualified Matrigel (Corning) and fed with
fresh mTeSR™1 medium (STEMCELL Technologies) on alternate days. Rho-kinase
(ROCK) inhibitor Y-27632 (EMD Millipore, 10 μM) was added to the iPSC cul-
tures on the first day of plating and replaced with fresh media without ROCK
inhibitor on the following day. For neuronal differentiation, iPSCs were dissociated
with Accutase (STEMCELL Technologies) and re-plated at a density between
1.5–3 × 105 cells on matrigel-coated dishes in induction medium (KnockOut
DMEM/F-12 (Thermo Fisher Scientific) containing 1% N2-supplement [Gibco],
1% NEAA [Gibco], 1% GlutaMAX [Gibco]) and 2 μg/mL doxycycline [Sigma]).
After 3 days, pre-differentiated i3Neurons were dispersed using Accutase and
plated on poly-L-ornithine (Sigma, 1 μg/ml) and laminin (Thermo Fisher Scientific,
10 μg/ml) coated 35 mm glass-bottom dishes (MatTek) or 6-well plates (Corning)
for imaging and immunoblotting, respectively. These i3Neurons were cultured and
maintained in cortical medium (induction medium supplemented with 2% B27
(Gibco), 10 ng/mL BDNF (PeproTech), 10 ng/mL NT-3 (PeproTech) and 1 μg/mL
laminin). Fresh cortical media was added to the existing media every 5 days. The
iPSCs and i3Neurons were kept at 37 °C with 5% CO2 in an enclosed incubator.

CRISPR–Cas9 mediated rescue of JIP3 KO iPSCs. A CRISPR-based homologous
recombination strategy was used to correct the 1 bp insertion in the JIP3 KO iPSC
line. Briefly, 1 × 105 JIP3 KO iPSCs were plated on Matrigel-coated 6-well plate and
transfected the following day using the Lipofectamine Stem transfection reagent
(Thermo Fisher Scientific) and the following two components: 3 µg of px458
plasmid (Addgene plasmid #48138) containing a small guide RNA encoded within
the following sense (5′CACCGGGCGGCGTGGTGGTGTTACC3′) and antisense
(5′AAAC GGTAACACCACCACGCCGCCC 3′) sequences that was designed to
selectively target the JIP3 KO sequence containing the 1 bp insertion and a 140 bp
single stranded DNA oligonucleotide repair template (5 µl of 100 µM stock) that
overlapped the gRNA-targeted region. The sequence of the DNA template was the
following: 5′GCCGCGCTGGCGGCGGCGGTGGCCGCGATGATGGAGATCC
AGATGGACGAGGGCGGCGGCGTGGTGGTGTACCAGGACGACTACTGCT
CCGGCTCGGTGATGTCGGAGCGGGTGTCGGGCCTGGCGGGCTCCATCT
ACCG 3′. Transfected (GFP-positive) cells were enriched by fluorescence activated
cell sorting (FACS) 2 days later. Sorted cells were expanded and then serially
diluted to yield single cell-derived clonal populations. 40 clones were selected and
screened using PCR amplification of genomic DNA flanking the sgRNA target site
followed by sequencing of the amplicons using the primers described in Gow-
rishankar, et al.27.

Live cell imaging and drug treatments. Live imaging of control, JIP3 KO and
JIP3+4 KO i3Neurons27 was performed on day 10–22 post-differentiation in
cortical medium supplied with 5% CO2 and maintained at 37 °C. I3Neurons stably-
expressing LAMP1-GFP27 or LysoTracker-labeled i3Neurons were used to visualize
lysosome dynamics. For lysotracker and mitotracker labeling, i3Neurons were
stained with 30 nM LysoTracker™ Green DND-26, 10 nM LysoTracker™ Deep Red
or 100 nM MitoTracker™ Deep Red (Thermo Fisher Scientific) for 3 min, washed
twice with fresh cortical media, and then imaged immediately. To label synaptic
vesicles, i3Neurons were transfected with 4 μl Lipofectamine Stem Transfection
Reagent (Thermo Fisher Scientific) in 200 μL OptiMEM medium mixed with 3 μg
synaptophysin-GFP plasmid and incubated for 10 min. The Lipofectamine-DNA

complex was added to the imaging dish, followed by media replacement with fresh
cortical media on the following day. For Taxol treatment, i3Neurons were labeled
with lysotracker as described above and then treated with 10 nM or 1 μM taxol
(Sigma) for 1 h.

Immunofluorescence. For i3Neuron samples involving actin and spectrin staining,
cells were fixed and extracted for 1 min using a solution of 0.3% (v/v) glutar-
aldehyde and 0.25% (v/v) Triton X-100 in cytoskeleton buffer (CB, 10 mM MES
pH 6.1, 150 mM NaCl, 5 mM EGTA, 5 mM glucose and 5 mM MgCl2), post-fixed
for 15 min in 2% (v/v) glutaraldehyde in CB at 37 °C, and then washed twice in
phosphate-buffered saline (PBS) according to a previously described protocol33.
For microtubule staining, cells were fixed and extracted for 15 min using a solution
of 4% (v/v) paraformaldehyde, 0.2% (v/v) glutaraldehyde and 0.25% (v/v) Triton
X-100 in CB at 37 °C, and then washed twice in PBS. For removal of free aldehyde
groups, cells were quenched with fresh 1 mg/ml sodium borohydride in CB (Sigma)
for 10 min, and then washed thrice in PBS. Cells were further blocked for 30 min in
5% bovine serum albumin (BSA, Sigma) in phosphate-buffered saline (PBS) and
then incubated overnight at 4 °C with the following antibodies: anti-α-tubulin
(Sigma, catalog no. T6199, dilution 1:500); anti-LAMP1 (Cell Signaling Technol-
ogy, catalog no. 9091, dilution 1:500) or (Developmental Studies Hybridoma Bank,
clone 1D4B, dilution 1:500); anti-βII-spectrin (BD Transduction Laboratories,
Clone 42/B-Spectrin II, dilution 1:250); anti-non muscle heavy chain of myosin-IIA
(Sigma, catalog no. M8064, dilution 1:500); anti-acetyl α-tubulin (Cell Signaling
Technology, catalog no. 5335, dilution 1:250); anti-detyrosinated α-tubulin
(Abcam, catalog no. ab48389, dilution 1:250); anti-tyrosinated α-tubulin (Millipore
Sigma, clone YL1/2, dilution 1:250). Cells were washed with PBS thrice and
incubated with Alexa Fluor-conjugated secondary antibodies (Thermo Fisher Sci-
entific) for 1 h at room temperature, followed by three washes in PBS. F-actin was
visualized by Alexa Fluor 488 or rhodamine-conjugated phalloidin (Thermo Fisher
Scientific, dilution 1:100).

Immunoblotting. Control, JIP3 KO and JIP3+ 4 KO i3Neurons were grown on
six-well plates (3 × 105 cells/well). After differentiation in cortical media, i3Neurons
(typically 17 days) were washed with ice-cold PBS and then lysed in lysis buffer
(50 mM Tris pH 7.4, 150 mM NaCl, 1 mM EDTA, and 1% Triton X-100) sup-
plemented with cOmplete™ EDTA-free protease inhibitor cocktail (Roche) and
PhosSTOP phosphatase inhibitor cocktail (Roche), followed by centrifugation at
13,000 × g for 6 min. The supernatant was collected and incubated at 95 °C for
5 min in SDS sample buffer containing 1% 2-mercaptoethanol (Sigma). The
extracted proteins were separated by SDS-PAGE in Mini-PROTEAN TGX precast
polyacrylamide gels (Bio-Rad) and transferred to nitrocellulose membranes (Bio-
Rad) at 100 V for 1 h or 75 V for 2 h (for high molecular weight proteins:
>150 kDa). Subsequently, the nitrocellulose membranes were blocked for 1 h with
5% non-fat milk (AmericanBIO) in TBST (tris-buffered saline [TBS]+ 0.1% tween
20), then incubated overnight at 4 °C with primary antibodies: anti-JIP3 (Novus
Biologicals, catalog no. NBP1-00895, dilution 1:500); anti-S6 Ribosomal Protein
(S6, Cell Signaling Technology, catalog no. 2217, dilution 1:2500); anti-βII-spectrin
(BD Transduction Laboratories, Clone 42/B-Spectrin II, dilution 1:1000).

Subsequently, the nitrocellulose membranes were washed 3 times (10 min each)
in TBST and probed by incubation for 1 h with the secondary antibodies
conjugated with horseradish peroxidase. The membranes were then washed three
times (15 min at room temperature each), developed using Pierce™ ECL western
blotting substratum (Thermo Fisher Scientific) and imaged by a Versa-Doc
imaging system (Bio-Rad).

Uncropped images of the immunoblots presented in Fig. 1k and Fig. 5a of this
paper are shown in Supplementary Fig. 4.

Fluorescence microscopy. Two types of high-resolution microscopes were used in
this study. The LSM 880 inverted confocal laser scanning microscope with Air-
yscan (Carl Zeiss Microscopy) accompanied with 63×/1.40 numerical aperture
(NA) plan-apochromat differential interference contrast (DIC) oil immersion
objective and 32-channel gallium arsenide phosphide (GaAsP)-photomultiplier
tubes (PMT) area detector and 488 nm, 561 nm and 633 laser lines was used in this
study. Images were acquired and processed using ZEN imaging software (Zeiss).
The Leica TCS SP8 gated STED super-resolution confocal microscope (Leica
Microsystems) is coupled with Leica harmonic compound (HC) plan apochromatic
(PL APO) 100×/1.40 oil STED objective and Leica gated HyD hybrid detector.
Briefly, a white light excitation laser accompanied with 592 nm, 660 nm and
775 nm depletion lasers was used in this study. Images were acquired using LAS X
software (Leica Microsystems) and final images were deconvolved using Huygens
deconvolution software (Huygens Essentials, Scientific Volume Imaging).

Quantification and statistical analysis. Images were pseudocolor-coded, adjusted
for brightness and contrast, cropped and/or rotated using the open-source image
processing software FIJI (ImageJ)65. Dendrites and axons were identified by visual
tracking of the length of the neurite. Percentage of neurites were quantified using
the FIJI plugin “NeuronJ” and/or the FIJI segmented lines + ROI manager tool to
determine the total number of neurites. For quantification of βII-spectrin intensity,
neurites of at least 35 μm in length were semi-automatically traced and quantified
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using “NeuronJ” to determine the mean fluorescence value (8-bit) of the traced
segments. In the case of JIP3 KO i3Neurons where βII-spectrin intensity is
markedly reduced, LAMP1 staining was used to trace the swollen axons as
described above. The traced segments were then overlayed to the βII-spectrin
channel for subsequent quantification.

Immunoblot data were processed using Image Lab software (Bio-Rad) and
quantified using the “Gels” ImageJ plugin. The methods for statistical analysis and
sizes of the samples (n) are specified in the results section or figure legends for all of
the quantitative data. Student’s t test or Mann–Whitney test was used when
comparing two datasets. Differences were accepted as significant for P < 0.05. Prism
version 9 (GraphPad Software) was used to plot, analyze and represent the data.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data generated or analyzed during this study are included in this published article
(and its Supplementary Information files: Supplementary Material and Supplementary
Data 1). Raw datasets generated during and/or analyzed during the current study are
available from the corresponding authors on reasonable request.

Code availability
Custom-written code used to analyse the data in the current study is available from the
corresponding authors on reasonable request.
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