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ABSTRACT The intracellular route followed by viral envelope glycoproteins in polarized Madin- 
Darby canine kidney cells was studied by using temperature-sensitive mutants of vesicular 
stomatitis virus (VSV) and influenza, in which, at the nonpermissive temperature (39.5°C), the 
newly synthesized glycoproteins (G proteins) and hemagglutinin (HA), respectively, are not 
transported out of the endoplasmic reticulum. 

After infection with VSV and incubation at 39.5°C for 4-5 h, synchronous transfer of G 
protein to the plasma membrane was initiated by shifting to the permissive temperature 
(32.5 °C). Immunoelectron microscopy showed that under these conditions the protein moved 
to the Golgi apparatus and from there directly to a region of the lateral plasma membrane 
near this organelle. G protein then seemed to diffuse progressively to basal regions of the cell 
surface and, only after it had accumulated in the basolateral domain, it began to appear on 
the apical surface near the intercellular junctions. The results of these experiments indicate 
that the VSV G protein must be sorted before its arrival at the cell surface, and suggest that 
passage to the apical domain occurs only late in infection when tight junctions are no longer 
an effective barrier. 

In complementary experiments, using the temperature-sensitive mutant of influenza, cul- 
tures were first shifted from the nonpermissive temperature (39.5°C) to 18.5°C, to allow 
entrance of the glycoprotein into the Golgi apparatus (see Matlin, K. S., and K. Simons, 1983, 
Cell, 34:233-243). Under these conditions HA accumulated in Golgi stacks and vesicles but 
did not reach the plasma membrane. When the temperature was subsequently shifted to 
32.5°C, HA rapidly appeared in discrete regions of the apical surface near, and often directly 
above, the Golgi elements, and later diffused throughout this surface. To ensure that the anti- 
HA antibodies had access to lateral domains, monolayers were treated with a hypertonic 
medium to dilate the intercellular spaces. Some labeling was then observed in the lateral 
plasma membranes soon after the shift, but this never increased beyond t.0 gold particle/um, 
whereas characteristic densities of labeling in apical surfaces soon became much higher (~10 

• particles/p,m). Our results suggest that the bulk of HA follows a direct pathway leading from 
the Golgi to regions of the apical surface close to trans-Golgi cisternae. 

Confluent monolayers of  cultured Madin-Darby canine kid- 
ney (MDCK) ~ cells are functionally and morphologically po- 

J Abbreviations used in this paper: ER, endoplasmic reticulum; G 
protein, glycoprotein; HA, hemagglutinin; MDCK, Madin-Darby 
canine kidney; MEM, minimal essential medium; VSV, vesicular 
stomatitis virus. 

larized (7, 17, 24) and provide a useful model to study the 
biogenesis of epithelial cell plasma membranes. After infec- 
tion with enveloped viruses, the polarized nature of the cells 
is manifested in the assembly of  specific virions on either one 
or the other plasma membrane domain (33). Influenza, sim- 
ian virus 5, or Sendal virions assemble exclusively on the 
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apical surface, whereas vesicular stomatitis virus (VSV) and 
certain RNA tumor virus particles bud only from the baso- 
lateral regions of the plasma membrane (1, 28, 31, 32, 35, 
37). 

The asymmetric budding of  viruses from polarized epithe- 
lial cells is thought to be determined by a preferential accu- 
mulation of the envelope glycoproteins in the corresponding 
membrane domain, which precedes viral assembly (32). It 
appears that segregation of the glycoprotein does not require 
other viral components, in that it has been reported that 
accumulation of  hemagglutinin (HA) in the apical surface 
takes place in cells infected with recombinant SV40 viruses 
carrying the HA gene, but not encoding the other influenza 
polypeptides (36). Thus, most likely, the mechanisms that 
ensure the distribution of viral envelope glycoproteins in the 
cell surface are the ones utilized for the segregation of cellular 
proteins to specific plasma membrane domains. 

Theoretically, plasma membrane proteins could be sorted 
intracellularly by a mechanism that directs them to one or 
the other plasma membrane domain, or sorting would take 
place after arrival at the cell surfaces. The delivery of protein 
molecules to the plasma membrane need not be restricted to 
the domain where the proteins eventually accumulate, be- 
cause a redistribution could be effected either through recy- 
cling mechanisms or by controlled lateral diffusion. 

Using MDCK cells doubly infected with VSV and influenza 
we have recently demonstrated (28) that glycoproteins of  both 
viruses can be found within the same Golgi apparatus. We, 
therefore, concluded that their sorting cannot take place be- 
fore arrival to this organelle. To determine whether the gly- 
coproteins are sorted intracellulady or only after they have 
reached the cell surface, we have now employed temperature- 
sensitive mutants of VSV and influenza, in which, at the 
nonpermissive temperature, the envelope glycoproteins ac- 
cumulate in the endoplasmic reticulum (ER). Their transfer 
to the cell surface was synchronized in one of two ways, by 
either directly shifting the temperature to the permissive one 
or by introducing an intermediate cold temperature block, 
which leads to intracellular accumulation of the glycoprotein 
after its delivery to the Golgi apparatus (22). Our results 
suggest that sorting takes place intracellularly, because the 
bulk of the accumulated protein appeared to be transferred 
directly to the domain from which viral budding takes place. 
A recent study with cells infected with the same temperature- 
sensitive mutant of  influenza, but using a different immuno- 
cytochemical procedure, provided a similar conclusion for 
the distribution of HA (3 l). 

MATERIALS AND METHODS 
Cell Cultures and Viruses: The MDCK and Vero cell lines were 

cultured by standard procedures as previously described (7, 28). The ts045 
mutant (16) of VSV (a gift of Dr. J. Lenard, Rutgers University, New Brunswick, 
N J) and the ts61 s mutant (42) of influenza (a gift of Dr. P. Palese, Mount Sinai 
School of Medicine, New York) were plaqued at 32.5"C on Vero and MDCK 
cells, respectively. For both mutants, viruses from different plaques were grown 
on Veto cells at 32.5"C and used to determine in microtiter plates the viral 
cytopathic effects on 50% (CPE~o) of Veto and MDCK at the nonpermissive 
(39.5'C) and permissive (32.5"C) temperatures. Only plaqued viruses that 
showed at least a l04 differential CPEsa were utilized. 

MDCK cells were infected with ts045 (15-20 plaque-forming units/cell) or 
ts6 Is (5-20 plaque-forming units/cell) in a small volume of minimal essential 
medium (MEM), which in the case ofts045 contained 75 #g/ml DEAL Dextran 
(Pbarmacia Fine Chemicals, Piscataway, NJ). Cultures were kept for l - l .5  h 
at 32.5"C in a 5% CO2 incubator. The medium was then replaced with 
prewarmed MEM and incubation continued at 39.5"C for 4-5 h. To block exit 
from the Golgl apparatus by incubation at 18.5"C (22), the medium was 

replaced with MEM minus HCO3- (from a Gibco Laboratories [Grand Island, 
NY] kit), but containing 20 mM HEPES. CuRures were then transferred to an 
18.5"C incubator without CO2 for 80-90 rain. When cultures were shifted to 
the permissive temperature, the medium was replaced with prewarmed new 
medium at 32.5"C and incubation continued at this temperature for the 
indicated time intervals. For immunofluorescence studies, infection was carried 
out on cells that were grown on 13-ram coverslips placed in 24-well dishes 
(Costar, Cambridge, MA). For preparation of frozen thin sections, cells that 
had been plated on collagen-coated 25-ram glass coverslips (-3 x l0 s cells/ 
cm 2) were washed and then fixed with 2% glutaraldehyde (Polysciences lnc., 
Wardngton, PA) in Dulbecco's phosphate-buffered saline (PBS) with CaC12 
(0.1 mM) for 60 rain at 4°C. Coverslips were washed in PBS and stored at 4"C 
until use. 

Immunofluorescence Microscopy: Specimens fixed in 4% form- 
aldehyde in PBS for 30 min were treated with 0.2% Triton X-100 and incubated 
with an IgG fraction (100 #g/ml) of rabbit anti-VSV glycoprotein (G protein) 
antibody, or a mixture of two mouse monoclonal anti-HA antibodies (a gift of 
Dr. R. G. Webster. St. Jude Children's Hospital) applied at a 1:300 dilution. 
Two preparations of rabbit anti-G protein antibody were used (one of which 
was the gift of Dr. J. Lenard, Rutgers University). Both were reactive with only 
the VSV G protein, as demonstrated by immunoprecipitation and Western 
immunoblots, and gave very low background labeling on uninfected cells. In a 
second step, samples were labeled with tetramethylrhodamine isothiocyanate- 
conjugated goat anti-rabbit or anti-mouse IgG (Cappel Laboratories, Cochran- 
ville, PA) as previously described (28). Preparations were examined in a Leitz 
Orthoplan microscope (E. Leitz, Inc., Rockleigh, N J) equipped with a Wild 
camera (Wild Heerbrugg Instruments, Inc., Farmingdale,NY). 

Immunoelectron Microscopy: Monolayers were scraped, infused 
with 0.6 M sucrose, and cryosectioned at -90°C using a Sorvall MT-2 ultra- 
microtome (DuPont Instruments-Sorvall Biomedical Div., Newtown, CT) with 
a DuPont freezing attachment (FTS). Sections 60-180 nm thick (estimated 
from the interference color after embedding and drying) were prepared essen- 
tially by the procedure of Tokuyasu and Singer (40, 41) with modifications 
described previously (15, 28). Frozen sections attached to grids were incubated 
in a first step with either 1 mg/ml of the rabbit anfi-G protein IgG fractions or 
a 1:15 dilution of mouse monoclonal ascites fluid. In a second step, affinity- 
purified goat anti-rabbit or sheep anti-mouse IgG (Cappel Laboratories) con- 
jugated to 18-nm colloidal gold particles was applied. The conjugation proce- 
dures used were similar to those described by Geuze et al. (11) with modifica- 
tions detailed elsewhere (15, 28). Sectious were examined in a Philips 301 
microscope (Philips Electronic Instruments, Inc., Mahwah, NJ) operated at 60 
kV. 

[355]Methionine Labeling: Infected cells on 35-rnm dishes were 
preincubated at 39.5"C for 30 rain with methionine-free MEM (from a GibeD 
Laboratories kit). Labeling was carded out in 0.5 ml of fresh medium containing 
[~SS]methionine (50 t~Ci/ml). After 30 rain, ceils were washed three times in 
MEM and incubated for an additional 30 rain at 39.5, 32.5, or 18.5"C. Samples 
were solubilized with 0.5% NP-40, 0.5% deoxycholate in a 10 mM Tris-HCl 
buffer at pH 7.6. After removing nuclei by sedimentation, samples were 
analyzed by electropboresis in a 10% polyacrylamide gel. Fluorography (5) was 
performed using Enhance (New England Nuclear, Boston,MA) and autora- 
diography with Kodak X-Omat film (Eastman Kodak Co., Rochester, NY). 

RESULTS 

Localization of the C protein in MDCK Cells 
Infected with the ts045 Mutant of VSV 

IMMUNOFLUORESCENT LABELING: The pattern of 
immunofluorescence suggested that when MDCK cells in- 
fected with the ts045 mutant were maintained at 39.5°C, the 
newly synthesized G protein was retained in the ER. The 
cytoplasm of permeabilized cells was diffusely labeled, and 
the periphery of the nucleus was well marked, but neither the 
Golgi apparatus nor the plasma membrane were discernible 
(Fig. I a). Electrophoretic analysis of  cultures incubated with 
[35S]methionine (not shown) showed that the G protein syn- 
thesized at 39.5°C was of higher mobility than that found in 
infected MDCK cells incubated at the permissive tempera- 
ture, and corresponded in apparent molecular weight to the 
core glycosylated form of G protein (18). 

As soon as 10 rain after cells incubated at the nonpermissive 
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FIGURE 1 Immunofluorescent localization of  G protein in cells infected with the ts045 mutant of  VSV. MDCK cells were infected 
by incubation with the virus for 1 h at 32.5°C, maintained for 1 h at this temperature, and then incubated at 39.5°C for 4.5 h 
before a temperature shift to 32.5°C (the permissive temperature). At different times, monolayers were fixed in formaldehyde, 
permeabilized with 0.2% TX-t00, and treated with rabbit anti-G protein antibody followed by rhodamine-conjugated goat anti- 
rabbit IgG. (a) In cells maintained at 39.5*C, fluorescence is observed around the nucleus and in a lacework of threadlike 
cytoplasmic elements, as expected from an accumulation of G protein in perinuclear and cytoplasmic ER cisternae. (b) After 15 
rain at 32.5°C, the G protein is concentrated in the crescent shaped Golgi region surrounding the nucleus (arrows). (c) At 30 
rain, significant label is also apparent in the lateral domain of the plasma membrane (arrowheads). (d) By 120 rain, lateral domains 
are predominantly labeled. Photo exposure times were (a) 1 rain, (b and c) 30 s, and (d) 20 s. x 2,900. 

temperature were transferred to 32.5"C, a crescent-shaped 
juxtanuclear region of the cytoplasm became intensely flu- 
orescent, as expected from the transfer to and concentration 
of the G protein in the Golgi apparatus. The intensity of 
labeling in the juxtanuclear region continued to increase for 
the next 5-10 rain (Fig. 1 b), when fluorescence in the lateral 
plasma membrane began to be detected. By 30 min after the 
temperature shift, the accumulation of G protein in lateral 
regions of the plasma membrane was very apparent (Fig. I c), 
and intense labeling of the lateral plasma membranes was the 
most notable feature of cells that had been incubated for 2 h 
at 32.5°C before fixation (Fig. 1 d). 

IMMUNOELECTRON MICROSCOPIC OBSERVATIONS: 

Examination of ultrathin frozen sections immunolabeled with 
the gold-particle technique showed that in infected cells main- 
tained at 39.5°C the G protein was present in tubulovesicular 
and cisternal elements, some of which could be identified as 
belonging to the rough ER, as well as in the nuclear envelope 
and in small round dense bodies resembling lysosomes (Fig. 
2a). Very few gold particles were found on Golgi cisternae, 
although they were frequently seen in vesicular elements that 
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surrounded the Golgi area. Labeling of the plasma membrane 
was minimal and when this occurred it took place preferen- 
tially on lateral membranes. 

The distribution of the G protein changed soon after shift- 
ing to the permissive temperature: by 15 rain, gold particles 
labeled the Golgi stacks (Fig. 2b). As was previously shown 
in cells infected with the wild-type virus (28), the G protein 
seemed to be randomly distributed over the Golgi cisternae. 
Beginning at 15 rain and becoming more prominent at later 
times, labeled small vesicular structures (60-120 rim) were 
seen near the lateral plasma membrane (Fig. 3a). 30 rain after 
shifting to the permissive temperature, focal labeling of the 
lateral membrane was conspicuous (Fig. 3, a and b), particu- 
larly in regions where the two adjacent lateral membranes 
were well separated, as frequently happened just below the 
tight junctions (Fig. 3a). However, the initial appearance of 
gold particles was not restricted to these regions and labeling 
seemed to take place at any point on the lateral plasma 
membrane (Fig. 3b). At these early times (up to 30 rain after 
the shift), virtually no labeling of apical or basal surfaces was 
detected. During the first hour after transfer to 32.5"C, the G 



FIGURE 2 lntracellular distribution of the G protein at the nonpermissive temperature and shortly after shift to the permissive 
one in MDCK cells infected with the ts045 mutant of VSV. Monolayers infected as described in the legend to Fig. 1 were fixed 
in glutaraldehyde and cryosectioned according to the procedures detailed in Materials and Methods. Sections were treated with 
rabbit anti-G protein antibodies and goat anti-rabbit second antibodies complexed to colloidal gold particles (18 nm). (a) In 
monolayers kept at 39.5°C, the G protein is present primarily in ER cisternae (arrowheads) and multivesicular bodies (arrow). 
Stacks of Golgi cisternae (CA) were generally free of label, but frequently gold particles were found in vesicular structures at the 
Golgi periphery. Very few gold particles were associated with the apical (Ap) and basal (B) plasma membranes. (b) 15 rain after 
a temperature shift to 32.5°C, labeling for G protein is prominent in the Golgi apparatus (CA), but only very small amounts of G 
were detected in the lateral (L) plasma membrane. Apical (Ap) and basal (B) surfaces are virtually unlabeled. Bar, 0.2 #m. x 45,000. 

protein continued to accumulate over the lateral plasma 
membrane, and after this period, heavy labeling of this area 
was striking in many cells (Fig. 4a). The basal surface also 
contained substantial amounts of  G protein, and in a small 
fraction of  the infected cells (not shown), the appearance of  

G protein on the apical surface was first noted at this time. 
However, 2 h after the temperature shift--when the first 
budding of  VSV particles was observed on lateral aspects of  
the cells (Fig. 4 b)--gold particles could be found on all aspects 
of  the cell surface in many cells. In a number of instances it 
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FIGURIE 3 First appearance of the G protein on the lateral surface 30 rain after a temperature shift to 32.5°C. (a and b) By 30 
rain after a shift to 32.5"C, the G protein began to accumulate in regions of the lateral plasma membrane (t) facing dilated 
intercellular spaces, either proximal to the tight junction (a) or closer to the base of the cell (b). A group of vesicular elements (a, 
arrow) near to the lateral surface is also labeled. The apical (Ap) and basal (B) surfaces remain very sparsely labeled, in contrast 
to stacks of the Golgi cisternae (GA) where gold particles are now abundant. Monolayers were infected and sections prepared as 
described in Fig. 2. Bar, 0.5 pm. x 25,000. 

was apparent that initial labeling of  the apical membrane 
domain was restricted to regions closest to the intercellular 
junction (Fig. 5, a and b), as if G protein, which had accu- 
mulated in the lateral region, had now diffused through the 
junctions. Even though subsequently the distribution of  the 
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G protein was not limited to basolateral domains, lateral 
regions of  the plasma membrane always remained the most 
intensely labeled and, as was the case with the wild-type virus 
(28), even at this and later times budding of  VSV panicles 
occurred only on lateral and basal surfaces. 



FIGURE 4 Accumulation of the G protein in the lateral and basal surfaces 1-2 h after the temperature shift. (a) By 60 min after 
the temperature shift to 32.5"C, the lateral aspect of the plasma membrane (L) is heavily labeled. Gold particles are also found 
on the basal surface (B) of the cell. In contrast, the apical domain of the plasma membrane (Ap) is essentially free of label, while 
labeling of the Golgi complex (GA) continues to be prominent. Bar, 0.2/~m. x 42,000. (b) 2 h after the temperature shift, virions 
(arrow) are frequently seen budding into the lateral intercellular spaces. Bar, 0.2 ~m. x 38,000. Cells were infected and frozen 
thin sections were labeled as outlined in Fig. 2. 

Localization of the HA Glycoprotein in MDCK 
Cells Infected with the ts61s Mutant of 
Influenza Virus 

Electrophoretic analysis of  products synthesized in infected 
cells incubated with [35S]methionine demonstrated that a fast- 

migrating form of HA was synthesized at 39.5"C and that, 
upon temperature shift to either 32.5 or 18.5"C, this was 
replaced by a slower-migrating form (not shown) of  the pro- 
tein shown. This result was essentially the same as that 
reported for wild-type influenza HA as the protein matures 
during its passage through the Golgi apparatus from an en- 
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FIGURE 5 Appearance of the G protein on the apical surface late after the temperature shift. (a and b) 180 min after the shift to 
32.5°C, when labeling was prominent on the lateral and basal surfaces (L, B) and in the Golgi apparatus (CA), gold particles were 
also found on the apical surfaces, often concentrated near the junctional areas (arrows). Specimens were prepared as indicated 
in Fig. 2, Bar, 0.5 pm. × 30,000. 

doglycosidase H-sensitive form to a terminally glycosylated 
glycoprotein (1, 22, 31). 

IMMUNOFLUORESCENT LABELING: No  significant la- 
beling of the apical plasma membrane was observed when 
anti-HA antibody was applied to MDCK cells that, after 
infection with the ts61s mutant, were kept at 39.5°C. When 
these cells were permeabilized with detergent, however, a weak 
and diffuse cytoplasmic labeling was detectable, consistent 
with the presence of the protein in the ER (Fig. 6a). 10-15 
min after the shift to the permissive temperature (32.5°C), 
fluorescence in the juxtanuclear region presumed to contain 
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the Golgi apparatus was apparent (Fig. 6 b). In addition, after 
20-30 min, labeling of the plasma membrane began to be 
prominent (Fig. 6, c-f). An even better synchrony in transport 
of HA to the plasma membrane was obtained when, before 
transfer to 32.50C, MDCK cells infected with the ts61 s mutant 
were maintained for 90 min at 18.5°C. It has previously been 
shown, by using the wild-type virus (22), that incubation at 
18.5°C prevents release of HA at the cell surface and leads to 
its accumulation in the Golgi region of the infected cells. A 
temperature shift to 18.5°C had the same effect in cells in- 
fected with the ts61 s mutant: HA fluorescence became striking 



FIGURE 6 Immunofluorescent localization of HA in cells infected with the is61 mutant of influenza. MDCK cells were infected 
by incubation with the virus for 1.5 h at 32.5"C, and then incubated for 5 h at 39.5"C, before a temperature shift to 32.5"C (the 
permissive temperature). At different times, formaldehyde-fixed monolayers were treated either directly with monoclonal anti- 
HA, to label the apical plasma membrane (c, e), or after permeabilization with 0.2% TX-100, to label cytoplasmic structures now 
accessible to the antibodies (a, b, d, f). Rhodamine-conjugated goat anti-mouse IgG was applied in a second step. (a) In cells 
maintained at the nonpermissive temperature (39.5"C), a low level of cytoplasmic staining is detectable. The nucleus (N) is 
unlabeled. (b) 15 min after a temperature shift to 32.5°C, the HA is concentrated in the Golgi region (arrows). No labeling of the 
apical surface was detectable at this time. (c) 30 min after the shift the HA protein is found on the apical surface (arrowhead). (d) 
At this time the Golgi region remains heavily labeled but there is little detectable label in the lateral membrane. (e) After 60 min 
the apical plasma membrane is uniformly fluorescent. (f) At this time the Golgi is still a major site of accumulation but the lateral 
membrane contains little detectable HA. Photo exposure times were (a) 2 min, (c, e) 30 s, and (b, d, f) 15 s .x  2,900. 

in a crescent-shaped region located towards one side of the 
nucleus, thought to represent the Golgi apparatus (Fig. 7 b), 
but no label could be detected on the apical surface of 
nonpermeabilized cells (Fig. 7 a). After the temperature was 
raised to 32.5"C, the HA that had accumulated intracellularly 
was rapidly transferred to the cell surface. Some cells mani- 
fested apical fluorescence 5 min after the shift, but only after 
10-20 min was surface staining readily observed on most cells 
(Fig. 7c). A single fluorescent spot was found on the apical 

membrane in an off-center position reminiscent of the asym- 
metric location of the Golgi apparatus within the cell (Fig. 
7d). By 30-40 min, however, the initially concentrated mol- 
ecules had diffused extensively over the entire apical surface, 
and by 45 min the brighter spot, which indicated the initial 
site of appearance of HA, was all but unrecognizable (Fig. 
7e). At no time during the first 45 min was a significant 
amount of fluorescent label detectable on the lateral plasma 
membrane (Fig. 7, d and f) .  
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FIGURE 7 Immunofluorescent localization of HA in cells infected with the ts61 mutant of influenza and subjected to an 18.5°C 
block to synchronize transfer to the cell surface. MDCK cells were infected by incubation with the virus for 1.5 h at 32.5°C, 
maintained for 5 h at 39.5°C, and then for 1.5 h at 18.5°C before a temperature shift to 32.5°C. Individual coverslips of 
formaldehyde-fixed cells were labeled as described in the legend to Fig. I, either directly (a, c, e) or after permeabilization with 
detergent (b, d, f). (a and b) At 18.5°C, HA has not reached the plasma membrane (a) but accumulates in the Golgi apparatus 
(b) (arrow), which is heavily labeled. (c and d) 10 min after the temperature shift to 32.5°C, the HA is initially detected on the 
apical surface (c) (arrowheads), in off-center focal regions. Little or no fluorescence is found on the lateral surfaces at this time, 
but the Golgi region remains intensely labeled (d). (e and f) 45 min after the shift the HA is found over the entire apical surface 
(e) and in the Golgi apparatus (f). Labeling of the lateral surface is extremely low. Photo exposure times were (a, c, e) 30 s and 
(b, d, f) 15 s. x 2,900. 

IMMUNOELECTRON MICROSCOPIC OBSERVATIONS: 
In ts6 Is-infected cells maintained at the nonpermissive tem- 
perature (39.5°C), the level of  immunolabeling was quite low 
(not shown), but occasional grains that resembled ER cisternal 
elements were seen on cytoplasmic vesicles and structures. 
Upon temperature shift to 18.5°C, when fluorescence of  the 
juxtanuclear region was striking, the gold particles were more 
frequently found in the Golgi region. However, they were not 
particularly concentrated over the stacked cisternae but were 
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mainly found on their dilated ends and over associated vesic- 
ular elements (Fig. 8 a). In agreement with the observations 
using fluorescence, virtually no label was observed at this time 
on the plasma membrane. Only after the temperature was 
raised did the HA begin to appear on the apical membrane. 
In some cells it was detected as soon as 5 min after the shift 
(Fig. 8 b), but after 20 rain the surface localization was appar- 
ent in most cells. Interestingly, HA first appeared in discrete 
regions, near and often directly above Golgi elements, sug- 



FIGURE 8 Intracellular distribution of HA during the cold-temperature block and shortly after shift to the permissive temperature 
in MDCK cells infected with the ts61 mutant of influenza. Cells were infected by incubation with the virus for 1.5 h at 32.5°C 
and then maintained for 5 h at 39.5 °C and 1.5 h at 18.5 °C before shift to 32.5°C. Cryosections of glutaraldehyde-fixed monolayers 
were treated with monoclonal anti-HA antibodies followed by colloidal gold-goat anti-mouse IgG complexes. (a) In cells 
maintained at 18.5 °C HA is found in Golgi apparatus (GA). Two sets of Golgi cisternae, possibly interconnected, are presented, 
each with a concentration of gold particles over vesicular elements toward one side of the stack. Apical plasma membranes (Ap) 
are unlabeled. Bar, 0.2 /zm. x 50,000. (b) 5 min after the shift to 32.5°C HA initially appears on the apical plasma membrane 
(Ap), in focal regions (arrowhead) that are not far from the Golgi apparatus (GA). Labeled vesicles are also found near the apical 
surfce (arrow). Very little labeling was seen on lateral or basal surfaces (not shown). Bar, 0.5 ~m. x 30,000. 

gesting that its transport from the Golgi apparatus to these 
sites was direct (Figs. 8b and 9). At these and later times, 
labeled vesicles with an apparently smooth surface and an 

often oblong shape with an average diameter varying between 
60 and 120 nm (Figs. 8b, 9, and 10a) were also visible 
underlying the apical membrane. It may be presumed that 
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FIGURE 10 Distribution of the HA in the apical membrane 1-2 h after the shift to 32.5°C. (a) 60 min after the temperature shift 
from 18.5 to 32.5°C, the HA that has reached the cell surface is uniformly distributed on the apical domain (Ap). HA is also 
present in the Golgi apparatus (GA) and some cytoplasmic vesicular elements (arrow). Virtually no label is associated with the 
lateral (L) or basal (B) plasma membrane domains. Bar, 0.5/~m. x 30,000. (b) Even 2 h after the temperature shift HA remains 
concentrated on the apical membrane and only occasional gold particles are present on the basolateral domain (B). Cells were 
infected and sections prepared as des~:ribed in Fig. 8. Bar, 0.5/zm. x 25,000. 
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these vesicles are involved in the transport of HA to the 
plasma membrane. Subsequently, the level of labeling in- 
creased significantly and HA was found over the entire apical 
surface of many cells (Fig. 10). Throughout the first 2 h at 
32.5"C, however, there was no accumulation of HA over the 
lateral o r basal plasma membrane, although a few cells had a 
very low level of labeling on their lateral surfaces. 

I M M U N O L A B E L I N G  OF CELLS FIXED IN A H Y P E R -  

TONIC BUFFER: Tokuyasu (40) and Chert and Singer (8) 
have cautioned that the intensity of cross-linking during fix- 
ation can limit the ability of antibodies to penetrate the frozen 
sections. To determine whether the cross-linking of tightly 
apposed lateral surfaces of adjacent cells within MDCK mon- 
players creates a significant barrier to antibody penetration, 
we carried out immunolabeling of ts6 Is-infected monolayers, 
which were fixed in a hypertonic solution (1.5 osM) (Fig. 1 I). 
Under these conditions the celIs shrink considerably and the 
lateral membranes of adjacent cells separate. Although intra- 
cellular details are difficult to discern in the highly condensed 
cytoplasm of these specimens, the lateral surfaces of many 
cells should become accessible to the antibodies. Background 
surface labeling measured in cells maintained at 18.5"C was 
0.2-0.3 particles/~tm. At very early times (10-15 min) after 
the temperature shift to 32.5"C, when surface labeling was 
becoming apparent (0.7-1 particles/#m), some cells were 
found that had as much label on the lateral surfaces as on 
their apical ones (Fig. l la). Subsequently, however (at 40 
min and later), many cells showed the clear and often over- 
whelming labeling of the apical surface already detected in 
conventionally fixed specimens. In most cells examined at 40 
min or later, the density of labeling of the lateral membrane 
was either at background levels or slightly elevated but not 
higher than l particle/t~m (Fig. I I b). These results suggest 
that a small flux of HA to the lateral surface occurred at early 
times after the temperature shift. 

DISCUSSION 

In previous work, using doubly infected MDCK cells (28), we 
demonstrated the simultaneous presence of the G protein of 
VSV and the HA of influenza in the same cisternae of the 
Golgi apparatus. We therefore concluded that sorting of these 
glycoproteins cannot take place before their arrival at this 
organeUe. The observations presented in this paper, with cells 
infected with temperature-sensitive mutants of the same vi- 
ruses, demonstrate that the G protein is transferred directly 
from the Golgi apparatus to the lateral aspect of the plasma 
membrane, whereas the bulk of HA is transferred to the apical 
domain. Sorting of these proteins must, therefore, be intra- 
cellular and may occur in the Golgi apparatus, upon exit from 
this organelle, or along the route to the cell surface. 

As expected from previous observations with Vero (16) and 
Chinese hamster ovary (4) cells, at the nonpermissive temper- 
ature G protein was distributed throughout the cytoplasm. 
Labeling was observed on tubular and vesicular elements that, 
although without the typical cisternal configuration, are likely 
to belong to the ER. Occasionally, labeling was also found on 
lysosomes, probably reflecting some degradation of the ab- 
normal polypeptides synthesized at the nonpermissive tem- 
perature or the presence of residual material phagocytosed 
during the initial infection. Golgi cisternae became labeled 
only after the shift to 32.5*C, and this was followed by the 
rapid deployment of G at the lateral cell surface. The sequence 
of events and the presence of labeled vesicles between the 
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Golgi and the lateral cell surface left no doubt as to the 
directness of the pathway, which is schematically represented 
in Fig. 12. 

It has been proposed (38, 39) that coated vesicles are 
involved in the transfer of the G protein from the ER to the 
Golgi apparatus and from this organelle to the plasma mem- 
brane. However, neither the labeled vesicles found at 39°C 
nor those we detected near the cell surface after the shift to 
the permissive temperature appeared to be of the clathrin- 
coated variety. Their size and shape varied more widely than 
those of coated vesicles (which are uniformly spherical and 
do not generally exceed 50 nm in diameter as measured on 
sections of Epon-embedded MDCK cells). In most cases, the 
thickness of the frozen sections obscured the actual visualiz- 
ation of a clathrin coat; however, other investigators, using 
immunocytochemistry in detergent permeabilized specimens, 
were equally unsuccessful in establishing the presence of G 
protein in coated structures of VSV-infected 3T3 cells (43). 

Our work clearly indicates that newly synthesized G protein 
is delivered to the lateral and not the basal aspects of the 
plasma membrane, even though these two regions of the cell 
surface are not separated by recognizable barriers that could 
maintain an heterogeneous distribution of membrane com- 
ponents. In an autoradiographic study, Bennett et al. (2) 
observed that labeled glycoproteins first appeared at the lateral 
surface of intestinal cells. A regionalized insertion of viral 
glycoproteins in the apparently uniform plasma membrane 
of nonpolarized cells was first recognized in cells infected with 
Newcastle disease virus (20) and later in cells chronically 
infected with measles virus (9). More recently, Bergmann et 
al. (3) observed that in migrating fibroblasts the G protein of 
VSV is inserted in the plasma membrane at the leading edge 
of the cell, proximally to the Golgi region and its associated 
microtubule-organizing center. This led these authors to pro- 
pose the existence of a cytoskeletally directed vectorial traffic 
of Golgi-derived vesicles to the plasma membrane. Whether 
in MDCK cells the existence of a directed route of this kind 
accounts for the localized insertion in one aspect of the 
basolateral domain cannot be established at this moment. 
Alternatively, specialized sites may exist in the lateral mem- 
brane for the insertion of newly synthesized proteins, or 
simply preferential delivery to this region may result from 
proximity to the Golgi apparatus. 

We have previously noted (28) that, in the course of VSV 
infection, significant amounts of G protein eventually accu- 
mulate in the apical surface of the cell, before a measurable 
disruption of the junctional complexes. We have now ob- 
served that the appearance of G protein in the apical surface 
can take place near the intercellular junctions, where the 
protein was sometimes concentrated before other regions of 
the apical surface showed any labeling. This suggests that, 
after it accumulates in the basolateral domain, G protein may 
diffuse across the tight junctions to the apical domain. The 
diffusion of G protein could reflect a localized loss in junc- 
tional integrity, which was not detected by electrical resistance 
measurements. It is also possible that junctions undergo local 
disassembly and reassembly reactions that in a dynamic fash- 
ion may control the lateral diffusion of membrane compo- 
nents. A role of junctions in controlling the passage of leu- 
kocytes and horseradish peroxidase across intact monolayers 
of MDCK monolayers has recently been suggested (23). 

The results with the ts61s mutant of influenza, and in 
particular the observations after the release of the low-tern- 



FIGURE I 1 Immunolabeling of cells infected with ts61 and fixed in hypertonJc buffer. MDCK monolayers infected and labeled 
as in Fig. 8 were fixed in a glutaraldehyde solution containing PBS at five times the normal concentration. This causes a shrinkage 
of the cells and a dilation of the intercellular spaces that should facilitate access of labeling reagents to the lateral membranes 
after cryosectioning. (a) 15 min after the temperature shift from 18.5 to 32.5°C, a low level of labeling (0.7 grains//~m) is observed 
below the junctional complex (J) on the lateral membrane (L). Bar, 0.2/~m. x 34,000. (b) At 40 min after the temperature shift, 
labeling of the lateral surface (L) remains low (1 grainfl~m), but as expected, labeling of the apical surface (Ap) has increased 
considerably. The basal membrane remains virtually unlabeled (B). Bar, 0.2/~m. x 45,000. 
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FIGURE 12 Stages in the transport pathway for the VSV G protein 
from the ER to the plasma membrane of MDCK cells. After synthesis 
in the rough ER, G protein is transferred to the Golgi apparatus (1), 
whence vesicles emerge (2) that will carry it to the lateral plasma 
membrane (3). Subsequently, the glycoprotein may migrate to the 
basal surface (4) and eventually to the apical domain, most likely 
after diffusion through the junctional complexes (5). 

perature block led us to conclude that the major pathway 
followed by HA after it leaves the Golgi apparatus is directed 
to the apical plasma membrane (Fig. 13). Initially, at 18.5"C, 
the HA accumulated in Golgi cisternae and in vesicles located 
towards one side of Golgi stacks. This suggests that the low 
temperature impairs exit from the Golgi apparatus or imposes 
a post-Golgi arrest in the delivery to the plasma membrane. 
This is consistent with the original observation of Matlin and 
Simons (22), confirmed by our own data, that under these 
conditions HA may undergo terminal glycosylation, a process 
that is thought to take place in trans-Golgi cisternae (l 2, 34). 
Histochemical staining will be necessary to unequivocally 
prove the site of accumulation of HA at 18.5"C. 

Soon after the cold-temperature block was relieved, the 
appearance of a brightly fluorescent spot revealed the focal 
insertion of HA in the apical surface. Immunoelectron mi- 
croscopy also showed a high concentration of gold particles 
in an apical region, almost directly above the Golgi apparatus, 
as well as the presence of vesicles containing HA in the 
neighboring cytoplasm. These vesicles were detected soon 
after the shift to the permissive temperature, before any 
substantial accumulation of HA in the plasma membrane had 
taken place and therefore are not likely to be endocytic. As 
was the case with the vesicles carrying the G protein of VSV, 
and as was noted recently by Rodriguez-Boulan et al. (31), 
vesicular elements labeled with anti-HA antibodies were ir- 
regularly shaped and larger than typical coated vesicles. 

Our observations on the appearance of HA in the central 
region of the apical membrane are in contrast to those of 
Louvard (19), who reported that, after its internalization was 
induced by antibody cross-linking, the apical enzyme leucyl 
aminopeptidase reappeared in regions of the plasma mem- 
brane near the intercellular junctions. This was also the site 
where leucyl aminopeptidase from an internal pool inacces- 
sible to the antibodies was brought to the surface. The differ- 
ences between our observations and those of Louvard (19) 
may be explained by the different experimental conditions. 
The massive amount of membrane retrieval induced by an- 
tibody cross-linking may, indeed, have altered the number of 
distribution of sites for insertion of membrane proteins in the 
apical surface. A recent study (3 l) on the transport of HA to 
the apical surface also reported the initial appearance of HA 
in the central region of the apical surface. 
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It has been proposed that in polarized intestinal cells the 
basolateral domain represents an intermediate stage in the 
pathway followed by apical plasma membrane components 
from the Golgi apparatus to their final destination (26, 27, 
44). Evidence to support this notion was derived from cell, 
fractionation studies on the biosynthesis of sucrase-isomal- 
tase, an enzyme of the intestinal microvillus that is synthesized 
as a precursor which is cleaved upon arrival to the apical 
surface (13, 14). The kinetic analysis carded out by these 
authors showed that, soon after synthesis the uncleaved pre- 
cursor of sucrase-isomaltase appeared in a cell fraction con- 
taining basolateral membranes, whence it disappeared when 
the mature protein was detected in a fraction rich in micro- 
villar membranes. However, the same results would have been 
expected if the basolateral membrane fraction had been con- 
Laminated with Golgi membranes, a possibility that was not 
considered in this work. In other experiments that use enzyme 
histochemistry, it was reported that a small amount of ami- 
nopeptidase N (an apical membrane enzyme) was present in 
the lateral membrane of enterocytes below the tight junctions, 
but this could not be confirmed immunocytochemically (10). 

We noted, in specimens labeled in hypertonic medium that 
distended the lateral spaces, the rapid appearance of a small 
number of HA molecules in the lateral membrane. This was 
not, however, consistently observed in all cells, nor did the 
extent of the labeling rise with time. It, therefore, seems 
unlikely that passage to the lateral membrane represents an 
obligatory intermediary stage in transport to the apical surface 
that would have to be extremely fast. Most probably this 
pathway to the cell surface reflects the saturation of the 
intracellular sorting and transport system, which takes place 
when the backlog of accumulated HA in the Golgi complex 
is released over a short period of time. It is not clear what the 
fate of the misdirected HA would be. The continuous recy- 
cling of plasma membrane components through the cyto- 
plasm, which in epithelial cells is the basis for transcytosis (6, 
29, 30), could provide a mechanism for the transport of HA 
to the apical surface. A similar mechanism has been postu- 
lated to account for the transport to the lateral surface of 

FIGURIE 13 Stages in the transport pathway of the HA of influenza 
from the ER to the plasma membrane of MDCK cells. After synthesis 
in the rough ER, HA is transferred to the Golgi apparatus (I). At 
18.5 ° (2) transport through the GA and processing of oligosaccha- 
ride side chains may occur and some HA is packaged into vesicles 
(3). Upon release of the cold temperature block, post-Golgi vesicles 
convey the glycoprotein to a region of the apical plasma membrane 
proximal to the Golgi apparatus (4). After insertion in this region, 
HA can then diffuse throughout the entire apical surface (5). A 
secondary pathway can direct small amounts of HA to the lateral 
plasma membrane (3', 4') where, however, the glycoprotein does 
not accumulate. 



proteins inserted heterotopically in the apical domains (21, 
25). Alternatively the lateral HA may be degraded as is the 
case with some misdirected G protein, which in the wild-type 
infections appeared at the apical surface (28). 

It would be important to determine what features of  the 
post-Golgi vesicles carrying the envelope proteins direct them 
to either the lateral or apical plasma membrane, or promote 
their selective fusion with one or the other membrane domain. 
In principle, vesicles that deliver proteins to opposite domains 
could differ only in the glycoprotein that they carry, in which 
case the Golgi apparatus would not contribute to the sorting. 
It is also possible that two types of  vesicles of  intrinsically 
different membrane composition could be derived from the 
Golgi apparatus. In any case, sorting of  carrier vesicles could 
be effected by cytoskeletal elements that guide them to the 
appropriate cell surface domain. Alternatively or additionally, 
a restriction in the delivery of  the glycoprotein to the proper 
domain could be imposed by specific plasma membrane 
proteins that determine the site of  vesicle fusion. Recent work 
in our laboratory (Rindler, M. J., I. E. Ivanov, and D. D. 
Sabatini, manuscript in preparation) points to a role of the 
cytoskeleton in the sorting process. We have observed that 
treatment of  influenza-infected cells with colchicine or other 
drugs that affect the structure of  microtubules leads to the 
appearance of large amounts of  HA in the basolateral domain 
of  cells that still maintain intact intercellular junctions. Thus, 
by itself the presence of  the glycoprotein appears insufficient 
to ensure that the vesicle be delivered to the proper domain, 
even though transport of  the vesicle to the cell surface and its 
fusion with the plasma membrane seemed to proceed unaf- 
fected. A characterization of  the vesicles transporting HA and 
G protein and a study of  their interaction with the cytoskele- 
ton and the plasma membrane should shed more light on the 
nature of  post-Golgi sorting events that control the accumu- 
lation of  proteins on each surface. 
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