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The e�cient phagocytic clearance of dying cells and apoptotic cells is one

of the processes that is essential for the maintenance of physiologic tissue

function and homeostasis, which is termed “e�erocytosis.” Under normal

conditions, “find me” and “eat me” signals are released by apoptotic cells

to stimulate the engulfment and e�erocytosis of apoptotic cells. In contrast,

abnormal e�erocytosis is related to chronic and non-resolving inflammatory

diseases such as atherosclerosis. In the initial steps of atherosclerotic lesion

development, monocyte-derived macrophages display e�cient e�erocytosis

that restricts plaque progression; however, this capacity is reduced in

more advanced lesions. Macrophage reprogramming as a result of the

accumulation of apoptotic cells and augmented inflammation accounts for

this diminishment of e�erocytosis. Furthermore, defective e�erocytosis plays

an important role in necrotic core formation, which triggers plaque rupture

and acute thrombotic cardiovascular events. Recent publications have focused

on the essential role of macrophage e�erocytosis in cardiac pathophysiology

and have pointed toward new therapeutic strategies to modulate macrophage

e�erocytosis for cardiac tissue repair. In this review, we discuss the molecular

and cellular mechanisms that regulate e�erocytosis in vascular cells, including

macrophages and other phagocytic cells and detail how e�erocytosis-

related molecules contribute to the maintenance of vascular hemostasis

and how defective e�erocytosis leads to the formation and progression of

atherosclerotic plaques.

KEYWORDS

atherosclerotic cardiovascular disease, e�erocytosis, myocardial infarction,
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Introduction

Efferocytosis or programmed cell death (PrCR) is an immunological non-

inflammatory and evolutionarily-conserved program required for maintaining normal

physiological function, development and tissue homeostasis by removing aged, damaged,

and senescent cells (1, 2). The Greek-derived term “efferocytosis” refers to a tightly

regulated process mainly involving the “eat me” and “don’t eat me” molecules
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and related signaling pathways that drive phagocytic engulfment

of apoptotic cells, but not off-target, healthy cells (3–

5). The phagocytosis of apoptotic cells is maintained by

both professional phagocytes such as macrophages, immature

dendritic cells, and non-professional phagocytic cells (e.g.,

neighboring smooth muscle cells and endothelial cells).

Macrophages, the main phagocytic cell type, play an important

role in identifying dying cells for subsequent phagocytosis

and clearance that would otherwise become intolerant of

self-antigens and induce secondary necrosis. Moreover, the

importance of efferocytosis in tissue hemostasis in physiological

conditions is widely appreciated. Defective efferocytosis is

believed to be an important feature of various autoimmune

and chronic inflammatory diseases such as rheumatoid arthritis,

atherosclerosis and systemic lupus erythematous (6). The

treatment of efferocytosis-related disease has not yet been

rectified. In this review, we summarize the underlying

regulatory pathways of defective efferocytosis in the progression

of cardiovascular disease and focus on future translational

studies. Exploring the signaling molecules and regulatory

molecular mechanisms associated with impaired efferocytosis

in advanced atherosclerosis should enhance our knowledge

for developing anti-atherosclerotic therapies focusing on

improving efferocytosis.

Basic steps of e�erocytosis

Efferocytosis is described as a highly-conserved,

programmed cell removal process involving synergistic

regulation of the engulfment and removal of apoptotic cells

via phagocytes. Effective efferocytosis requires the accurate

recognition, phagocytosis, and removal of apoptotic cells.

Efferocytosis is regulated through several signaling molecules:

(a) “find-me” signals: different chemokines, nucleotides, other

proteins, lipid and lipid products released from apoptotic

cells that recruit phagocytes to the area of cell death; (b)

“bridging molecules” signals: opsonin like molecules that

connect phagocytes to their targeting apoptotic cells; (c) “eat

me” signals: cell surface ligand molecules that recognize and

bind to the engulfment receptor on the phagocytes through

bridging molecules and that initiate efferocytosis; (d) “don’t

eat me” signals: molecules such as CD47, which is ubiquitously

expressed on viable cells that separate them from apoptotic

cells and inhibit phagocytosis. These signal molecules regulate

the efferocytotic processes and determine whether a cell is

denoted for engulfment and removal from the body or ignored

by phagocytic cells (7, 8).

“Find-me” signals in e�erocytosis

Studies show that in the region of cell death, apoptotic cells

release various molecules carrying “find-me” signals including

nucleotides ATP, UTP (9), lysophosphatidylcholine (LPC)

(10), sphingosine 1- phosphate (11), and CX3C-chemokine

ligand 1(CX3CL1) (12). Some “find me” molecules express

different signaling peptides that are required for preparing

the microenvironment for cell clearance (13). Macrophages

are guided by “find me” signals and rapidly migrate to the

area of cell death for removing apoptotic corpses (7). Then,

macrophages bind either directly or indirectly to the “eat- me”

signal expressed on the surface of the apoptotic cells through

“bridging molecules” (14).

“Eat-me” signals in e�erocytosis

While several “eat-me” signals have been identified, mainly

phosphatidylserine (PtdSer), intercellular adhesion molecules 3

(ICAM3), and calreticulin (Calr), these are required for the

phagocytosis of apoptotic cells (15, 16). Among of them, PtdSer

is the main “eat-me” signal. Under physiological conditions,

PtdSer is located on the inner surface of the plasma membrane,

but PtdSer in dying cells is reverted to the outer surface of

the plasma membrane where it binds to the receptor of the

phagocyte (17).

“Bridging-molecules” in
e�erocytosis

Upon arrival of the macrophage to the area of cell death,

themacrophage directly binds to extracellularmembrane-bound

PtdSer through stabilin 1, stabilin 2, T cell immunoglobulin

mucin receptors TIM1, TIM3, TIM4, or through GPCR

brain angiogenesis inhibitor 1 (BAI1) (18–21). In some cases,

macrophages bind to several bridging molecules, such as Gas6

and protein S, that bind to the tyrosine kinase receptor

(TAM), to facilitate the interaction with PtdSer. In other cases,

thrombospondin or MFG-E8 binds both PtdSer and integrins

αVβ3 and αVβ5 or CD36. In addition, PtdSer-related receptors

have different characteristics; some of the receptors (MerTK,

BAI1 and integrins) play a role in the signaling process and

others (e.g., Tyrosine kinase receptor and CD36) play a role in

tethering and adhesion.

Phagocytosis of dying cells

The PtdSer on apoptotic cells binds to the PtdSer receptor

on macrophages that form a phagocytic cup through actin

cytoskeleton remodeling and the formation of filamentous (F)-

actin around the apoptotic cell, promoting internalization of

apoptotic cells into the phagosome and mechanical retraction

of the phagosome into cells (22–24). The activated small

GTPase family members (i.e., Rac1, Cdc42, and RhoA) are

involved in the formation of the phagocytic cup and the
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internalization of the phagosome (25). The effector of Rac1

activation also regulates the internalization of apoptotic cells

through the association of adaptor proteins with the Rac

GEF DOCK180 to activate Rac1 and initiate phagocytic cup

formation, and leads to phagocytosis (26). Membrane trafficking

is also important for efferocytosis, like the cytoskeleton

remodeling that underlies Drp1-dependent mitochondrial

fission. Mitochondrial fission increases cytosolic calcium by

releasing endoplasmic reticulum calcium into the cytosol that

drives vesicular trafficking.

After internalization of apoptotic cells, an autophagy-

related protein LC3 binds to phagosomal membrane lipids

through LC3-associated phagocytosis (LAP) and promotes

lysosome degradation of apoptotic cell constituents (27).

After phagolysosomal degradation of apoptotic cells, these

macromolecular constituents are loaded into macrophages,

then macrophages can either use or efflux these constituents

through specific mechanisms. As a result, cholesterol released

from degraded apoptotic cell induces the expression of ABCA1

and ABCG1 through activating peroxisome proliferate-activate

receptor (PPAR) and liver X receptor (LXR) and leading to

cholesterol efflux from the cells (28). Macrophage lysosome

contains DNase II that degrades chromosomal DNA derived

from degraded apoptotic cells. It has been reported that mice

lacking DNase II induce an autoimmune disease, polyarthritis,

similar to rheumatoid arthritis in humans (29).

Defective e�erocytosis in heart
disease

Coronary heart disease stems from atherogenesis and

plaque vulnerability has been associated with the accumulation

of apoptotic and necrotic debris (30–33). A necrotic core

contributes to plaque expansion that disrupts luminal flow and,

in turn, reduces coronary perfusion, leading to detrimental

heart diseases such as ischemic myocardial infarction. Many

studies report that impaired efferocytosis induces some

changes in blood flow, which is directly related to plaque

vulnerability and atherogenesis (34). In mammalian cells,

FIGURE 1

E�erocytosis is the phagocytic process required for maintaining normal vascular hemostasis. E�cient e�erocytosis plays an important role in

protecting against atherosclerosis by inducing phagocytic signals or “eat-me” signals and clearing apoptotic debris. Conversely, in defective

e�erocytosis, the phagocytic signals are reduced and the phagocytic ability of apoptotic cells is decreased. As a result, apoptotic cells are

converted to necrotic cells, and accumulation of these uncleared cells form a necrotic core, which leads to the release of proatherogenic

factors and progression of atherosclerosis plaque. ECs, Endothelial cells; VSMCs, Vascular Smooth Muscle Cells.
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efferocytosis avoids intracellular accumulation of membrane-

derived lipids by initiating the reverse cholesterol transport

(RCT) machinery. In normal situations, apoptotic cells express

externalized phosphatidylserine (PS) that upregulates ABCA1 in

macrophages, which, in turn, induces the efflux of cholesterol to

ApoA1 (35, 36). The necrotic core also expresses PS, but it fails

to show similar responses for efflux of cholesterol to ApoA1 (35).

Furthermore, in defective efferocytosis conditions, the signals

that initiate the reverse cholesterol transport pathway in vascular

cells are suppressed, leading to the formation of foam cells and

the initiation of atherosclerosis.

In normal physiological conditions, efferocytosis suppresses

inflammation by preventing accumulation of toxic cellular

contents. Macrophages release interleukin (IL)-10 and

transforming growth factor (TGF)-β to help clear dying cells

and induce anti-inflammatory signaling (37–39). But, when

efferocytosis fails to remove apoptotic debris, phagocytic cells

convert to inflammatory cells, which leads to non-resolving

vascular inflammation (36, 40, 41). Impaired efferocytosis

leads to rapid degradation of apoptotic cell membranes,

and, consequently, secretion of intracellular content to the

interstitium (Figure 1). These intracellular materials contain

cytokines and proteases that destabilize the plaque and promote

angiogenesis of the vascular cells in the plaque, respectively,

as well as the release of thrombogenic factors that play a role

in atherogenesis and promote plaque vulnerability (32, 42).

Thus, impaired efferocytosis can be viewed as a defective

waste management program that plays a key role in the

vascular biology of atherogenesis. Taken together, defective

efferocytosis stimulates release of cytokines that promote

plaque inflammation, and impairs reverse cholesterol transport

that promotes foam cell accumulation and also induces

plaque vulnerability through atherothrombotic modification

in the extracellular matrix, which leads to pathogenesis and

progression of atherosclerosis.

Mechanisms behind impaired
e�erocytosis in atherosclerosis

Reduced apoptosis

The accumulation of apoptotic cells and expansion of

the necrotic core associated with atherogenesis, in turn,

restricts luminal flow and reduces coronary perfusion (30–

33). Studies have shown that impaired efferocytosis induces

other maladaptive factors that directly cause atherogenesis

and plaque vulnerability (34). Defective efferocytosis

involved in lipid accumulation and secondary necrosis

causes inflammatory responses and autoimmune responses.

Studies have demonstrated that when high capacity efferocytosis

occurs in early lesions (i.e., efferocytosis works properly), there

is no accumulation of apoptotic cells (43, 44). It has been

reported that reduction of the absolute number of phagocytes

leads to weakened phagocytic ability of phagocytes.

During the progression of atherosclerosis, endothelial

dysfunction and ER stress leads to macrophage and VSMC

apoptosis and reduced phagocytic capacity (45). A reduced

M2 macrophage population, increases macrophage polarization

toward pro-inflammatory M1 phenotype, and lessens the

phagocytic ability of smooth muscle cells in atherosclerosis

(46, 47). Studies also show that reductions of phagocytic

receptors onmacrophages (i.e., CD36,Mertk and LRP1) resulted

in a loss of their ability to phagocytically clear apoptotic

debris. Increased expression of metalloproteinase, disintegrin

and ADAM17 were also found in atherosclerotic plaques that

cause reduced expression of Mertk and LRP1 on macrophages

(48, 49). The inhibition of protein kinase B activation leading

to decreased expression of LRP1 on macrophages causes plaque

growth during atherosclerotic lesion progression (50). LRP1

receptor deficiency induces the secretion of pro-inflammatory

cytokines such as TNF-α, monocyte chemoattractant protein-

1 (MCP-1), and MMP-9 which causes reduced efferocytosis.

Notably, it has recently been reported that the endocytic

adaptor proteins known as epsins target ubiquitin-dependent

internalization and downregulation of LRP1 in macrophages in

hyperlipidemic conditions, hindering effective efferocytosis in

macrophages and propelling atherosclerosis progression (51–

53). Interestingly, it has been shown that deletion of LRP1

induces CCR7 expression in M1 macrophages and promotes

atherosclerosis regression (54).

Endothelial dysfunction and
macrophages in the pathophysiology of
atherosclerosis

Atherosclerosis is a chronic inflammatory disease and

common cause of cardiovascular disease (CVD), characterized

by the thickening of the intima of large and medium-sized

arteries (55). Abnormal immune responses, resulting from

defective lipidmetabolism leads to the accumulation of modified

lipoproteins beneath the endothelium, inducing the formation

of lipid rich plaques or “atheromas.” The accumulation of

apoptotic cells plays an important role in atherosclerotic

progression and plaque stability (56–58). Although, how

high cholesterol concentrations leads to the development of

atherosclerosis remains unclear, it is believed that higher blood

cholesterol levels is a common cause for the pathogenesis of

atherosclerosis (57).

Excessive LDL-C forms reactive oxygen species in the intima

and promotes the formation of foam cells by binding the

LRP receptor on vascular phagocytes. As atherosclerosis disease

progresses, foam cells fail to modify the lipoprotein and fail to

distinguish the destructive lipoprotein, which leads to apoptosis
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by inducing endoplasmic reticulum stress and ROS production

(45). In addition, the areas of disturbed laminar flow in the

arterial tree are more prone to lipoprotein accumulation as well

as plaque formation. Over time, the rupture of foam cells leads

to thrombus formation overlying the plaque and the occlusion of

coronary vessels in the heart, leading to episodes like myocardial

infarction and stroke (56).

The healthy endothelium plays a protective role against

plaque formation through increased nitric oxide bioavailability,

decreased adhesion molecule expression, and increased

anti-inflammatory signaling process (59). Endothelial

dysfunction (i.e., damaged endothelium) upregulates

the expression of cell surface adhesion molecules which

promote infiltration of macrophages and T lymphocytes

into the atherosclerotic plaque (60, 61). Additionally,

endothelial cells take part in cholesterol transcytosis

through increasing expression of scavenger receptors that

bind to the modified lipoproteins and transport them

across the endothelium into arterial intima (62, 63).

Accumulation of lipoproteins in the intima leads to

endothelial activation, which induces sterile inflammation

and further modification of retained lipoproteins in the plaque

(56, 63).

However, many risk factors take part in inflammatory

activation and a great deal of research has demonstrated

that macrophages play key roles in the pathogenesis of

atherosclerosis by sustaining a continuous inflammatory

state and through the secretion of inflammatory mediators

such as cytokines and chemokines. Macrophages also take

part in the efferocytotic process. In the early stage of

atherosclerosis, macrophages play a role in the efferocytotic

clearance of apoptotic debris, which differs from lipid-

laden foam cells. In the late stages of atherogenesis,

macrophages produce pro-inflammatory mediators

(60, 64, 65). For example, macrophages release major

pathological proinflammatory cytokines (e.g., IL-6, IL-β,

and TNFα) that play important roles in atherosclerotic plaque

progression (58). Moreover, M2 macrophage populations

elicit greater efferocytosis ability than M1 macrophage

populations (66).

In murine models of atherosclerosis, higher levels of

circulating monocytes have been found, supporting the idea

that atherosclerosis not only affects vasculature, but also

has a systemic impact on hematopoiesis (67, 68). Activated

endothelial cells express some cell surface adhesion molecules,

such as P- and E- selectin, that bind with their respective

receptors expressed on the cell surface of monocytes, and

stimulate monocyte rolling (69, 70). The tethering and

transmigration of monocytes to the intima is followed by

monocyte differentiation into macrophages in intima through

binding of monocyte integrin very late antigen-4 (VLA-4)

and lymphocyte function associated antigen (LFA-1) with their

respective ligands—vascular adhesion molecule-1 (VCAM-1)

and intracellular adhesion molecule-1 (ICAM-1) on the

activated endothelium (37, 60).

In the initial stage of atherosclerosis, macrophages limit

the expansion of early atheroma through efferocytotic clearance

of apoptotic cells and debris (44, 71). In advance stages

of atherosclerosis, macrophages play a role in development

of necrotic cores and the thinning of fibrous caps (72).

Macrophages contribute to fibrous cap thinning through two

different mechanisms. One way is by inducing vascular smooth

muscle cell apoptosis through involving Fas death receptor

and production of pro-inflammatory, apoptotic cytokines

(i.e., TNF-α) (73). Macrophages can also produce matrix

metalloproteinases (MMP) that lead to the degradation of

collagen which in turn destabilizes the cap (72). Specifically,

MMP2 and MMP9 are involved in macrophage mediated

fibrous cap thinning (74). Macrophages are also involved in

the destabilization of atherosclerotic plaques which leads to the

generation of necrotic cores (75, 76). The apoptosis of residential

macrophages in the intima, along with the impaired efferocytosis

of apoptotic cells from surrounding macrophages, induces the

generation of a necrotic core and leads to the pathogenesis of

atherosclerotic plaque progression (75, 76).

Upregulation of “don’t eat-me” signals

It has been shown that the increased levels of

proinflammatory molecule TNF-α in atherosclerotic tissues

upregulates CD47, an important “don’t eat me” molecule in

the atherosclerosis plaque. Additionally, studies have shown

that atherosclerotic mouse models treated with CD47 blocking

antibodies improved atherosclerosis by enhancing clearance

of dead vascular tissue and reversing impaired efferocytosis

(77). It has been reported that a conserved mammalian

lncRNA, myocardial infraction–associated transcript (MIAT),

upregulates the expression of CD47 by sponging miR-149-

5p and shows higher expression in atherosclerosis patients

(78). High mobility group box1 protein (HMGB1), a pro-

inflammatory molecule, inhibits phagocytosis by binding

to PS expressed on the surface of apoptotic neutrophils.

Consequently, pretreatment of macrophages with HMGB1

blocked efferocytosis as a result of the diminished activity of

MFG-E8 factor, which bridges PS and integrin on the surface of

phagocytes (79).

ER stress and ROS production

During the progression of atherosclerosis, ER stress leads

to ROS production and oxidation of LDL. It has been reported

that high density lipoprotein (HDL) upregulates the expression

of SR-BI receptors on phagocytes which inhibit the ox-LDL

induced free cholesterol accumulation and ER stress that impairs

Frontiers inCardiovascularMedicine 05 frontiersin.org

https://doi.org/10.3389/fcvm.2022.1031293
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Singh et al. 10.3389/fcvm.2022.1031293

efferocytosis (80). Ox-LDL upregulates the expression of toll-

like receptor-4 (TLR-4) reduces the expression of SR-BI and

LRP1. This reduced expression ultimately leads to an increase

in the secretion of pro-inflammatory cytokines TNF-α and IL-

1β, which in turn inhibit the activation of liver X receptor and

reduce apoptotic clearance (81).

Studies have shown that defective efferocytosis is related

to impaired macrophage phagocytosis. Transcription factor

interferon regulatory factors (IRF5) play important roles in

modulation of myeloid functions and programming. IRF5

also regulates efferocytosis and necrotic core formation in the

atherosclerotic lesion. It has been reported that transcriptional

regulator interferon regulatory factor 5 (IRF5) modulates

the expression of proinflammatory CD11c+ macrophage

phenotype within the atherosclerotic lesion and impairs

efferocytosis by suppressing the expression of integrin receptor

MFGE8 and Itgb3 (82). Furthermore, studies have shown that

loss of IRF5 reduced the expression of CD11c+ inflammatory

macrophage phenotype within the atherosclerotic lesion.

Deficiency of IRF5 increases the efferocytosis by CD11c−

macrophages through increased expression of integrin β-3

(Itgb3) and milk fat globule-epidermal growth factor 8 (Mfge8)

proteins (82). The inhibition of recognition of apoptotic cells by

phagocytes in the atherosclerotic plaque is one of the reasons

why atherosclerotic plaques exhibit defective efferocytosis.

Epigenetic modification

It has been also shown that dysfunctional microRNAs

(miRs), a type of non-coding RNA, are associated with

post-transcriptional modifications of gene expression that

causes defective efferocytosis. Studies have shown that in

early lesions, miR-155 plays an important role in impaired

efferocytosis and macrophage proliferation through the

targeting of colony-stimulating factor-1 receptor. In advanced

stages of atherosclerosis, miR-155 suppresses the expression

of B-cell leukemia/lymphoma 6 (Bcl6) and accelerates foam

cell accumulation in the atherosclerotic lesion (83). Bcl6,

a potent transcriptional inhibitor, decreases RhoA activity,

modulates cytoskeletal remodeling of macrophages and impairs

efferocytosis (84).

Lastly, a genome-wide association study of coronary

atherosclerosis patients reveals that the 9p21.3 allele

variant was related to atherosclerosis lesion burden

and impaired efferocytosis. A GWAS study has also

shown that the 9p21.3 locus is associated with a reduced

expression of cyclin-dependent kinase inhibitor 2B

(CDKN2B) and “eat me” ligand calreticulin (Calr). This

leads to defect efferocytosis which is unable to remove

large numbers of apoptotic vascular smooth muscle cells

and causes the expansion of the atherosclerotic plaque

(36, 85).

Conclusions

Under normal conditions, the phagocytic capacity

of macrophages is sufficient to remove apoptotic cells

completely. The reduction of phagocytic capacity

and factors that inhibit the clearance of diseased

vascular cells, such as genetics and inflammation,

play an imperative role in the pathophysiology of

atherosclerotic efferocytosis—a role that is worthy of future

translational research.

Myriad research studies have been conducted in an effort to

better understand the underlying causes of atherosclerosis.

Emerging evidence suggests that the impairment of

efferocytosis is a root cause of atherosclerosis and plaque

vulnerability over the time. Thus, therapies targeting

efferocytosis will provide a new platform for the treatment

and prevention of cardiovascular disease through the limiting

the necrotic core. Encouragingly, it has been shown that

these therapeutic agents are safe and specific in ongoing

clinical trials.
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