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Abstract

Two-photon excitation microscopy (TPEM) has revolutionized our understanding of adaptive 

immunity. However, TPEM usually requires animal models and is not amenable to the study of 

human disease. Recognition of antigen by T cells requires cell contact and is associated with 

changes in T cell shape. We postulated that by capturing these features in fixed-tissue samples, we 

could quantify in situ adaptive immunity. Therefore, we used a deep convolutional neural network 

to identify fundamental distance and cell shape features associated with cognate help (Cell 

Distance Mapping, CDM). In mice, CDM was comparable to TPEM for discriminating cognate 

from non-cognate T cell:dendritic cell (DC) interactions. In human lupus nephritis, CDM 

confirmed that myeloid DCs present antigen to CD4+ T cells and identified plasmacytoid DCs as 
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an important antigen-presenting cell. These data reveal a new approach to study human in situ 
adaptive immunity broadly applicable to autoimmunity, infection, and cancer.

Introduction

Adaptive immunity depends upon both antigen-restricted cell-cell interactions and 

environmental niches, which enable and coordinate cellular communication. In mice, two-

photon excitation microscopy (TPEM) has revolutionized our understanding of immune cell 

architectures and their contribution to normal immunity. By visualizing cells and structures 

in live hosts, TPEM provides both a quantitative and dynamic picture of immune 

processes1, 2, 3, 4, 5.

While the gold standard for understanding the organization of immunity, TPEM has several 

limitations. Cells must be fluorescently labeled to be visualized6, 7 and, therefore, 

manipulated systems must be used8. Only small volumes of tissue can be assessed and this 

must be done over sufficient time to capture cellular dynamics. These restraints limit the 

number of measurements that can be practically obtained using TPEM. Furthermore, only 

tissue that can be exposed in live mice is generally amenable to TPEM. While TPEM has a 

maximal effective depth of 1.6 mm9, most applications are limited to less than 500 μm. 

Therefore, immune processes occurring within the interior of some organs cannot be 

visualized. Finally, with few exceptions10, 11, TPEM cannot be used to directly study human 

disease.

Great strides have been made in multiparameter imaging of fixed-human tissue such that 36 

or more markers can be assayed simultaneously12, 13, 14, 15. With these and other 

approaches16, 17 one can identify infiltrating cell subsets and describe their relative regional 

behaviors. Such studies have revealed that the cellular constituency of inflammation is very 

complex16,18 and the organization of immune cells can be both characteristic of disease 

states13 and define prognosis14. However, it is difficult to know why different cell 

populations appear together. Cells such as T cells and antigen-presenting cells (APCs), can 

engage in cognate interactions that drive local adaptive immunity and inflammation19,20. 

Alternatively, cells can just be bystanders of inflammation with different populations 

coalescing because they are responding to similar environmental cues such as chemokines21. 

There are limited tools to discriminate between these states in human tissue.

Previously, we demonstrated that quantitative analysis of human frozen tissue samples, 

imaged by multicolor confocal microscopy, could be used to characterize interactions 

between T follicular helper (TFH) cell populations and B cells19. In these investigations, we 

observed that when TFH cells formed cognate interactions with B cells, their nuclei became 

tightly apposed. These data indicate that distances between nuclear borders can discriminate 

between cognate interactions and when T and B cells are merely in close proximity. 

Therefore, by mapping relative distances between T and B cells in tissue (CDM), we could 

identify functional relationships.

However, the fixed filters and algorithms used in CDM to segment signals within tissue were 

insufficient for defining positions of larger complex objects such as stains associated with 
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DCs. Furthermore, CDM did not accurately capture object shape. We postulated that this 

might be important, as T cells adopt different shapes when scanning for antigen and after 

recognizing peptides in the context of MHC22, 23, 24, 25, 26, 27, 28. In the latter case, T cells 

flatten against the APC to form a stable synapse. In contrast, T cells scanning for antigen or 

those engaged in brief antigen-specific interactions (kinapses), do not undergo the same 

changes in T cell shape and polarity29. We hypothesized that using computational tools that 

accurately captured T cell shape features and DC boundaries, we could identify stable 

synapses and, thus, discriminate between cognate and non-cognate T cell:APC interactions 

in human tissue.

Therefore, we implemented a deep convolutional neural network (DCNN) that precisely 

measured both cell position and shape. The DCNN output was then analyzed with a tuned 

neural network (TNN) to identify the combination of distance and cell shape features that 

best discriminated between different T cell populations relative to DCs. The use of a TNN 

allowed us to restrict our analysis to fundamental morphological features of T cell:DC 

interactions conserved in mice and humans22, 23, 24, 25, 26, 27, 28. We refer to this analysis 

pipeline as CDM version 3 (CDM3). Herein, we demonstrate that in both mice and humans, 

CDM3 can discriminate between in situ cognate and non-cognate T cell:DC interactions30.

Results

Identifying cognate T cell:dendritic cell interactions using TPEM

To develop better computational tools to study immunity in fixed tissue, we first used an 

established murine model of T cell and dendritic cell interactions30. Briefly, three cell 

populations were prepared (Fig. 1a): CD11c+ DCs from CD45.1+ mice stimulated in vitro 
with lipopolysaccharide (LPS), loaded with pigeon cytochrome C peptide (PCC, 10 μM), 

and labeled with the fluorescent dye CMF2HC (blue); polyclonal CD45.1+ CD4+ T cells 

(wild-type) labeled with CMFDA (green); TCR-transgenic 5CC7 CD45.2+ CD4+ T cells 

labeled with CMTPX (red). Previous studies have identified a peptide recognition rate of 

0.1–0.3% for wild-type cells in this model system31,32. Cells were then transferred into wild-

type recipient mice and, after 12 h, popliteal lymph nodes (LNs) were imaged by TPEM. 

These same LNs were then frozen, sectioned, stained for cell nuclei with TO-PRO-3, and 

imaged by confocal microscopy.

TPEM revealed clear differences in the behavior of 5CC7 antigen-specific and wild-type T 

cells relative to antigen-pulsed DCs (Supplementary Movie 1). Many of the PCC-specific 

5CC7 T cells engaged in prolonged interactions with DCs, while wild-type T cells were 

more motile and only interacted briefly. Furthermore, wild-type T cells were spherical when 

interacting with DCs (Supplementary Movie 1 and Fig. 1b), while 5CC7 T cells tended to 

flatten against DCs (Fig. 1c).

Quantitative analysis of TPEM data (Supplementary Table 1) revealed that measures of 

cellular motion discriminated between wild-type and 5CC7 T cells relative to DCs. Plotting 

the mean T cell arrest coefficient per mouse (Fig. 1d) revealed that the motility of 5CC7 

cells was less than that of wild-type cells. However, when plotting values per cell across 

mice there was substantial overlap between the two populations (Fig. 1e). Mean T cell 
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interaction time provided better separation with larger relative differences between wild-type 

and 5CC7 T cells on a per mouse basis and less overlap when individual cells were plotted 

(Fig. 1f,g). The cellular mean velocity of T cells, plotted both per mouse and per cell, 

provided intermediate separation between groups with moderate overlap between individual 

cell values (Fig. 1h,i). In contrast, in response to very low doses of antigen (DCs pulsed with 

0.01 μM PCC) there was relatively little difference between wild-type and 5CC7 cells by 

most TPEM measures (Supplementary Fig. 1). These data indicate that TPEM measures can 

accurately discriminate between wild-type and antigen-specific T cell populations based on 

their behavior relative to antigen-pulsed DCs.

CDM3 captures cell shape

We then used a custom three-dimensional deep convolutional neural network (DCNN) to 

analyze confocal images of LN frozen sections, extracting cell type, position, and shape. The 

DCNN was implemented in Tensorflow (https://www.tensorflow.org), with 10 convolutional 

layers, three maximum pooling layers, and 701,000 trainable variables (Fig. 2a and 

Supplementary Fig. 2). Rather than down-sampling the feature maps (FM) at each maximum 

pooling layer, we increased the sparsity of subsequent convolutional and maximum pooling 

layers. This allowed us to capture features at different scales yet retain information critical 

for accurate segmentation. Training was conducted on patches of pixels (184×184×5) with a 

model field of view (FOV) of 85×85×5, where FOV refers the size of the region around a 

single pixel that goes into predicting the cell type of that pixel. Each pixel was assigned the 

cell type with the maximum predicted probability from the DCNN output. This produced 

solid nuclear and dendritic cell segmentations on which shape-based object analysis was 

performed.

To train the DCNN, we manually segmented confocal images using ICY Bio Image Analysis 

software and ImageJ. All segmentations were independently validated by a blinded observer. 

For the murine experiment above, the total data set of 295 randomly collected high-powered 

fields (HPFs), corresponding to regions of interest (ROIs) containing all three cell types, was 

segmented for wild-type T cells, 5CC7 T cells, DCs, and corresponding cell nuclei 

(Supplementary Table 1). Training batches consisted of 4 image patches drawn randomly 

from the entire dataset, each belonging to four different classes (5CC7 T cells, wild-type T 

cells, DCs, and background). The DCNN was trained for 200,000 iterations at which point 

cross-entropy error was stable and small (Supplementary Figure 2b).

Confocal images segmented by the DCNN were compared for agreement against the 

manually segmented images using 5-fold DCNN model-based cross validation. The DCNN 

output as compared to manual segmentation of input images revealed excellent agreement 

between the two analysis methods (Fig. 2b). To assess the sensitivity and specificity of 

localization and segmentation, a segmented cell was considered detected if the intersection 

over union (IOU) of the manually segmented cell with the automatically segmented cell was 

greater than or equal to 0.5. Overall, across all cells, the DCNN had an average sensitivity of 

88%, specificity of 92%, and an IOU of 0.85. (Supplementary Tables 1 and 2).

From the DCNN output, we extracted relative distances between T cell populations and 

DCs, as well as features of T cell shape. For the latter, we used seven independent measures 
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of two-dimensional shape that include major and minor axis lengths, convex and regular 

perimeters, convex and regular areas, and equivalent diameter33 (Fig. 2c). These data were 

imported into R statistical software34 and analyzed to determine which combination of 

variables and variable weights best discriminated between the 5CC7 and wild-type T cell 

populations relative to DCs. Our approach included the use of the following algorithms: 

logistic regression, support vector machines (SVM), and neural networks. For the latter, 

three different neural network models (simple, tuned, and linear output) were generated. The 

performance of each algorithm was assessed as measured by parameters of classification 

accuracy, error, and receiver operator characteristic (ROC) curve performance for correctly 

predicting cell type (Supplementary Table 3a). An actively tuned NN (TNN) (Fig. 2d) 

consistently displayed the best performance among neural network models (Supplementary 

Table 3b) at the expense of increased number of steps and computation time (Supplementary 

Fig. 3a-c). Therefore, we used a DCNN followed by a TNN in the CDM3 pipeline.

Comparison of CDM3 to TPEM in mice

Random forest analysis revealed that minimum distance to a DC provided the best 

discrimination between 5CC7 and wild-type T cells (Fig. 3a). Simply plotting relative 

distance to closest DC provided excellent discrimination between wild-type and 5CC7 T 

cells with 5CC7 T cells being, on average, much closer to the nearest DC (Fig. 3b). We next 

plotted the true-positive rate (sensitivity) versus the false-positive rate (1-specificity) in a 

receiver-operator curve (ROC) to determine how distance performed as a test to discriminate 

between wild-type and 5CC7 T cells (Fig. 3c). This analysis revealed that cellular distance 

provides good discrimination with an area under the curve (AUC) of 0.70 (95% CI: 0.62–

0.74, P < 5 × 10−5).

Among the T cell shape variables, minor-axis length was the most promising for 

discriminating wild-type from 5CC7 T cells. Comparison of T cell minor axis length at 

distances of less than 5 versus 75 μm or greater from DCs, revealed that 5CC7 T cells had a 

longer minor axis compared to wild-type T cells at close distances (Fig. 3d). Plotting 

individual cell minor axes as a function of distance (Fig. 3e and Supplementary Fig. 4a) 

clearly revealed a subpopulation of 5CC7 cells displaying high values, especially when 

contacting a DC (0 μm). This difference was diminished by 25 μm and largely lost at 

distances greater than 50 μm. These changes are consistent with the 5CC7 cells flattening 

against the antigen-pulsed DCs resulting in an increase in minor cell axis for some cells in 

the two-dimensional plane of the confocal micrograph. In contrast, the minor axis of wild-

type T cells in some cells decreased as a function of distance from DCs. This latter trend is 

consistent with wild-type T cells becoming more spherical upon contacting DCs.

Plotting T cell cross-sectional area as a function of distance revealed similar results (Fig. 

3f,g and Supplementary Fig. 4b) with a subset of 5CC7 T cells having relatively large cross-

sectional areas when very close to or abutting DCs. Wild-type T cell area decreased at close 

DC distances. In contrast, 5CC7 and wild-type T cells have similar shape characteristics at 

distances of 75 μm or greater from DCs. These data suggest that there were no substantial 

intrinsic differences between the T cell populations in shape or size. Rather, antigen-specific 

5CC7 and wild-type cells diverge in their shape properties in proximity to antigen-pulsed 
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DCs. These data suggest that CDM3 can capture changes in T cell shape that occur upon 

recognition of antigen presented by DCs.

We next determined how well CDM3 could discriminate between the 5CC7 and wild-type T 

cell populations by simultaneously incorporating both distance relationships and T cell 

shape. We focused our analysis to T cell populations within 25 μm of DCs, as this was the 

distance at which we observed substantial differences in T cell shape. Furthermore, we 

examined close distances because we were interested in discriminating between T cells that 

recognize antigen from those that are scanning peptide-MHC class II complexes, looking for 

antigen. The full CDM3 output, which integrates distance and T cell shape variables, 

provided an AUC of 0.84 (95% CI 0.80 – 0.90, P < 5 × 10−5) and was substantially better 

than distance alone for all measurements (Fig. 3h). In contrast, at distances of greater than 

75 μm, the two T cell populations were indistinguishable (Fig. 3i). Within 25 μm, the use of 

the minimum distance variable by itself could also discriminate between 5CC7 and wild-

type cells (data not shown). However, differences between populations were less robust 

(AUC=0.65, 95% CI: 0.59–0.72, P = 0.008). These data indicate that CDM3, by combining 

measurements of both cell distance and T cell shape, provides excellent discrimination 

between T cell populations that are scanning for antigen versus those that have recognized 

antigen.

We next examined how well measures obtained by TPEM discriminated between 5CC7 and 

wild-type cells interacting with antigen-pulsed DCs. Therefore, we took the TPEM outputs 

described above (Fig. 1 and Supplementary Table 1) and subjected them to the same 

statistical modeling by plotting their true-positive rate versus false-positive rate. The arrest 

coefficient provided good discrimination with an AUC of 0.74 (95% CI: 0.72–0.82 P < 5 × 

10−5; Fig. 3j). Cell velocity was more robust with an AUC of 0.86 (95% CI: 0.78–0.90, P < 

5 × 10−5, Fig. 3k). Only cell interaction time, with an AUC of 0.95 (95% CI: 0.94–0.97, P < 

5 × 10−5), substantially outperformed CDM3 (Fig. 3l). These data indicate that CDM3 

performs as well as many TPEM measures in identifying antigen-specific T cell interactions 

with DCs.

T cell nuclei as a surrogate for cell shape

We next sought to apply CDM3 to the analysis of multichannel confocal images of human 

tissue. However, immunofluorescence with antibodies to surface markers is often inadequate 

for identifying the exact boundaries of lymphocytes in dense infiltrates. In our original 

studies using CDM, nuclear stains were necessary to define lymphocyte position19. As the 

nucleus constitutes the majority of a lymphocyte’s volume35, we postulated that nuclear 

shape would approximate cell shape.

Therefore, 5CC7 and wild-type T cell nuclei were segmented and analyzed using CDM3. 

Evaluation of representative images of cell trackers compared to TO-PRO-3 nuclear staining 

revealed extensive overlap between the two staining signatures (Fig. 4a). Analysis of 

individual shape parameters revealed similar relationships between 5CC7 and wild-type T 

cell nuclear shape and distance to closest DCs as observed for their cell tracker counterparts 

(Fig. 4b-d, Supplementary Fig. 4d,e and Supplementary Table 1). That is, in a subset of 

5CC7 cell nuclei, shape parameters increased close to DCs while in wild-type nuclei they 
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did not. Interestingly, a small population of 5CC7 nuclei displayed a decrease in two-

dimensional T cell shape parameters close to DCs. This distance-dependent increase in 

nuclear shape variability is consistent with 5CC7 cells becoming more irregular (less 

spherical) upon contacting DCs. This is expected when a cell (sphere) flattens against a DC 

(surface).

Application of the composite distance and T cell nuclear shape scores revealed similar 

discrimination between 5CC7 and wild-type T cell interactions with DCs as that observed 

for whole cells (Fig. 4e, AUC=0.82, 95% CI: 0.77–0.91, P < 0.005). Similarly, at distances 

greater than 25 μm, the two T cell nuclei populations were indistinguishable (data not 

shown, AUC=0.52, 95% CI: 0.45–0.72). These data indicate that nuclear shape alone can be 

used to approximate T cell shape for the purpose of discriminating cognate from non-

cognate T cell–DC interactions.

Finally, to validate our mouse experiments, we independently repeated the adoptive cell 

transfer experiment in mice and obtained 233 additional ROIsHere, DC and T cell nuclei 

were subjected to the same segmentation and analysis using CDM3 as described for the 

original experiment. These data revealed similar discrimination as before between 5CC7 and 

wild-type T cell nuclei with an AUC of 0.82 (95% CI: 0.72 to 0.87, P < 5 × 10−5) at 

distances less than 25 μm from DCs. Likewise, for distances greater than 25 μm, the two T 

cell nuclei populations were similar (AUC=0.54, 95% CI: 0.45–0.58).

Application of CDM3 to human lupus nephritis

We next sought to understand the relationships between DCs and T cells in human tissue. 

Specifically, we examined the relative abilities of mDCs and pDCs to present antigen to T 

cells in lupus nephritis tubulointerstitial inflammation (TII). Conventionally, mDCs are 

considered a professional APC36, 37, while the function of pDCs is thought to be the 

secretion of interferon-α and other cytokines38. However, some subpopulations of pDCs can 

present antigen to CD4+ T cells39, 40.

Single longitudinal sections were captured by either tiling HPFs across the entire renal 

biopsy (n = 10 biopsies), or by capturing those with at least one mDC or pDC (n = 12 

biopsies). A total of 243 ROIs, from a data set of 687 ROIs, were manually segmented and 

used for training the DCNN, as described above (Supplementary Table 4). An example of 

raw input images, the output from the DCNN, and a comparison of cell segmentation using 

DCNN versus manual approaches is depicted (Fig. 5a). Overall, there was an excellent 

agreement between the cross-validated DCNN and manual segmentation with a sensitivity of 

0.72, specificity of 0.86, and an IOU of 0.70 for all cell types (Supplementary Table 5). The 

lowest sensitivity was observed for CD3+CD4– T cells, which coincided with the most 

technically difficult staining, as compared to the other cell types. Another example of the 

DCNN output for pDCs and CD4+ T cell nuclei (Fig. 5b) illustrates the DC outlines and T 

cell nuclear edges used to calculate minimum distances. Cells that could be categorically 

assigned with 90% or greater confidence were used for the subsequent analysis.

We then compared the DCNN segmentation output to the output obtained using the original 

CDM19. With detections computed at an IOU of 0.50, the sensitivity and specificity for 
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CD3+CD4+ nuclei was only 0.07 and 0.17, respectively. The sensitivity and specificity for 

CD3+CD4– nuclei was 0.29 and 0.05, respectively. The segmentation of DCs by CDM was 

so poor a sensitivity and specificity could not be calculated. Therefore, the original CDM, 

which used fixed segmentation filters, was poor at capturing nuclear and cell shape.

Twenty five lupus nephritis biopsies, scored for degree of TII (integer scale: 0–341), were 

stained with antibodies specific for CD11c, BDCA1, BDCA2, CD123, CD3, CD4, and 

DAPI. In individual longitudinal biopsy sections, the numbers of mDCs (CD11c+BDCA1+) 

and pDCs (CD123+BDCA2+) were determined using CDM3. Myeloid DCs were present in 

all degrees of TII with no statistically significant differences among the groups. In contrast, 

the majority of pDCs occurred in severe TII (P < 0.05)(Fig. 5c,d, Supplementary Table 6). 

CD4+ T cells appeared more frequent around pDCs than mDCs; CD4– T cells exhibited 

similar behavior, albeit they were less frequent (Fig. 5e and Supplementary Figure 5). 

However, the number of CD4+ and CD4– T cells per either DC population was similar when 

considering whole biopsies or HPFs (Supplementary Table 5). These data indicate that pDCs 

are more common than mDCs in severe TII and are associated with a proportional increase 

in local T cell infiltrates.

Both pDCs and mDCs could just be co-segregated with T cells in areas of active 

inflammation or they could be contributing to inflammation by locally presenting antigen to 

CD4+ T cells. To discriminate between these two possibilities, we analyzed the distance and 

shape characteristics of CD3+CD4+ T cell nuclei relative to each DC population in biopsies 

with severe TII (n = 8). Local CD3+CD4– T cells provide a non-MHC class II restricted 

bystander control population (Fig. 5f). Analysis of relative distances revealed that 

CD3+CD4+ T cells were, on average, closer to both pDCs and mDCs than CD3+CD4− T 

cells (Fig. 5g and Supplementary Fig. 6). Analysis of T cell nuclear shape revealed 

differences between CD3+CD4+ and CD3+CD4– cells relative to each DC population, with 

different measures of T cell shape making differential contributions to accuracy relative to 

either pDCs or mDCs (Fig. 5h). Examination of T cells relative to pDCs for both convex 

area and equivalent diameter revealed that some of those CD3+CD4+ cells close to pDCs 

tended to be larger on cross-section (Fig. 5i,j and Supplementary Fig. 4f,g). Similar 

relationships were observed for T cell equivalent diameter and major axis relative to mDCs 

(Fig. 5k,l and Supplementary Fig. 4h,i). In contrast, some CD3+CD4– cells tended to get 

smaller in cross-section as a function of distance from either DC population. These same 

trends were observed for 5CC7 and wild-type murine T cells relative to antigen pulsed DCs. 

However, in contrast to the murine experiment, CD3+CD4– cells were larger than 

CD3+CD4+ cells when not in proximity to a DC (Supplementary Fig. 4f–i). These data 

demonstrate that by examining changes in T cell shape as a function of distance, one can 

compare T cell populations that are intrinsically different in size.

Plotting the composite CDM3 output of distance and T cell shape features revealed clear 

discrimination between CD3+CD4+ and CD3+CD4– T cells within 25 μm for both mDCs 

(Fig. 6a, AUC=0.63, 95% CI: 0.55–0.71, P < 0.01) and pDCs (Fig. 6b, AUC=0.65, 95% CI: 

0.61 – 0.69, P < 0.0005). Use of minimum distance alone yielded inferior results in cell type 

discrimination (data not shown; AUC=0.63, 95% CI: 0.50–0.69, P = 0.05, and AUC=0.57, 

CI: 0.52–0.61, P = 0.03 for CD3+CD4+ and CD3+CD4– T cells within 25 μm of mDCs and 
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pDCs, respectively). These data are consistent with distance and T cell shape relationships 

observed in murine cells and suggest that both mDCs and pDCs present antigen to CD4+ T 

cells. However, as there are more pDCs than mDCs in severe TII, pDCs appear to make a 

larger contribution to in situ CD4+ T cell activation.

In peripheral blood, a subpopulation of pDCs expressing the surface markers AXL and 

SIGLEC6 can function as APCs40. However, the lupus intrarenal pDCs are AXL–SIGLEC6– 

(data not shown). Therefore, to confirm that intrarenal pDCs were an important APC in vivo, 

lupus TII biopsies were stained with antibodies specific for CD3, CD4, CD43, BDCA2, and 

tubulin to visualize the microtubule organizing center (mTOC), as well as DAPI. We then 

performed three-dimensional confocal imaging on representative T cell:pDC conjugates. As 

seen, there is polarization of the TCR:CD3 complex towards the interface with the pDC 

(Fig. 6c,d). Likewise, the T cell mTOC is oriented towards the interface with the pDC. In 

contrast, CD43 is accumulated at the distal pole complex - all consistent with a canonical, 

mature T cell:APC synapse42, 43.

To quantify mTOC polarization, lupus renal biopsies with pDCs were stained with 

antibodies specific for CD3, CD4, BDCA2, tubulin, and DAPI then subjected to confocal 

microscopy to obtain z-stack images as described in Methods. We scored the number of 

CD3+CD4+ and CD3+CD4– T cells abutting pDCs (186 pDCs across three biopsies), and 

how many of these T cells had their mTOCs polarized towards the interface with pDCs. 

CD3+CD4+ were almost 6-times more likely to be abutting pDCs (a two to three-fold 

enrichment compared to total T cell numbers (Fig. 6e, Supplementary Table 6). Of these, 

40% had a mTOC polarized towards pDCs while only 10% of abutting CD3+CD4– cells did. 

Therefore, there was an overall 24-fold difference in conjugate rate between CD4+ and 

CD4– T cells (P < 0.0005). These data confirm that CDM3 accurately detects T cell:pDC 

conjugates.

Discussion

The study of immune cell dynamics in tissue is challenging and presents several trade-offs. 

Techniques such as TPEM provide direct visualization of precisely labeled and characterized 

cell populations and quantifies their interactions with other cells over time. However, TPEM 

can only be used on some tissues at limited organ depths. It is also difficult to apply directly 

to the study of human disease10, 11. In this work, we demonstrate that by utilizing multi-

channel confocal microscopy and a novel analytic pipeline that we term CDM3, we approach 

the performance measures of TPEM in discriminating stable cognate from non-cognate T 

cell–DC interactions in mice. These data indicate that a quantitative analysis of many static 

two-dimensional images can approximate much of the information obtained from time-lapse 

3D videos of the same phenomenon. Additionally, as CDM3 is performed on single plane 

images of fixed tissue, we could use CDM3 to study human disease and identify important in 
situ APCs.

Beyond applicability to the study of both human disease and animal models, not readily 

accessible to TPEM, CDM3 offers several additional advantages. It provides higher 

throughput, which enables larger sample sizes and robust statistical confidence. CDM3 does 

Liarski et al. Page 9

Nat Immunol. Author manuscript; available in PMC 2019 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



not require experimental manipulations to label cells and, therefore, can be performed on 

native systems, minimizing experimental artifact. Furthermore, it can be performed on any 

tissue and at any depth. CDM3 cannot assess the kinetics of cellular interactions and, hence, 

cannot be used to address some questions. Regardless, for many experimental applications in 

animal models, CDM3 might be a preferred approach.

However, the major advantage of CDM3 is that it can be performed on single sections from 

frozen tissue. Therefore, it is ideally suited to human studies and can be applied to biopsies 

that are routinely obtained as part of clinical care. In lupus nephritis, we were able to 

identify putative in situ cognate T cell–DC interactions and, furthermore, assign relative 

importance of different DC populations in presenting antigen to CD4+ T cells. Overall 

sensitivities and specificities in human disease were less than those observed in transgenic 

mice. This could reflect inherent differences in the imaging approaches used in mice and 

humans. More likely, the lower signal observed in human disease reflects underlying 

heterogeneity in the cells and antigens driving in situ adaptive immunity. However, by 

capturing more events than is practical with TPEM, we overcame this heterogeneity to make 

statistically robust conclusions.

The sequential use of a DCNN followed by a TNN in CDM3 is critical for application to 

human disease. In mice, we can dictate the antigen specificity of T cell populations and, 

therefore, use a DCNN to best discriminate between antigen-specific and non-antigen- 

specific interactions with DCs. We have an ideal training set. In humans, we cannot control 

T cell antigen specificity. However, by using mice to learn how to extract fundamental 

features of how T cells interact with DCs, that are conserved across mice and 

humans22, 23, 24, 25, 26, 27, 28, we can apply the CDM3 pipeline to human samples and 

identify stable cognate interactions. Thus, our sequential pipeline helps overcome major 

limitations of machine learning including transparency, in-depth understanding of how 

machine-learning algorithms function, and what newly created predictors or intermediate 

variables represent. These ambiguities often make it difficult to relate machine learning 

outputs to meaningful biological variables or behavior4445.

In CDM3, we designed and trained a highly customized DCNN from scratch because our 

application was so different than mainstream applications designed for photographic images. 

Particularly, we were interested in making predictions on multichannel images where there 

was significant bleed-through between stain channels. We also wanted to classify nuclei 

based on surface stains that were not spatially co-localized between image channels. To do 

this we used 3D convolutional kernels to relate information across the channel dimension. 

This not only allowed us to relate non-spatially co-localized information between image 

channels, but it also allowed the DCNN to use features from one image channel to mitigate 

noise or ambiguity in another.

Additional customization of our DCNN included selecting an appropriate number of neural 

network parameters for the CNN such that it was complex enough to learn features in our 

labeled image data set, but not so complex that it overfit and simply memorized the training 

set. Training images were also carefully selected to be representative of the whole dataset 

and representative of variations in image quality. The classes of training examples used were 

Liarski et al. Page 10

Nat Immunol. Author manuscript; available in PMC 2019 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



balanced to ensure equal performance in classifying the different cell types. The scale of the 

dilated convolutions used in the layers of the neural network were selected such that they 

acted on spatial scales where features relevant to classifying the image data were most likely 

to exist. Data were normalized using the standard score (z-score) applied separately to each 

channel of each ROI. These design decisions were made so that learned features from the 

training data were robust and transferrable to other experimental data.

Our studies were limited to single plane confocal images and simple pair-wise cell:cell 

interactions. However, CDM3 is adaptable to three-dimensional images that would provide 

more definitive measures of in situ APC function. Furthermore, the general approach 

illustrated by CDM3 is applicable to the study of complex cellular networks containing three 

or more cell types. A quantitative understanding of the cellular architectures of in situ 
adaptive immunity and inflammation in human disease will provide new insights into the 

pathogenic mechanisms of autoimmunity and features of immunity effective against cancer.

Methods

Mice

B10.A CD45.2− and B10.A CD45.2+ 5CC7 TCR-transgenic Rag2−/− mice were obtained 

from Taconic Laboratories through a special NIAID contract. All animal experiments were 

conducted under a protocol approved by the NIAID Animal Care and Use Committee 

(LSB-1E) and the University of Chicago Animal Resource Center. All animal experiments 

were conducted in compliance with all relevant ethical regulations.

Adoptive transfer

Dendritic cells were purified from mouse spleens using anti-CD11c beads (Miltenyi). 

Purified dendritic cells were activated in vitro with LPS (1 μg/ml) and pulsed with pigeon 

cytochrome C peptide (Bachem, sequence corresponding to amino acids 88–104) at high (10 

μM) or low (0.01 μM) concentration for 4 h at 37 °C. Activated DCs were labeled with Cell 

Tracker Blue (CMF2HC, Invitrogen), then injected (1 × 106 per recipient) into the right rear 

footpad of recipient mice. Polyclonal and 5CC7 TCR-transgenic T cells were isolated from 

the lymph nodes of B10.A CD45.2– wild-type and B10.A CD45.2+ 5CC7 TCR-transgenic 

Rag2–/– mice, respectively, and purified using a CD4+ T cell isolation kit (Miltenyi). 

Polyclonal T cells were then labeled with Cell Tracker Green (CMFDA, Invitrogen) and 

5CC7 T cells with Cell Tracker Red (CMTPX, Invitrogen). 2 × 106 of each T cell population 

were then co-injected IV into recipient mice 18 h post transfer of DCs. 12 h post T cell 

transfer, mice were subjected to two-photon emission microscopy studies as previously 

described46. Isoflurane was used to anesthetize mice prior to exposure of popliteal LN 

(Baxter; 2.5% for induction, ∼1%–1.5% for maintenance, vaporized in an 80:20 mixture of 

O2 and air), and subsequent TPEM was performed as described46. Briefly, imaging was 

conducted on a Bio-Rad/Zeiss Radiance 2100MP, configured with a Nikon 600FN upright 

microscope equipped with a 203 water immersion lens (NA 0.95, Olympus) and LaserSharp 

acquisition control software. Anesthetized mice were maintained in environmental chambers 

warmed by heated air with the surgically exposed LN kept at 36–37 °C with warmed PBS. 

Upon completion, mice were euthanized and draining popliteal lymph nodes were isolated, 
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cured overnight in 30% sucrose, and frozen at −80 °C. The tissue was subsequently 

sectioned at 5 μm thickness and prepared for confocal microscopy.

Imaging of mouse tissue

Mouse tissue sections were prepared and stained with TO-PRO-3 Iodide (Invitrogen) to 

visualize nuclei and avoid interference with the fluorescence spectrum of transferred cell 

trackers. Single-fluorochrome controls were utilized to ensure no cross-bleeding was present 

in between fluorescent channels. Images were acquired at 12-bit depth, 1024×1024 pixel 

size, at 400× and 630× magnifications utilizing either the SP5 Tandem Scanner Spectral 2-

photon confocal microscope or the SP8 3D 3-color STED laser scanning confocal 

microscope with time gating (Leica). Each region of interest (ROI) was 144.74 μm/1024 

pixels wide, corresponding to an average absolute resolution size of 0.28 μm, based on 

Nyquist sampling. Regions of interest, containing all three transferred cell populations, were 

selected for acquisition. Raw images were stored in manufacturer-specified .lif format. Lif 

files were converted to multi-channel .tif images and used as input for DCNN analysis.

Renal biopsy staining

This study used a total of 25 renal biopsies from de-identified patients, obtained from the 

University of Chicago Human Tissue Resource Center (HTRC), Department of Pathology. 

The tissue was fresh-frozen in OCT Tissue Plus (Thermo-Fischer) and stored at −80 °C. The 

study protocol was approved by the University of Chicago Institutional Review Board 

(IRB#15–0727) and did not require informed consent as no patient data were used. All 

human experiments were conducted in compliance with all relevant ethical regulations. 

Confirmation of the diagnosis of lupus nephritis as well as grading of the severity of 

tubulointerstitial inflammation was performed by a blinded reading nephropathologist (A.C.) 

as previously described47. In addition, de-identified tonsil samples were utilized from the 

University of Chicago Pathology Core Facility for antibody testing and validation. Two 

distinct antibody panels were utilized to stain 3–4 μm thick tissue sections; for pDC analysis 

– CD3 (clone SP7, Abcam or clone CD3–12, AbD Serotec), CD4 (clone YNB46.1.8, 

Abcam), BDCA2 (clone AC144, Miltenyi), and CD123 (clone 6H6, eBioscience); mDC 

analysis – CD3, CD4, BDCA1 (clone L161, Beckman Coulter), and CD11c (clone 

EP1347Y, Abcam). DAPI (Hoechst 33342, Invitrogen) was used with the above to visualize 

tissue nuclei. Images were acquired using a SP5 or SP8 confocal microscope as described 

above. In addition to selecting individual ROIs for analysis, selected biopsies underwent 

tiling, wherein the entire available tissue was imaged and a composite stitched image 

obtained based on default manufacturer settings (SP8). All images were stored in .lif format. 

Lif files were converted to multi-channel .tif images and used as input for DCNN analysis.

mTOC localization quantification

Three 3 μm-thick severely inflamed lupus nephritis biopsies (TII grade 3) were stained with 

antibodies to CD3, CD4, BDCA2, and DAPI as per the above protocol. Anti-tubulin (clone 

YL1/2, Abcam) was added to visualize the mTOC. Automated z-stack protocol images were 

obtained from regions containing pDCs using the Leica SP8 laser scanning confocal 

microscope. The images were processed in Fiji using the 3D viewer plug-in (https://

imagej.net/3D_Viewer) to obtain a maximal projection in 2D. Manual counting of mTOCs 
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was then performed in a blinded fashion by a single observer (J.A.). All CD3+CD4– and 

CD3+CD4+ T cells abutting a pDC were quantified along with those, featuring an mTOC at 

the junction between the T cell and APC.

DCNN

Manual segmentation of confocal images was conducted using ICY Bio Image Analysis 

software, version 1.8.6.0 (http://icy.bioimageanalysis.org/) and Fiji/ImageJ, version 2.0.0-

rc-43/1.50i (http://imagej.nih.gov/ij/). Image channels were rigidly registered using the 

‘multimodel’ configuration of the imregister function in Matlab48. All segmentations were 

independently validated by a blinded observer (V.M.L.). The total data set for the murine 

analysis consisted of 295 ROIs, which were segmented for wild-type T cells, 5CC7 T cells, 

transferred DCs, and corresponding cell nuclei. The standard score, z = (x – μ)/σ, of the 

ROIs was taken for every individual channel within every ROI independently. All training 

and inference was performed on z-score transformed ROIs.

The DCNN was trained with a batch size of four 184×184×6 image patches distributed 

across 4 Tesla GPUs with 12GB memory per card, system memory of 128 GB with 2 Intel 

E5–2680v4 CPUs @ 2.4 GHz on the University of Chicago Research Computing Center 

GPU2 nodes on Midway249. Image patches were sampled from the entire labeled dataset. 

Each of the four patches for a training iteration represented one of the four classes to be 

segmented. Class membership of a patch was determined by the class of the center pixel. 

Where this 184×184 patch around pixels extended beyond the ROI border, mirror padding 

was used. Sampling was implemented in Tensorflow (https://www.tensorflow.org)50 using a 

list of all pixel locations by class, stored in system memory. The image, label, and data for 

each ROI was stored in binary TFrecord format in 32-bit float format and accessed by 

Tensorflow queue runners for active data augmentation (rotation and mirroring) of training 

examples onto a queue. Error was computed for all classes within the patch.

Softmax binomial cross-entropy was used to compute neural network error over an output 

image patch of 100×100 pixels, reduced input size of 184×184. This dense output was 

important because it reduces training redundancy and increases training stability. All 

convolutional and pooling layers were allowed to shrink the input by filter overlap at each 

layer in x and y, known as valid padding. Convolutional layers were padded in the channel 

dimension to keep channel dimensions the same. All weights were initialized with Xavier 

initialization51 and all biases were initialized at zero. Gradients were averaged across GPUs 

for each variable at each iteration. Stochastic gradient descent was used for optimization 

with learning rate of 0.001 with no decay of the learning rate. The DCNN was trained for a 

total of 200,000 iterations.

Inference was performed on 1024×1024 ROIs with boundary mirroring to fit the field of 

view. The final segmentation result is taken by assigning each pixel the label of the class 

with the max predicted probability from the softmax output. Segmentation performance was 

assessed using 5-fold cross validation, in which a full DCNN model is trained on 4/5ths folds 

of the data set and tested on the 5th fold, for all 5 folds. We assessed the sensitivity and 

specificity of our cell detection and computed the mean intersection over union (IOU) - 

defined as: IOU(A, B) = |A∩B|/|A∪B|, for each class of detected cells. All object analysis in 
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this work was conducted using scikit-image52. For the purposes of computing sensitivity and 

specificity, a cell was considered to be detected if the IOU with the truth, based on manual 

segmentation, was ≥ 0.5.

Following segmentation by the DCNN, minimum and mean minimum distances in between 

cells or nuclei of interest, the convex and regular areas, circularity and eccentricity, convex 

and regular perimeters, equivalent diameter, major and minor axis lengths, aspect ratio, pixel 

size, solidity, perimeter/circularity ratio, and probability of belonging to the designated class 

for each object were computed for detected CD3+CD4+ and CD3+CD4– T cells. In addition, 

for every T cell the minimum distance to the nearest DC was computed in two ways: the first 

was simply the minimum Euclidean distance found between all the pixels in the T cell and 

the nearest DC pixel; an additional mean minimum distance was computed by averaging the 

distances from all pixels in the T cell to the nearest dendrite.

Data Analysis and Algorithm Comparison

Original CDM analysis based on minimum distance48 and preliminary TPEM data was 

performed with GraphPad Prism 5.0a software for Mac (GraphPad Software). All 

subsequent dataset analysis was performed using R statistical software (version 3.4.1, The R 

Foundation for Statistical Computing) and RStudio (version 1.0.153, RStudio), running on 

MacOS 10.13.1 High Sierra, powered by a 3.5 GHz 6-core Intel Xeon E5 CPU with 32 GB 

of RAM. Mouse adoptive transfer and lupus nephritis data were subjected to multivariate 

logistic regression, support vector machine (SVM), random forest, and neural network 

analyses. The following R packages were used for modeling: randomforest (ver 4.6–14), 

e1071 (1.7–0), xgboost (0.71.2), rpart (4–1.13) and rpart.plot (3.0.4), neuralnet (1.33), 

glmnet (2.0–16). The caret package was utilized when multiple instances or tunes were 

required to be generated and compared. Each instance of SVM, neural network, and random 

forest model generation was preceded by explicitly invoking a specific kernel seed to allow 

for result reproducibility. Modeling was performed on log-transformed and normalized input 

data with a binary outcome variable, representing classification (either wild-type or 5CC7, 

or CD3+CD4+ or CD3+CD4– cells). To control for incomplete or incorrect segmentation, all 

objects with areas < 3 and ≥ 100 square pixels were removed. Test and train datasets were 

defined as random 1/3:2/3 selections of input data. All n-fold cross-validations were 

performed with an n = 5. SVM analysis was subjected to linear, radial, and sigmoid kernels 

when comparing among models. Random forest analysis was used to define the relative 

importance of predictors as follows: a default of 500 trees were generated for each datapoint 

using the randomforest package and the optimal Cp parameter was selected based on 

minimum square error (MSE) optimization. The resultant RF plots were visualized and the 

relative importance of each split versus mean decrease in accuracy was recorded. The 

features across each experiment were compared to determine predictor hierarchy. Results of 

logistic regression were cross-referenced to ensure data consistency and agreement. ROCR 

and pROC packages were used to generate AUC curves and confidence interval on all 

included ROC plot figures with the following parameters: 10,000 bootstrap replicates, 

stratification, curve smoothing, and a confidence interval alpha of 0.90, corresponding to a 

type I error of 0.05. P values for comparison of neural network algorithm output with the 

null hypothesis (AUC = 0.5) were obtained with the verification R package using the 
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roc.area function, and are separate from the indicated confidence intervals. Mann-Whitney 

U-test (unpaired Wilcoxson rank sum test) was utilized whenever group comparisons were 

performed. A Benjamini-Hochberg correction was applied for large datasets exceeding 

5,000 observations with an FDR set to 5%, which was applicable for human lupus nephritis 

analysis.

TNN generation

After segregating the data based on minimum distance cutoffs, neural network models were 

generated using the following independent predictors: convex and regular areas, convex and 

regular perimeters, equivalent diameter, and major and minor axis lengths. A total of 3 

different models of neural networks were generated and their performance compared: a 

single-layer model with (n+1) nodes in the hidden layer, where n is number of predictors; an 

actively tuned model, with 3:(n−1) nodes in the first hidden layer with the addition of 0:2 

additional hidden layers consisting of a maximum of 2 and 1 additional hidden nodes, 

respectively; and a linear output neural network model with the specification of no hidden 

layers, constant weights, and linear output. In order to avoid result skewing due to 

unbalanced numbers of cell types in relation to distance, each instance of neural network 

analysis was performed by taking the minimum number of cells (wild-type and 5CC7 cells 

for mouse, and CD3+CD4+ and CD3+CD4– cells for lupus nephritis), and randomly 

sampling an equal number of cells from the second population. Every network analysis 

performed was specified with a threshold of 0.1, stepmax of 1 × 108, default (logistic) 

activation function, cross entropy error differentiable function, and otherwise default 

package parameters for learning rate, starting weights, and number of repetitions. When 

possible, the performance of each algorithm was compared based on the parameters of total 

error, classification accuracy, and receiver operator curve performance of correctly 

predicting cell type.
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The data that support the findings of this study are available from the corresponding authors 
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Figure 1. TPEM to measure antigen-specific CD4+ T cells interacting with dendritic cells.
(a) Indicated T cells (wild-type (WT) or 5CC7) and antigen-pulsed DCs were transferred 

into B10.A2 CD45.2– mice and, after 12 h, popliteal lymph nodes were first imaged by 

TPEM, frozen, and then imaged by confocal microscopy for CDM3. (b) Confocal 

microscopy examples of WT cells (green) interacting with DCs (blue). (c) Examples of 

5CC7 cells (red) interacting with DCs. (d,e) Arrest coefficient plotted either as mean per 

mouse (n = 7) (d) or for individual cells, all experiments (e). (f,g) Interaction time plotted 

per mouse (f) or per cell, all experiments (g). (h,i) Cellular velocity plotted either per mouse 

(h) or per cell, all experiments (i). **P < 0.005, ***P < 0.0005, 2-sided Mann-Whitney U 

test. All center values denote the mean and error bars denote standard error of the mean. 

Scale bars, 10 μm. n = 3 independent experiments for (b,c) and n = 2 independent 

experiments for (d-i).
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Figure 2. Development of CDM3.
(a) Abbreviated schematic of DCNN (also see Supplementary Figure 1) illustrating input of 

five layers (three fluorescent channels, TO-PRO-3 nuclei, and differential interference 

contrast [DIC]), four subsequent levels of convolution, and 4 classifier outputs (fluorescent 

signatures for WT T cell nuclei, 5CC7 T cell nuclei, DCs, and background). Across each 

convolution level, sparsity is increased, resulting in progressively larger kernel sizes 

(increasingly larger 3×3×3 boxes with spacing between elements). The ROI size stays 

constant throughout the DCNN. In the fully connected (FC) layer, all features (600) are 
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integrated at each pixel, which are then ascribed classifier probabilities in the softmax layer 

(not shown). Each pixel is assigned to the cell type with maximum predicted probability to 

produce solid objects (segmentations). (b) Example of DCNN input and output. Five input 

channels are processed through the DCNN with an output of solid objects (middle right) for 

5CC7 T cells (red), WT T cells (green), and DCs (blue). Far right, DCNN segmentations are 

shown in colored lines, and the corresponding manual segmentations shown in white lines. 

(c) Illustration of independent cell shape parameters. Convex measurements can be thought 

of as applying a theoretical rubber band around an object (dashed gray line) and are 

important in identifying local concave shape changes. The equivalent diameter represents the 

diameter of a circle, possessing an identical area as a non-circular object. (d) Outline of the 

neural network models used to analyze lymphocyte distance and cell shape data. After 

segregation by minimum distance, the indicated seven measures of cell shape were scaled, 

normalized, and used as input into three neural network models (simple, tuned, and linear 

output) in R statistical software, as described in Methods. The arrows and circles indicate 

data flow from a single input node throughout the network (applied weights omitted). The 

maximum potential number of hidden layers and nodes, used for active tuning, is indicated 

by dashed gray circles, with data flows in between steps denoted by dashed gray lines. Dark 

circles and lines denote obtained optimal parameters used at the completion of network 

tuning. n denotes the number of input nodes. Scale bars, 10 μm.
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Figure 3. The sensitivity and specificity of TPEM and CDM3 are comparable.
(a) Hierarchy of contribution of distance and T cell shape parameters to accuracy, as 

determined by random forest analysis (see Methods). (b) Cumulative frequency of either 

5CC7 (grey) or WT (black) T cells as a function of distance from antigen-pulsed DCs (P < 

0.005). (c) Plot of sensitivity and specificity of distance alone in discriminating between 

5CC7 and WT T cells (AUC 95% CI: 0.62–0.74, P < 5 × 10−5). (d) Comparison of minor 

axis length for 5CC7 (grey) or WT (black) T cells at indicated distances. (e) Minor axis 

length for each cell plotted as a function of distance from DCs. (f,g) 5CC7 (grey) and WT 
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(black) T cell cross-sectional area as an average at indicated distances (f) or for each cell as 

a function of distance (g). (h) Plot of sensitivity and specificity of CDM3 for discriminating 

between 5CC7 and WT T cells (AUC 95% CI: 0.80–0.90, P < 5 × 10−5). (i) Comparison of 

AUC and 95% confidence interval performance shown in (h) with values derived from 

analysis of cells at distances ≥ 75 μm. (j,k) Plot of sensitivity and specificity of TPEM 

measures for discriminating between 5CC7 and WT T cells including cellular arrest 

coefficient (j, AUC 95% CI: 0.72–0.82 P < 5 × 10−5), cellular velocity (k, AUC 95% CI: 

0.78–0.90, P < 5 × 10−5) and cellular interaction time (l, AUC 95% CI: 0.94–0.97, P < 5 × 

10−5). * P < 0.05, ** P < 0.005, two-sided Mann-Whitney U test. Center values denote the 

mean (b,d,f,h,i) and error bars denote standard deviation (b), standard error of the mean (i), 
or cross-validation error (c,h,j-l). Center lines in box plots (d,f) denote median value with 

upper and lower hinges denoting first (Q1) and third (Q3) quartile values, vertical bars 

corresponding to values 1.5x of the inter-quartile range (IQR) for Q1 and Q3, respectively, 

and dots representing outlier values, not included in the above. Diagonal lines in (c,h,j-l) 
denote AUC of 0.5, which represents a random probability ( P = 0.5). n = 2 independent 

experiments for all panels.
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Figure 4. Segmentation and shape of T cell nuclei.
(a) Representative images of fluorescent cell tracker-labeled WT (left) and 5CC7 (right) T 

cells stained with TO-PRO-3 iodide (TOPRO). (b-d) Plots of 5CC7 (grey) and WT (black) T 

cell nuclear minor axis length (b), equivalent diameter (c), and nuclear area (d) as functions 

of minimum distance from antigen-pulsed DCs. (e) Curves denoting sensitivity and 

specificity of CDM3 for discriminating between 5CC7 versus WT cell nuclei at distances < 

25 μm (AUC 95% CI: 0.77–0.91, P < 0.005). Scale bar: 5 μm. Diagonal lines in (e) denote 

AUC of 0.5, which represents a random probability (P = 0.5). n = 3 independent experiments 

for (a) and n = 2 independent experiments for (b-e).
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Figure 5. Identification of pDCs as an antigen-presenting cell in lupus nephritis.
(a) Example of DCNN input and output. Utilizing a similar framework as described for the 

murine model, six input channels were processed through the DCNN with an output of solid 

objects (middle) for CD3+CD4+ T cells (red), CD3+CD4– T cells (green), and plasmacytoid 

DCs (blue). Right, DCNN segmentations are shown in colored lines and the corresponding 

manual segmentations shown in white lines. Scale bar = 10 μm. (b) Example of processed 

image showing outlines of pDCs (red outlines), CD4+, and CD4– T cell nuclei (blue). (c,d) 

Frequency of mDCs (c) and pDCs (d) per biopsy by TII grade (0 = none, 1 = mild, 2 = 
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moderate, 3 = severe41). (e) Representative images of mDCs and pDC (green) with CD4+ T 

cells (red) in lupus TII. Nuclei are blue. Scale bar = 40 μm. (f), Schematic of CD3+CD4+ 

and CD3+CD4– T cells relative to DCs. (g) Minimum distances between indicated DC 

populations and CD3+CD4+ (grey) and CD3+CD4– (black) T cells. (h) Hierarchy of 

contribution of distance and T cell shape parameters to accuracy based on random forest 

analysis of pDC and mDC data sets. (i,j) Plot of convex area (i) and equivalent diameter (j) 
per T cell [CD3+CD4+ (grey) and CD3+CD4– (black)] as a function of distance from pDCs 

(P < 0.0005 for both groups at all distances). Random 10% of total values plotted for 

visualization. (k,l) Equivalent diameter (k, P < 0.05) and major axis (l, P < 0.005) per T cell 

as a function of distance from mDCs. Random 10% of total values plotted for visualization. 

* P < 0.05, *** P < 0.0005, 2-sided Mann-Whitney U test; Benjamini-Hochberg correction 

with FDR of 5% was used for (i-l). Center values denote the mean and error bars denote 

standard standard error of the mean (c,d). Center lines in box plot (g) denote median value 

with upper and lower hinges denoting first (Q1) and third (Q3) quartile values, vertical bars 

corresponding to values 1.5x of the inter-quartile range (IQR) for Q1 and Q3, respectively, 

and dots representing outlier values, not included in the above. n = 2 independent 

experiments for all panels.
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Figure 6. Confirmation of pDCs as an antigen-presenting cell in lupus nephritis.
(a,b) Sensitivity and specificity of CDM3 for discriminating between CD3+CD4+ and 

CD3+CD4– cells for mDC (a, 95% CI: 0.55–0.71, P < 0.005) and pDC (b, 95% CI: 0.61–

0.69, P < 0.0005) datasets at a minimum distance cutoff of < 25 μm. (c,d) Three-

dimensional surface reconstructions from lupus TII, utilizing Imaris software. T cell (top) 

abutting a pDC is shown with (c) (left) and without (d) (right) nuclei, as stained by DAPI. 

Immunofluorescent antibody staining as indicated. Scale bar: 4 μm. (e) Analysis of mTOC 

localization in 3 highly inflamed (score: 3) lupus nephritis biopsies. z-stack acquisition was 

performed with examination of pDC:CD3+CD4+ and pDC:CD3+CD4– T cell pairs to 

determine mTOC localization. White circles denote all counted T cells, while black circles 

signify the number of T cells with mTOCs polarized towards the abutting DC, as indicated. 

*** P < 0.0005, 2-sided Mann-Whitney U test. Diagonal lines in (a,b) denote AUC of 0.5, 

which represents a random probability (P = 0.5). Error bars denote cross-validation error 

(a,b) or standard error of the mean (e). n = 2 independent experiments for all panels.
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