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Abstract
Breast cancers exhibit highly heterogeneous molecular profiles. Although gene expression

profiles have been used to predict the risks and prognostic outcomes of breast cancers, the

high variability of gene expression limits its clinical application. In contrast, genetic mutation

profiles would be more advantageous than gene expression profiles because genetic muta-

tions can be stably detected and the mutational heterogeneity widely exists in breast cancer

genomes. We analyzed 98 breast cancer whole exome samples that were sorted into three

subtypes, two grades and two stages. The sum deleterious effect of all mutations in each

gene was scored to identify differentially mutated genes (DMGs) for this case-control study.

DMGs were corroborated using extensive published knowledge. Functional consequences

of deleterious SNVs on protein structure and function were also investigated. Genes such

as ERBB2, ESP8, PPP2R4, KIAA0922, SP4, CENPJ, PRCP and SELP that have been ex-

perimentally or clinically verified to be tightly associated with breast cancer prognosis are

among the DMGs identified in this study. We also identified some genes such as ARL6IP5,

RAET1E, and ANO7 that could be crucial for breast cancer development and prognosis.

Further, SNVs such as rs1058808, rs2480452, rs61751507, rs79167802, rs11540666, and

rs2229437 that potentially influence protein functions are observed at significantly different

frequencies in different comparison groups. Protein structure modeling revealed that many

non-synonymous SNVs have a deleterious effect on protein stability, structure and function.

Mutational profiling at gene- and SNV-level revealed differential patterns within each breast

cancer comparison group, and the gene signatures correlate with expected prognostic char-

acteristics of breast cancer classes. Some of the genes and SNVs identified in this study

show high promise and are worthy of further investigation by experimental studies.

PLOS ONE | DOI:10.1371/journal.pone.0119383 March 24, 2015 1 / 23

a11111

OPEN ACCESS

Citation: Li Y, Wang X, Vural S, Mishra NK, Cowan
KH, Guda C (2015) Exome Analysis Reveals
Differentially Mutated Gene Signatures of Stage,
Grade and Subtype in Breast Cancers. PLoS ONE
10(3): e0119383. doi:10.1371/journal.pone.0119383

Academic Editor: Alvaro Galli, CNR, ITALY

Received: October 6, 2014

Accepted: January 30, 2015

Published: March 24, 2015

Copyright: © 2015 Li et al. This is an open access
article distributed under the terms of the Creative
Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: Funding for this project is provided by the
University of Nebraska Medical Center (UNMC) to
CG and the Fred and Pamela Buffett Cancer Center,
UNMC to CG.

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0119383&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Introduction
Breast cancer is the most common cancer (29% of newly diagnosed cancers) in women in US,
and has the second highest mortality rate that accounts for about 25% of all cancer deaths [1].
It has been recognized that categorization of breast cancers into different subtypes can effec-
tively guide treatments and greatly improve the prognosis. Several factors like hormone recep-
tor status, breast cancer biomarkers and gene expression profiles have been used to classify
breast cancers, estimate the recurrence risk, and guide targeted treatment [2].

Breast cancers are highly heterogeneous in their clinical and molecular profiles, which sug-
gest that the prognosis for each subtype is very distinct. For example, estrogen and progester-
one hormone receptor positive (ER+ and PR+) breast cancers have a better prognosis than
estrogen and progesterone receptor negative (ER- and PR-) breast cancers. In addition, ER
+ and PR+ breast cancers can be treated with anti-hormonal therapy, while ER- and PR- breast
cancers are not responsive to such therapies. On the other hand, HER2-positive (HER2+)
breast cancers usually occur in younger women, grow more invasively, and prior to the advent
of targeted therapy, posed a higher risk of recurrence than HER2-negative (HER2-) breast can-
cers, partly because of the overexpression of HER2/neu protein (human epidermal growth fac-
tor receptor 2, also known as ERBB2) in these cancers.

So far, breast cancer is one of the few cancer types in which targeted therapies have been de-
signed based on the molecular classification [3]. In addition, the gene expression profiling
based classification of breast cancers has identified four major subtypes: luminal A, luminal B,
human HER2+, and basal-like [4], which have prognostic implications. For example, Oncotype
Dx, a 21-gene assay [5], and Mammaprint, a 70-gene expression signature have been developed
as a prognostic assessment tool to predict the risk of breast cancer metastasis [6]. However, one
disadvantage of using gene expression profiling to identify biomarkers or signatures for cancer
is that gene expression levels are highly variable and unsteady, and therefore a single measure
often leads to misinterpretation. In contrast, genetic mutations at DNA level can be stably de-
tected. As all cancers carry somatic mutations in their genomes and mutational heterogeneity
widely exists in cancer genomes [7], biomarkers for cancer based on gene mutation informa-
tion could be detected more accurately than those based on gene expression profiling. Rapid
advances in next-generation sequencing (NGS) technology have enabled sequencing of a large
number of whole exome samples in parallel at a reasonable expense. As a result, a large amount
of NGS data on tumor genomes have emerged that makes detection and application of genomic
mutant-based biomarkers for cancer a reality.

While differential gene expression among different subtypes of breast cancer have been
widely used for assessing prognosis and predicting therapeutic response [8], The Cancer Ge-
nome Atlas (TCGA) network analyzed differential somatic mutations among the four breast
cancer subtypes: luminal A, luminal B, HER2+, and basal like, and identified several signifi-
cantly mutated genes that showed subtype-specific patterns of mutation [9]. Some of the stud-
ies report specific DNA mutations from comparisons of ER+/- [10] or HER2+/- classes [11],
simply by checking genes that encode ER (ESR1 and ESR2) and HER2 (ERBB2), respectively.
However, no systematic studies have been carried out to identify DMGs between the ER, PR,
HER2 subtypes, or the tumor grade and stage classes. In the present study, we analyzed 98
breast cancer exome sequencing datasets that were previously published [12]. We performed
large-scale comparison of single nucleotide variation (SNV) differences between three breast
cancer subtypes (ER+ vs. ER-, PR+ vs. PR-, HER2+ vs. HER2-), two different histologic grades
(grade II vs. grade III), and two different stages (stage II vs. stage III), all of which are clinical
features that are directly associated with prognosis of breast cancers. We did not use PAM50 or
other gene-expression based subtypes for identifying DMGs because there is no evidence
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showing that gene expression profiles are directly correlated with gene mutation profiles. We
proposed a scoring function to evaluate the deleterious impact of the sum of all mutations in
a gene, and then used multiple t-tests to identify DMGs between the five breast cancer
comparison groups described above. We performed an extensive examination of literature to
confirm the relevance of the identified DMGs to breast or other cancers. We also identified the
deleterious SNVs from the DMGs that occur with significantly different frequency in between
the five breast cancer comparison groups. For some important mutations, we also examined
the impact of each mutation on the structure and function of the protein using protein-
modeling tools.

Materials and Methods

Breast cancer whole exome-seq datasets
We downloaded the whole exome sequencing datasets for 103 breast cancer samples (54 sam-
ples fromMexican patients and 49 samples from Vietnamese patients) from dbGap website
http://www.ncbi.nlm.nih.gov/gap (accession number: phs000369.v1.p1) [12]. In this study, we
analyzed only 98 samples because 5 Mexican samples have very low sequencing quality. All the
98 breast cancer samples contain tumor/normal pairs. We assume that germline and acquired
somatic mutations (till the diagnosis of cancer) could significantly contribute to the differential
phenotype of breast cancers [13]; hence, we did not filter out the mutations that are present in
the normal sample. Based on the clinical information provided, we sorted the 98 samples (pa-
tients) into five comparison groups that include three clinical subtype groups (ER+ vs. ER-, PR
+ vs. PR-, HER2+ vs. HER2-), a grade-based (grade II vs. grade III), and a stage-based (stage II
vs. stage III) group. A summary of the classification information for the 98 samples is shown in
Table 1 (Stage I and IV, grade I were excluded in the comparisons due to lack of sufficient
data). The mutation profile for each patient is often sparse. When comparing one class with
smaller sample size (<10) against another class with a larger sample size (i.e.>20) in another,
one mutation in the former class will be considered to occur at a rate of more than 10%. There-
fore, we set a cut off value of 10 to define the descent sample size, in order to minimize the im-
pact of rare mutations in classes with smaller sample size in the statistical tests. In this case, any
class that has less than 10 samples will not be compared separately, if applicable (Table 1). We
also performed Fisher’s exact test to check the race compositional differences between each
comparison group. Notably, the race composition in grade II and grade III is unbalanced
(Table 1 and S1 Table); therefore, we only performed the class comparison for Mexican

Table 1. A summary of the five comparison groups of breast cancers used in this study.

Class ER+ ER- PR+ PR- HER2+ HER2- GradeII GradeIII StageII StageIII

MEX 35 14 31 18 8a 41 25 13 32 10

VIE 5a 13 6a 12 0a 1a 0a 13c 38 8a

P (Fisher's Exact Test) 0.001892b 0.05079 1 1c 0.598

Sample used in this Study 40 27 37 30 8 42 25 13 70 18

a Sample size for these class are too small (<10) for separate class comparison among each race.
b Fisher’s exact tests have been conducted in order to check the distribution difference of Mexican and Vietnam patients in each comparison group. Only

ER comparison group has significantly different race composition (p<0.05).
c 25 of the patients in Grade II are all Mexican patients, compared to 13 Mexican patients and 13 Vietnamese Patients in Grade III. Therefore, we

excluded 13 Samples from Vietnam Grade III patients and the sample sizes of Grade II vs. Grade III used in this study (all Mexican patients), are 25 and

13 respectively. The reported fisher’s exact test statistics for this comparison group is also based on the exclusion of Vietnam patient samples.

doi:10.1371/journal.pone.0119383.t001
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patients, in order to eliminate the effect of any race-specific genetic variations. (A detailed de-
scription of clinical information for all samples is shown in S1 Table).

Sample quality control, alignment, SNV calling and annotation
We used FastQC [14] and FastX toolkit [15] for quality control of the 98 tumor whole exome
sequencing datasets. Short reads with low sequencing quality (Phred score< 20) were removed
or trimmed, accordingly. Processed reads were then aligned with Borrows-Wheeler Aligner
[16] to the human reference genome hg19. We then applied the Genome Analysis Toolkit [17]
(GATK) best practices pipeline [18,19] from Broad Institute for SNV (Single Nucleotide Vari-
ant) calling from alignment files, and the pipeline includes multiple steps such as Mark Dupli-
cates, Local Realignment, Quality Score Recalibration and variant calling. After 98 SNV
profiles were generated, we used ANNOVAR [20] for functional annotation of all the SNVs.
The SIFT [21] score reported from ANNOVAR was used to evaluate the degree of deleterious-
ness of SNVs.

Scoring the deleteriousness of mutated genes
The SIFT score ranges from 0 to 1. An SNV is predicted to be deleterious when its SIFT score is
less than or equal to 0.05. Therefore, we filtered out all the SNVs that have the SIFT score more
than 0.05. We calculated the deleterious score, D, using the following function,

Dij ¼
X

k
ð

X

x

ð1� SijkxÞ

Nk

Þ;

Where
Dij: the deleterious mutation score for the ith gene in sample j;
Sijkx: the SIFT score for the kth mutation in isoform x of the ith gene in sample j;
Nk: the number of isoforms that are affected by the mutation k for that specific gene in

that sample.
This scoring function combines the SIFT scores for all deleterious mutations in a gene (in-

cluding the isoforms, if any) and generates a combined deleterious score for each mutated
gene. Therefore, by applying this scoring function, we obtained a matrix with 98 columns (98
patients) and about 17000 rows (~17000 RefSeq genes). Each cell represents how deleterious
one gene is mutated for the specific patient. Obviously, the higher the score is, the more delete-
rious way the gene mutations affect the gene function.

Identification of DMGs between breast cancer classes
We identified DMGs between five pairs of breast cancer class comparisons (ER+ vs. ER-, PR
+ vs. PR-, HER2+ vs. HER2-, grade II vs. grade III, and stage II vs. stage III) using the univari-
ate t-test at a two-sided significance level of 0.001. Considering the small sample size of grade I
and stage I classes, we only performed grade II vs. grade III, and stage II vs. stage III class com-
parisons (no patients with stage IV breast cancer were present in our list). To adjust for multi-
ple testing, we also reported the false discovery rate (FDR) for each gene identified. The FDR
was estimated using the method of Benjamin and Hochberg [22]. This procedure was imple-
mented with the class comparison tool in BRB-ArrayTools [23].
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Functional analysis of DMGs and SNVs
We examined the deleterious SNVs present in the DMGs of different breast cancer classes
using an odd ratio, which identifies SNVs that are at least 2-fold more frequent in one class
over the other between the populations of a two-class comparison. Fisher’s exact test was used
to examine the significance of the differences. We then used Pfam (protein family) database
[24] and CONDEL [25] to predict the functional impact of those significant SNVs on proteins.
Pfam database contains information on evolutionarily conserved functional domains; hence, if
an SNV occurs in the domain region, it is more likely to affect the structure and/or function of
the protein. CONDEL is a method to assess the outcome of non-synonymous SNVs with the
best sensitivity and specificity [25]. It uses the consensus deleterious scores by combining pre-
dictions from five different tools that include SIFT[21], PolyPhen2[26], Logre[27], Mutatio-
nAssessor[27] and MAPP[28].

Protein stability analysis for point mutations
For the DMGs, we analyzed the overall impact of point mutations on protein stability. For fea-
sibility of analysis, we selected a set of 10 relatively rare non-synonymous SNVs that occur ei-
ther in a functionally annotated (Pfam-A) or evolutionarily conserved (Pfam-B) domain
region. We used iprscan version 4.8 [29] for Pfam and PANTHER motif search. We then used
two reliable structure prediction tools, RaptorX [30] online webserver and I-TASSER suite [31]
standalone version, for protein structure prediction. We ran I-TASSER in parallel mode with
the default parameters.

Further, we used three similar and independent tools, I-Mutant-2.0 [32], PopMusic-2.1 [33]
and CUPSAT [34] to analyze the overall impact of a point mutation on protein stability. I-Mu-
tant predicts the stability of a point-mutated protein from its primary sequence, while PopMu-
sic 2.1 and CUPSAT predict the same from its 3D structure. We evaluated the overall impact of
a point mutation on protein stability based on the consensus results from these three methods;
if at least two tools predict the same mutation effect on the protein structure, i.e., destabilizing
or stabilizing, then only we accept that result.

Results and Discussion
Samples in ER, PR, HER2 and Stage are all having at least one class with the sample size of less
than 10, if we separate each class by race (Table 1). Therefore, we merged all the samples that
are available for each class. Notably, giving the clinical significance of HER2 status in breast
cancer, we still performed the class comparison for HER2 group, despite the fact that HER2
+ class only has 8 samples. For Grade II vs. Grade III, we excluded all the Vietnam patients, as
the unbalanced sample size in Vietnam patients (0 samples in Grade II and 13 samples in
Grade III) will definitely bias the test result. Fisher’s exact test result from table 1 shows that
only ER class has significantly different race composition (p = 0.0018). This could indicate the
potential impact of the race factor on ER comparison group result. However, the statistical
power of the comparison will be limited by the number of sample size, if we do the ER compar-
ison for each race separately.

SNV profiles were generated for 98 tumor exome-seq datasets using the GATK pipeline,
and annotated using ANNOVAR. A mutation score matrix was created for all 23,769 RefSeq
genes (42,239 transcripts in total) in all the samples based on the annotation results. We filtered
out those genes that have deleterious mutations present in less than 5 (out of 98) samples, and
obtained 3,826 genes for further analysis (S2 Table). Combined mutation score (from all muta-
tions of all isoforms of a gene) of each gene was compared between the defined breast cancer
classes to identify sets of DMGs. These include 18 (ER+ vs. ER-), 9 (PR+ vs. PR-), 10 (HER2
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+ vs. HER2-), 10 (grade II vs. grade III) and 7 genes (stage II vs. stage III), using a two-sided
t-test (p-value�0.001).

Using literature survey, we sorted the DMGs into 4 different categories in the order of their
relevance to breast cancer or other types of cancers. Category 1 includes the genes that have
been reported to be directly associated to breast cancer, while category 2 includes those that are
related to other types of cancer, but not to breast cancer. Category 3 includes the genes whose
functions have not been well studied, but other members of these gene families have been re-
ported to be associated to cancer. Category 4 includes the other genes that do not belong to the
former three categories, while their relatedness to cancer remains to be studied. Fig. 1 presents
the CIRCOS [35] graph of the DMGs identified by the five class comparisons along with their
corresponding chromosomal positions. It shows that chromosome 4, 11, and 19 have the larg-
est number (5 genes in each chromosome) of DMGs identified in the comparisons, while chro-
mosome 14, 18, 21, and 22 do not contain any of the reported DMGs. Also, chromosome 4 has
the largest number of DMGs (CPZ, CSN3, KIAA0922) that are directly related to breast cancer.
Moreover, because of the similarities of ER and PR status in terms of breast cancer prognosis
and therapy, the positional pattern for ER+/- and PR+/- is similar by having the same 3 DMGs
in both group comparisons.

Fig. 2 is a heatmap showing the deleterious mutation patterns for DMGs identified by five
groups of breast cancer class comparisons. It is evident that the overall deleterious mutation
scores are higher in classes with poorer prognosis (ER-, PR-, HER2+, Grade III and Stage III),
suggesting that deleterious mutations in these genes contribute to different prognostic fea-
tures for each class. However, it is also evident that sets of genes within a class comparison
show contrasting deleterious mutation patterns suggesting that their roles as oncogenes or
tumor suppressor gene are balanced (Fig. 2). For instance, ERBB2, an oncogene is predomi-
nantly mutated in ER+ class (77.5%) compared to ER- class (33.3%), suggesting that dysregu-
lation or altered function of HER2/neu protein is associated with a better prognosis in breast
cancer patients. In contrast, CSN3, a part of the CSN complex that activates tumor suppressor
TP53, is predominantly less frequently mutated in ER+ (17.5%) compared to ER- (63.0%)
samples. Descriptive information for all the identified DMGs is presented in Tables 2–6 and
in the S1 File.

Notably, some of the FDR values we reported in Tables 2–6 are relatively high. This is be-
cause in the present study, we only considered SNVs whose SIFT score is not greater than 0.05.
As a result, our deleterious mutation scores lie in a relatively narrow range, which could have
generated high FDR values.

Comparison of DMGs in hormone receptor positive vs. negative breast
cancer subtypes
Due to many similarities between the ER+/- and PR+/- class comparisons, we are presenting
these two classes together in this section. We identified 18 genes with significantly different
mutation scores between ER+ and ER- (Fig. 2, Table 2), and 9 genes between PR+ and PR-
breast cancer subtypes (Fig. 2, Table 3). Three genes, OR1J2, SKOR1, and DPP3 are commonly
identified in both class comparisons. In Tables 2 and 3, genes are listed based on their biologi-
cal relevance to breast cancer. Of these, CSN3, ERBB2, PPP2R4, CAPZA2, SKOR1, ARID5A,
and CPN1 belong to category 1 that contain literature-based relevance to breast cancer. Below,
we describe the functional roles of all DMGs under category 1 in each comparison group, while
description of all other DMGs can be found in S1 File.

CSN3 (kappa-casein) is involved in myeloid leukemia factor 1-mediated growth arrest and
CSN3 deficiency impairs p53 activation, facilitates cell proliferation and affects COP1-mediated
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p53 degradation [36]. It indicates that mutationally impaired CSN3 could promote cancer
growth and progression by dysregulation of the tumor suppressor gene p53. This is consistent
with our results that CSN3 has a higher deleterious mutation score in the more aggressive ER-
breast cancers compared to that in less aggressive ER+ breast cancers (p-value = 7.06×10-5).

Fig 1. The differentially mutated genes between breast cancer subtypes. A total of 50 genes are identified that are differentially mutated by comparison
of ER+ vs. ER-, PR+ vs. PR-, HER2+ vs. HER2-, grade II vs. grade III, and stage II vs. stage III breast cancer classes, respectively. Each class comparison is
shown in layered circles. The differentially mutated genes are shown in the outer layer, which correspond to their chromosome coordinates and subtype
comparisons. The differentially mutated genes are sorted into four different categories based on their relevance to breast cancer or other types of cancer.
Category 1 includes the genes that are directly related to breast cancer (in dark red). Category 2 includes the genes that are related to other types of cancer
(in green). Category 3 includes the genes whose family members are related to cancer (in blue). Category 4 includes the genes whose relatedness to cancer
remains to be studied (in gray). The mean deleterious mutation score for each gene in each class comparison is shown in colored thin bar (red and blue
colors refer to two different classes). The length of thin bars is proportional to the mean deleterious score.

doi:10.1371/journal.pone.0119383.g001
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On the other hand, ERBB2 (also known as HER2/neu), is a well-characterized oncogene
that is responsible for development and progression of certain aggressive types of breast cancer.
ERBB2 has been shown to be associated with poor prognosis of breast cancers [37]. Overex-
pression of this gene has been shown to be very crucial in the development and progression of
certain aggressive types of breast cancer [38]. Our results corroborate that ERBB2 shows higher
mutational load (p-value = 1.57×10-4) in ER+ breast cancers compared to ER- breast cancers
and consequently dysregulated to negate cancer growth and progression in the former subtype.

PPP2R4, also known as protein phosphatase 2A (PP2A), regulates estrogen receptor alpha
(ER-α) expression through modulation of ER mRNA stability; hence, it has been considered as
a potential therapeutic target for breast cancer [39]. It has been shown that PPP2R4 is involved
in PI3K/Akt signaling pathway, a pathway that modulates the interaction between BRCA1 and
ER-α [40]. Mutations of PPP2R4 have been shown to contribute to many cancer types includ-
ing breast cancers [41], and it has been suggested that PPP2R4 might be a tumor suppressor

Fig 2. The deleteriousmutation scores for the differentially mutated genes across the compared samples. Five heatmaps show the deleterious
mutation scores across the compared samples for the differentially mutated genes identified by comparison of ER+ vs. ER-, PR+ vs. PR-, HER2+ vs. HER2-,
grade II vs. grade III, and stage II vs. stage III breast cancer classes, respectively. Higher score implies more deleterious mutations one gene has. It is evident
that groups with better prognosis (ER+, PR+, HER2-, Stage II and Grade II) tend to have fewer deleteriously mutated genes.

doi:10.1371/journal.pone.0119383.g002
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gene [42]. Our results show that PPP2R4 has more deleterious mutations in ER- breast cancers
than in ER+ breast cancers (p-value = 2.09×10-4), suggesting that the higher degree of loss of
tumor suppression function for PPP2R4 in ER- subtype relative to ER+ contributes to worse
prognosis in the former.

CAPZA2, named as F-actin-capping protein subunit alpha-2, is regulated by Erbb2 in
mouse model [43]. It may be also involved in human Ras-MAPK/P13K signaling pathways, as
it is predicted to interact with a retinoblastoma tumor suppressor (pRB) protein [44]. Consis-
tent with this notion, our results show that this gene has a higher deleterious mutation score in
ER- breast cancers than in ER+ breast cancers (p-value = 4.02×10-4).

SKOR1, also known as Fussel-15, is a SKI family transcriptional co-repressor that is identi-
fied as a DMG both in ER+/- and PR+/- comparisons. It is also a potential repressor of the
BMP signaling pathway [45]. A previous study shows that repressing BMP signaling pathway
can efficiently prevent bone metastasis from breast cancer cells [46]. Our results show that the
gene has a higher deleterious mutation score in ER+ breast cancers relative to ER- breast can-
cers (p-value = 7.56×10-4). Similarly, this gene has a higher deleterious mutation score in PR
+ breast cancers than in PR- breast cancers (p-value = 1.14×10-4).

Table 2. Differentially mutated genes between ER+ and ER- breast cancer subtypes.

Gene
Symbol

P-value FDR a Mean of mutation
score in ER-

Mean of mutation
score in ER+

FC b Gene Name Category c

CSN3 7.06E-05 0.090 0.61 0.16 3.75 casein kappa 1

ERBB2 1.57E-04 0.099 0.32 0.81 0.40 v-erb-b2 erythroblastic leukemia viral oncogene homolog
2, neuro/glioblastoma derived oncogene homolog (avian)

1

PPP2R4 2.09E-04 0.099 0.44 0.04 10.40 protein phosphatase 2A activator, regulatory subunit 4 1

CAPZA2 4.02E-04 0.128 0.75 0.33 2.24 capping protein (actin filament) muscle Z-line, alpha 2 1

SKOR1 7.56E-04 0.181 0.41 0.80 0.51 SKI family transcriptional corepressor 1 1

ARL6IP5 1.72E-04 0.099 0.40 0.04 9.39 ADP-ribosylation-like factor 6 interacting protein 5 2

RAET1E 2.28E-04 0.099 0.63 0.20 3.14 retinoic acid early transcript 1E 2

DPP3 2.54E-04 0.099 0.26 0.70 0.38 dipeptidyl-peptidase 3 2

OR1J2 4.04E-05 0.090 0.33 0.00 INF olfactory receptor, family 1, subfamily J, member 2 3

OR52E6 1.68E-04 0.099 0.86 0.43 2.00 olfactory receptor, family 52, subfamily E, member 6 3

GPR157 5.57E-04 0.142 0.18 0.58 0.30 G protein-coupled receptor 157 3

SLC24A1 6.30E-05 0.090 0.85 0.34 2.46 solute carrier family 24 (sodium/potassium/calcium
exchanger), member 1

4

KRT74 2.59E-04 0.099 0.59 0.18 3.37 keratin 74 4

DIS3L 2.85E-04 0.099 0.49 0.10 4.97 DIS3 mitotic control homolog (S. cerevisiae)-like 4

OC90 4.68E-04 0.138 0.26 0.00 INF otoconin 90 4

DYNC2LI1 5.56E-04 0.142 0.37 0.80 0.46 dynein, cytoplasmic 2, light intermediate chain 1 4

GLYATL3 8.67E-04 0.192 0.44 0.82 0.54 chromosome 6 open reading frame 140 4

FAM209B 9.02E-04 0.192 0.43 0.10 4.44 family with sequence similarity 209, member B 4

a FDR: False Discovery Rate
b FC: fold change (ER-/ER+); INF: infinite
c Category 1: directly related to breast cancer;

Category 2: related to other types of cancer, but not to breast cancer;

Category 3: other members of the same family (but not by itself) are related to cancer;

Category 4: not belonging to any of the former three categories.

*All the above notations apply to Tables 3, 4, 5 and 6.

doi:10.1371/journal.pone.0119383.t002
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ARID5A has been identified as an ER-α interacting co-repressor protein. ARID5A re-
presses transcriptional activity of endogenous ER-α in MCF-7 breast cancer cells [47]. This
gene has a higher deleterious mutation score in PR- breast cancers than in PR+ breast cancers
(p-value = 1.0×10-3).

CPN1 gene encodes an enzyme that is responsible for C-terminal cleavage of stromal cell
derived factor-1α (SDF-1) [48]. SDF-1 functions as a growth factor for immature B-lympho-
cytes and controls chemokine expression, thereby regulating the destination of metastasizing
breast cancer cells [49]. Besides, studies show that CPN1 is an estrogen target gene in zebrafish
model [50]. This gene has a higher deleterious mutation score in PR- breast cancers than in PR
+ breast cancers (p-value = 5.47×10-4).

Table 3. Differentially mutated genes between PR+ and PR- breast cancer subtypes.

Gene
Symbol

p-value FDR a Mean of mutation
score in PR-

Mean of mutation score
in PR+

FC b Gene Name Category c

SKOR1 1.14E-04 0.297 0.40 0.84 0.48 SKI family transcriptional corepressor 1 1

CPN1 5.47E-04 0.425 0.32 0.03 11.27 carboxypeptidase N, polypeptide 1 1

ARID5A 1.00E-03 0.425 0.37 0.06 6.49 AT rich interactive domain 5A
(MRF1-like)

1

DPP3 7.74E-04 0.425 0.30 0.70 0.42 dipeptidyl-peptidase 3 2

OR1J2 2.14E-04 0.297 0.30 0.00 INF olfactory receptor, family 1, subfamily J,
member 2

3

HKR1 8.95E-04 0.425 0.50 0.14 3.60 GLI-Kruppel family member HKR1 3

KIAA1377 2.33E-04 0.297 0.56 0.11 5.01 KIAA1377 4

RBM46 5.91E-04 0.425 0.26 0.00 INF RNA binding motif protein 46 4

WDR87 8.72E-04 0.425 0.14 0.54 0.26 WD repeat domain 87 4

*All the notations are the same as in Table 2.

doi:10.1371/journal.pone.0119383.t003

Table 4. Differentially mutated genes between HER2+ and HER2- breast cancer subtypes.

Gene
Symbol

p-value FDR a Mean of mutation
score in HER2-

Mean of mutation
score in HER2+

FC b Gene Name Category c

BCAR1 1.06E-05 0.020 0.00 0.37 0.00 similar to breast cancer anti-estrogen resistance
1; breast cancer anti-estrogen resistance 1

1

CENPJ 2.59E-04 0.248 0.56 1.46 0.38 centromere protein J 1

EPS8 4.61E-04 0.294 0.03 0.37 0.08 epidermal growth factor receptor pathway
substrate 8

1

KIAA0922 6.15E-04 0.332 0.00 0.25 0.00 KIAA0922 1

SP4 9.61E-04 0.380 0.07 0.48 0.15 Sp4 transcription factor 1

GABRE 3.89E-04 0.294 0.93 0.48 1.95 gamma-aminobutyric acid (GABA) A receptor,
epsilon

3

TTC7A 1.06E-05 0.020 0.00 0.38 0.00 tetratricopeptide repeat domain 7A 3

DIS3L 1.00E-03 0.380 0.07 0.50 0.14 DIS3 mitotic control homolog (S. cerevisiae)-like 4

ZCWPW1 1.39E-04 0.177 0.04 0.49 0.09 zinc finger, CW type with PWWP domain 1 4

ZNF233 6.95E-04 0.332 0.12 0.62 0.20 zinc finger protein 233 4

*All the notations are the same as in Table 2.

doi:10.1371/journal.pone.0119383.t004
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Comparison of DMGs in HER2+ vs. HER2- breast cancer subtypes
We identified 10 genes that have significantly different deleterious mutation scores between
HER2+ and HER2- breast cancer subtypes as listed in Table 4 (Fig. 2). Among them, BCAR1,
CENPJ, EPS8, KIAA0922, and SP4 are directly related to breast cancer as described below. Lit-
erature information for Category 2–4 genes can be found in the S1 File.

BCAR1 is a breast cancer anti-estrogen resistance kinase. Previous studies showed that
BCAR1 is responsible for resistance to the anti-proliferative effects of tamoxifen [51,52] and its
expression level often positively correlate with ERBB2 expression [53], thereby leading to ag-
gressive tumor progression. Table 4 shows that more deleterious mutations of BCAR1 were de-
tected in HER2+ than in HER2- breast cancer subtypes (p-value = 1.06×10-5), suggesting that
BCAR1 mutations lead to its hyperactivation that correlates with the overexpression of ERBB2.
Interestingly, it has been found that higher BCAR1 levels were significantly associated with ER
+/PR+ tumors [54].

Table 5. Differentially mutated genes between Grade II and Grade III breast cancer classes.

Gene
Symbol

p-value FDR a Mean of mutation
score in Grade II

Mean of mutation score
in Grade III

FC b Gene Name Category c

SELP 6.73E-05 0.230 0.00 0.45 0.00 selectin P (granule membrane protein
140kDa, antigen CD62)

1

ANO7 6.32E-04 0.460 0.16 0.68 0.24 anoctamin 7 2

ANKRD18B 1.22E-04 0.230 0.12 0.69 0.18 ankyrin repeat domain 18B 3

ANKRD32 4.70E-04 0.450 0.00 0.38 0.00 ankyrin repeat domain 32 3

THAP8 8.19E-04 0.460 0.51 0.00 INF THAP domain containing 8 3

ADD1 3.63E-04 0.450 0.31 1.33 0.23 adducin 1 (alpha) 4

GFM2 8.37E-04 0.460 0.12 0.61 0.20 G elongation factor, mitochondrial 2 4

*All the notations are the same as in Table 2.

doi:10.1371/journal.pone.0119383.t005

Table 6. Differentially mutated genes between Stage II and Stage III breast cancer classes.

Gene
Symbol

p-value FDR a Mean of mutation
score in Stage II

Mean of mutation
score in Stage III

FC b Gene Name Category c

CPZ 4.24E-05 0.055 0.01 0.39 0.04 carboxypeptidase Z 1

LPPR2 4.29E-05 0.055 0.01 0.26 0.05 lipid phosphate phosphatase-related protein type
2

1

PRCP 1.44E-04 0.138 0.08 0.43 0.19 prolylcarboxypeptidase (angiotensinase C) 1

UNC45A 5.03E-04 0.297 0.01 0.23 0.06 unc-45 homolog A (C. elegans) 1

PLEKHG6 5.44E-04 0.297 0.38 0.82 0.46 pleckstrin homology domain containing, family G
(with RhoGef domain) member 6

1

MMP20 7.99E-04 0.339 0.06 0.33 0.17 matrix metallopeptidase 20 2

CDH26 4.21E-05 0.055 0.01 0.28 0.05 cadherin-like 26 3

GSTO1 2.93E-04 0.224 0.21 0.66 0.32 glutathione S-transferase omega 1 3

AGL 6.42E-04 0.307 0.37 0.83 0.44 amylo-1, 6-glucosidase, 4-alpha-
glucanotransferase

4

OGFOD3 9.77E-04 0.374 0.07 0.39 0.18 2-oxoglutarate and iron-dependent oxygenase
domain containing 3

4

*All the notations are the same as in Table 2.

doi:10.1371/journal.pone.0119383.t006
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CENPJ encodes centromere protein J that is a co-activator for STAT5 signaling pathway
[55] and NF-kappa-B-mediated transcription [56]. Nuclear localization of STAT5 marks a
good prognosis of ER+/PR+ breast cancers [57] and could be used as an indicator of anti-
estrogen therapy [58]. NF-kappa-B pathway may be involved in the gain of resistance to
HER2- targeting agents therapy [59]. Our results suggest that mutations in CENPJ could po-
tentially be the driver events as the deleterious mutation score for CENPJ in HER2+ breast can-
cers is much higher than that in HER2- breast cancers (p-value = 2.59×10-4).

EPS8, an epidermal growth factor receptor pathway substrate 8, has been identified as a
novel candidate oncogene for breast cancer [60]. EPS8 also decreases chemosensitivity and af-
fects survival of cervical cancer patients [61]. It has been found that small interfering RNA of
Eps8, could reduce proliferation and tumorigenesis in Eps8-attenuated HeLa and SiHa cells
cultured in dishes or inoculated in mice [61]. Table 4 shows that EPS8 has higher deleterious
mutation score in HER2+ breast cancers than in HER2- breast cancers (p-value = 4.61×10-4),
suggesting that its mutations might result in poor prognosis of breast cancers.

KIAA0922 is a novel gene detected in Kazusa cDNA sequencing project [62]. Recent studies
on KIAA0922 show that it is a transmembrane 131-like (TMEM131L) protein and it functions
as a novel regulator of thymocyte proliferation [63]. KIAA0922 also functions as a novel inhibi-
tor of Wnt signaling pathway [63]. Abnormality of Wnt signaling pathway has been associated
with breast cancer [64].

Lastly, SP4 is a transcription factor and down-regulation of this gene is associated with in-
hibited growth of cancer cells in pancreatic [65], colon [66] and breast cancers [67,68].

Comparison of DMGs in Grade II vs. Grade III breast cancer classes
We identified 7 DMGs between Grade II and Grade III breast cancer subtypes as are listed in
Table 5 (Fig. 2). SELP is directly associated with breast cancer [69,70,71]. ANO7 belongs to cat-
egory 2, and ANKRD18B, ANKRD32 and THAP8 belong to category 3. ADD1 is related to hy-
pertension and SNVs in ADD1 is strongly linked with cancer, but there is no literature
evidence showing the involvement of tumorigenesis for this gene. Literature information for
Category 2–4 genes can be found in S1 File.

SELP has been a part of an invasive ductal carcinoma gene signature [69]. SELP mediates
adhesions for various cells including cancer cells in inflammation, thrombosis, cancer growth
and metastasis [70]. High expression of SELP correlates with worse prognosis of human cancer
by promoting metastasis of the cancer cells [71].

Although there is no direct evidence for the role of ADD1 in breast cancer progression and
tumorigenesis, ADD1 has a significantly higher deleterious mutation score in Grade III breast
cancers than in Grade II type (p-value = 3.63×10-4). Among all patients with grade II and
grade III breast cancer, 14 patients have deleterious mutations (rs4961 and/or rs4963) in
ADD1, 12 of those have both rs4961 and rs4963 (Fig. 3). A previous study has shown that the
carriers of rs4961 were at 1.8 times increased risk for hypertension (CI: 1.32–2.43) [72]. Also, it
has been confirmed that rs4963 is tightly linked with rs4961, and thus could also be linked to
hypertension [73]. Hypertension has been shown to be one of the common comorbidities in
breast cancer patients, and be associated with worse prognosis of breast cancers [74]. Our data
shows that 76.9% (10/13) of the grade III breast cancer patients have either rs4961 and rs4963,
indicating an increased risk of having hypertension, compared to 16% (4/25) of that for grade
II breast cancer patients (Odd ratio is 17.5). Thus, the correlation between hypertension and
breast cancer is worth investigating.
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It should also be noted that almost all the DMGs between grade II and grade III classes have
higher deleterious mutation scores in grade III except one gene (THAP8). This suggests that
deleterious gene mutations evolve with the progression of cancer.

Comparison of DMGs in Stage II vs. Stage III breast cancer classes
We identified 10 DMGs between Stage II and Stage III breast cancer classes as are listed in
Table 6. Similar to the grade class, all the genes in Table 6 display higher deleterious mutations
in the worse prognosis class (stage III) supporting the general notion that higher mutational
load leads to worse prognosis. Half of these genes are directly related to breast cancer (CPZ,
LPPR2, PRCP, UNC45A, and PLEKHG6), MMP20 is related to other types of cancer, while
CDH26 and GSTO1 belong to category 3. Literature information for category 2–4 genes can be
found in S1 File.

CPZ encodes a member of the metallocarboxypeptidase family. This gene is involved in
Wnt signaling pathway [75], and therefore potentially plays a role in prognosis of breast cancer.
LPPR2 encodes a lipid phosphate phosphatase-related protein that regulates lysophosphatidic
acid (LPA) production and signaling [76], and could promote breast cancer initiation,

Fig 3. The distribution of deleterious SNVs across the compared patient samples. Five charts illustrate the deleterious mutation distribution in different
breast cancer class. Red dot indicates the presence of SNV for the corresponding gene in each sample.

doi:10.1371/journal.pone.0119383.g003
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progression and metastasis [77,78,79]. PRCP encodes a protein that acts as a regulator of cell
proliferation and autophagy [80], and is also an anti-estrogen resistant protein in ER-positive
breast cancer patients [80]. Autophagy functions as a tumor suppressor mechanism, thereby
preventing tumor progression [81]. UNC45A encodes a protein that plays a role in cell prolifer-
ation and myoblast fusion, and could increase human breast cancer metastasis [82]. Knock-
down of UNC45A mRNA slows down human breast carcinoma cell proliferation and invasion
[82]. PLEKHG6 regulates the invasion activity of breast cancer cells [83,84].

Based on the five class comparisons we made in this study, it should be noted that there are
several potential limitations in this study. First, results from class comparisons with small sam-
ple size were more likely to be affected by rare mutations. Secondly, tumor heterogeneity re-
mains a big challenge for SNV analysis, although tumor heterogeneity did not introduce many
false positives in this study. Here, we only reported the most likely genotypes using the GATK
tool UnifiedGenotyper. Therefore, any reported deleterious mutations should have decent al-
lele frequency in our samples. Heterogeneity of cancer cells would only neutralize the ability to
identify those mutations with lower allele frequency. On the other side, a reported deleterious
mutation should be either presented in all subclones, or in one or more subclones that are the
dominant population in the sample. Thus, our statistical tests only identified the dominant mu-
tations that are more deleteriously mutated in one group compared to another one. To resolve
the tumor heterogeneity issue, the single-cell sequencing technology is a good choice.

Functional analysis of deleterious SNVs
We identified 24 deleterious SNVs that have more than 2-fold difference in the odd ratio while
also located inside the functional or conserved domain regions of proteins, from the 117
DMG-associated SNVs (S3 Table). These SNVs are presented in Table 7 (rs12421620 from
DPP3 is present in both ER and PR class comparisons). Fisher’s exact tests show that all the
odd ratio differences are significant (p�0.05). For each SNV, we also determined a score that
suggests the degree of mutation deleteriousness using the CONDEL software (S4 Table). Fig. 3
shows the presence or absence of SNVs in patients from the five comparison groups of breast
cancer. For each class comparison, the frequencies of mutations are highly correlated with the
prognostic features. Also, except for the Stage class, all the other classes show contrasting pat-
terns of SNVs (between better and worse prognoses), within each class suggesting their en-
hancing or suppressing roles in cancer progression. Nine SNVs from ER- vs. ER+ class are
predominately present (60.0%) in ER- (poorer prognosis class) while a different set of 6 SNVs
(40.0%) is identified in ER+ (better prognosis class). In PR- vs. PR+ comparison, 6 SNVs are
significantly present (60.0%) in PR- (poorer prognosis class), compared to 4 (40.0%) in PR+
(better prognosis class). Other classes with poorer prognosis, all have higher number of delete-
rious mutations, with 4 SNVs (66.7%) in HER2+, 7 (87.5%) in Grade III, and 10 (100.0%) in
Stage III. Besides, in Grade II vs. Grade III, Fig. 3 also shows an increased risk of having hyper-
tension comorbidity in Grade III patients because of the higher mutation rate for ADD1 gene
in this class (16% in Grade II vs. 76.9% in Grade III).

The deleterious mutation shown in Table 7 for ERBB2 is rs1058808. A previous study has
shown that rs1058808 may be associated with higher Body Mass Index (BMI) for high risk of
endometrial cancer [85]. Although the association between this SNV and the risk of breast can-
cer is not identified as statistically significant in these studies [86,87], our results show that this
mutation is preferably present in the ER+ compared to the ER- subtype (odd ratio 0.23,
p = 0.00624). Another mutation, rs2480452 in PPP2R4 is predominantly present in the ER-
subtype (40.7% in ER- vs. 5% in ER+ with odd ratio of 13.06, p = 4.29×10-4). Our protein stabil-
ity analysis also suggests that this mutation is destabilizing PPP2R4 protein (Table 8). As
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Table 7. Differentially occurring SNVs with deleteriousmutations in domain regions.

SNP in ER comparison ER- a ER+ b OR c p-value d dbSNP ID AA
change

Functional Domain

SLC24A1_chr15_65916527_65916527_A_T 23/27 13/40 11.94 2.11E-05 rs3743171 p.T37S PfamB PB047652

CSN3_chr4_71114956_71114956_G_T 15/27 7/40 5.89 1.59E-03 rs1048152 p.R110L Kappa casein

ERBB2_chr17_37884037_37884037_C_G 8/27 26/40 0.23 6.24E-03 rs1058808 p.P1140A PfamB PB015832

PPP2R4_chr9_131909736_131909736_C_T 11/27 2/40 13.06 4.29E-04 rs2480452 p.S287L Phosphotyrosyl phosphate activator
(PTPA) protein

DPP3_chr11_66276576_66276576_G_A 7/27 28/40 0.15 1.41E-03 rs12421620 p.E690K Peptidase family M49

KRT74_chr12_52966428_52966428_G_C 12/27 5/40 5.60 4.53E-03 rs11170177 p.N165K Intermediate filament

GPR157_chr1_9165685_9165685_G_A 5/27 24/40 0.15 1.01E-03 rs72637739 p.R218C Secretin receptor family

FAM209B_chr20_55111364_55111364_A_C 12/27 4/40 7.20 2.63E-03 rs2296129 p.E129A FAM209 family

SNP in PR comparison PR- a PR+ b OR c p-value d dbSNP ID AA
change

Functional Domain

KIAA1377_chr11_101832590_101832590_C_A 15/30 4/37 8.25 7.84E-04 rs11225089 p.S275Y Susceptibility to monomelic
amyotrophy

CPN1_chr10_101829514_101829514_C_T 10/30 1/37 18.00 1.57E-03 rs61751507 p.G178D Zinc carboxypeptidase
(Peptidase_M14)

RBM46_chr4_155719189_155719189_T_G 8/30 0/37 0.36/
0

8.97E-04 rs79167802 p.I126M RNA recognition motif (RRM_1)

DPP3_chr11_66276576_66276576_G_A 9/30 26/37 0.18 1.41E-03 rs12421620 p.E690K Peptidase family M49

HKR1_chr19_37854040_37854040_G_A 12/30 4/37 5.50 8.63E-03 rs2921563 p.R448H Zinc-finger double domain (zf-
H2C2_2)

SNP in HER2 comparison HER2- a HER2+ b OR c p-value d dbSNP ID AA
change

Functional Domain

CENPJ_chr13_25486911_25486911_G_T 5/42 4/8 0.14 2.64E-02 rs9511510 p.P85T PfamB PB003077

GABRE_chrX_151138179_151138179_A_C 40/42 4/8 20.00 3.94E-03 rs1139916 p.S102A Neurotransmitter-gated ion-channel
ligand binding domain

SP4_chr7_21469504_21469504_C_G 3/42 4/8 0.08 8.54E-03 rs139491266 p.L241V PfamB PB022696

SNP in Grade comparison GradeII a GradeIII b OR c p-value d dbSNP ID AA
change

Functional Domain

ANKRD32_chr5_94030818_94030818_G_T 0/25 4/13 0.00 9.69E-03 rs76504036 p.C993F PfamB PB101142

GFM2_chr5_74037386_74037386_T_A 2/25 5/13 0.14 3.41E-02 rs16872235 p.S300C Elongation factor Tu GTP binding
domain

SNP in Stage comparison StageII a StageIII b OR c p-value d dbSNP ID AA
change

Functional Domain

LPPR2_chr19_11473358_11473358_C_G 1/70 5/18 0.04 1.14E-03 rs11540666 p.T253S PAP2 superfamily

PRCP_chr11_82564294_82564294_T_G 5/70 8/18 0.10 4.80E-04 rs2229437 p.E112D Serine carboxypeptidase S28

GSTO1_chr10_106022789_106022789_C_A 13/70 11/18 0.15 7.33E-04 rs4925 p.A140D Glutathione S-transferase, C-terminal
domain

PLEKHG6_chr12_6421495_6421495_G_A 26/70 15/18 0.12 5.23E-04 rs740842 p.A35T PfamB PB015161

AGL_chr1_100358103_100358103_C_T 5/70 5/18 0.20 2.72E-02 rs3753494 p.P1051S Amylo-alpha-1,6-glucosidase

AGL_chr1_100361925_100361925_G_A 20/70 10/18 0.32 4.93E-02 rs2230307 p.
G1115R

Amylo-alpha-1,6-glucosidase

MMP20_chr11_102482504_102482504_T_G 3/70 5/18 0.12 8.03E-03 rs17099008 p.I169L Matrixin (Peptidase_M10)

a SNV mutate ratio in ER-, PR-, HER2-, Grade II, and Stage II. (number of patients with the mutation in the class/total number of patients in the class)
b SNV mutate ratio in ER+, PR+, HER2+, Grade III, and Stage III. (number of patients with the mutation in the class/total number of patients in the class)
c OR: Odd ratio (ER-/ER+; PR-/PR+; HER2-/HER2+; GradeII/GradeIII; StageII/StageIII)
d Fisher’s exact test

doi:10.1371/journal.pone.0119383.t007
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mutations of PPP2R4 are significant in the pathogenesis of breast cancer [41], especially in dif-
ferent ER status patients, the downstream effect of this SNV on protein stability is further in-
vestigated in the next section.

Table 7 shows SNVs that have significantly different occurrence frequency between differ-
ent breast classes. For example, rs11225089, rs61751507, and rs79167802 occur more frequent-
ly in the PR- than PR+ class; rs1139916 occur more frequently in the HER2- than HER2
+ class; rs76504036 occur more frequently in the grade III than in grade II class; rs11540666
and rs2229437 occur more frequently in the stage III than in stage II class. These SNVs might
be related to tumor evolution and contribute to different prognosis of breast cancer subtypes.

There are some SNVs that are differentially occurring between the comparison groups but
not present in the functional domain regions of proteins (S3 Table). However, it is possible that
these SNVs are present in the inter-domain or loop regions, but still have an effect on the struc-
ture of protein or otherwise affect a protein’s ability to bind and interact with other proteins.

Protein stability analysis
For feasibility, we selected 9 relatively rare occurring SNVs from Table 7 to analyze the conse-
quences of point mutations on protein stability. We carried out hmmpfam/hmmpanther motif
search with iprscan, to assess if the SNVs are part of the functional motif or domain region
(with high confidence at an E-value< = 10-4) (Table 8). Then, we compared two protein struc-
ture prediction tools, I-TASSER and RaptorX, using the known PDB structure of DPP3 (PDB
ID- 3FVY) to determine which method is more reliable and accurate for protein structure pre-
diction. The Root-Mean-Square Deviations (RMSD) of atomic positions between the known
DPP3 PDB structure and the I-TASSER or RaptorX predicted models are 0.45 and 7.1, respec-
tively, indicating that I-TASSER is performing far better than RaptorX. We repeated the struc-
ture prediction twice for each protein, in order to check if we can get the same structure for
each run or not. I-TASSER always gave the same result while RaptorX often gave slightly differ-
ent results for several proteins. Thus we used I-TASSER for further analysis of all proteins.

Table 8. Pfam and Panther motif analysis for breast cancer related mutated genes and overall impact of mutation in protein stability.

Gene
Symbol

dbSNP Protein AA
change

Pfam a HMMPanther b Impact of
mutation c

CPN1 rs61751507 P15169 p.G178D Peptidase M14
(PF00246)

Protease M14 Carboxypeptidase (PTHR11532) Destabilizing

AGL rs2230307 P35573 p.G1115R GDE_C (PF06202) Glycogen Debranching Enzyme (PTHR10569) Destabilizing

PPP2R4 rs2480452 Q15257 p.S287L PTPA (PF03095) Serine/Threonine-Protein Phosphatase 2A Regulatory
Subunit B (PTHR10012)

Destabilizing

GPR157 rs72637739 Q5UAW9 p.R218C 7tm_2 (PF00002) G Protein-Coupled Receptor 157 (PTHR23112) Destabilizing

GFM2 rs16872235 Q969S9 p.S300C GTP_EFTU
(PF00009)

Translation elongation factor G (PTHR23115) Stabilizing

CENPJ rs9511510 Q9HC77 p.P85T —— T complex protein 10 (PTHR10331) Destabilizing

DPP3 rs12421620 Q9NY33 p.E690K PeptidaseM49
(PF03571)

Dipeptidyl peptidase III (PTHR23422) Destabilizing

ANKRD32 rs11225089 Q9BQI6 p.C993F —— —— Stabilizing

KIAA1377 rs61751507 Q9P2H0 p.S275Y K1377 (PF15352) Pthr31191 family not named (PTHR31191) Destabilizing

a Pfam ID (Pfam accession ID)
b Panther family (Panther accession ID)
c Test scores for stabilizing/destabilizing are shown in S5 Table

doi:10.1371/journal.pone.0119383.t008
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Further, we analyzed the impact of point mutations (SNVs) on protein stability by using
I-Mutant 2.0, PopMusic2.1 and CUPSAT tools (S5 Table). Our results suggest that 7 out of 9
SNVs tested have destabilizing effect on proteins. In contrast, the other two SNVs (present in
GFM2 and ANKRD32 proteins) have a stabilizing effect (means no significant change to struc-
ture or function) after mutation (Table 8) (Fig. 4). In mutated DPP3 protein, negatively
charged Glutamate residue (E) got replaced with positively charged Lysine (K) at position 690.
Structure analysis of DPP3 suggests that mutant protein has almost similar structure to normal
protein, except that the C-terminus has its helix structure changed to a loop structure because
of the point mutation (Fig. 4). It has been reported that the C-terminal structure of this protein
can play a big role in substrate binding in DPP3 [88]. As the mutation occurs close to the sub-
strate binding residues, K666 and R669 [88], we hypothesize that the altered structure at C-ter-
minus affects substrate binding and consequently alters protein function.

Fig 4. Superimposed structures of normal (green) andmutated (yellow) DPP3 protein chains. Amino acid change at 690th position for DPP3 leads to
the structural changes at the C-terminus (in red square) region of the mutant protein. Normal residue (E) at 690th position is shown in blue and the mutated
residue (K) is shown in red.

doi:10.1371/journal.pone.0119383.g004
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Conclusions
Breast cancers exhibit highly heterogeneous molecular profiles, which often reflect their dis-
tinct prognosis. Although gene expression profiles have been widely used for the classification
and targeted treatment of breast cancers, DNA mutational profiles—owing to their stability of
detection—are more advantageous in developing biomarkers. In this study, we attempt to de-
tect the genetic mutations (at gene- and nucleotide-level) that are significantly different across
different breast cancer classes, by performing a large-scale analysis of 98 breast cancer exome
sequencing datasets. We proposed a method for scoring the deleteriousness of mutated genes
and identified differentially mutated genes (DMGs) and SNVs from five breast cancer compar-
ison classes (ER+ vs. ER-, PR+ vs. PR-, HER2+ vs. HER2-, grade II vs. grade III, and stage II vs.
stage III). We have identified many DMGs such as ERBB2, EPS8, PPP2R4, KIAA0922, SP4,
CENPJ, PRCP and SELP, whose mutational loads match with experimentally or clinically veri-
fied breast cancer prognosis. We also identified some category 2 genes such as ARL6IP5,
RAET1E, and ANO7 that could be crucial for breast cancer development and prognosis (S1
File). Interestingly, the majority of DMGs have higher deleterious mutation scores in the clas-
ses with poor prognosis (ER-, PR-, HER2+, grade III, and stage III), which suggests that the
deleterious gene mutations are gradually accumulated with the progression of cancer.

Then, we identified some SNVs such as rs1058808, rs2480452, rs61751507, rs79167802,
rs11540666, and rs2229437 that potentially influence protein functions and have significantly
different occurrence frequency in the populations of different breast cancer comparison
groups. Protein structure analysis also suggests that many of the SNVs identified in this study
could alter the protein stability and structure, and those SNVs might be associated with cancer
evolution and affect prognosis of breast cancers. Some genes and SNVs we identified are wor-
thy of further experimental investigation and verification.

Supporting Information
S1 File. Supplementary literatures for category 2–4 DMGs. Literatures are listed for each
class of comparison. Tables in the file were sorted based on categories.
(DOCX)

S1 Table. Clinical information of all 103 breast cancer samples. Information includes ID for
this study (ID), dbGap subject ID (dbGap SubjID), submitted subject ID (SUBJID), Age, Gen-
der, Primary Disease, Expression Subtype, Country, ER status, PR status, HER 2 status, tumor
stage (Stage), tumor grade (Grade), Menopausal Status, Histology, and whether it is used in
this study (In the study).
(XLSX)

S2 Table. Deleterious mutation score matrix for filtered 3,826 genes in 98 breast cancer
samples. Genes that have deleterious mutations present in less than 5 (out of 98) samples have
been filtered out to obtain 3,826 genes. Deleterious scores were calculated using the scoring
function described in method section.
(XLSX)

S3 Table. All the deleterious SNVs identified from five two-class comparison. Differentially
mutated genes among ER+ vs. ER-, PR+ vs. PR-, HER2+ vs. HER2-, grade II vs. grade III, and
stage II vs. stage III are listed, along with the occurrences and functional domain information.
(XLSX)

Mutational Profiles of Breast Cancer Classes

PLOS ONE | DOI:10.1371/journal.pone.0119383 March 24, 2015 18 / 23

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0119383.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0119383.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0119383.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0119383.s004


S4 Table. Comparison of mutation deleteriousness scores between CONDEL and SIFT for
all SNVs from DMGs.
(XLSX)

S5 Table. Protein stability test results for selected SNVs using I-MUTANT 2.0, PopMusic
2.1 and CUPSAT. Amutation is defined as destabilizing/stabilizing if at least two tools give
the same prediction result.
(XLSX)

Author Contributions
Conceived and designed the experiments: XW YL CG. Performed the experiments: YL NKM.
Analyzed the data: YL SV NKM. Wrote the paper: YL XW CG NKM KHC.

References
1. American Cancer Society. Breast Cancer Facts & Figures 2013–2014. Atlanta: American Cancer So-

ciety, Inc. 2013.

2. Hutchinson L (2010) Breast cancer: challenges, controversies, breakthroughs. Nat Rev Clin Oncol 7:
669–670. doi: 10.1038/nrclinonc.2010.192 PMID: 21116236

3. Polyak K (2011) Heterogeneity in breast cancer. J Clin Invest 121: 3786–3788. doi: 10.1172/JCI60534
PMID: 21965334

4. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. (2000) Molecular portraits of
human breast tumours. Nature 406: 747–752. PMID: 10963602

5. Hornberger J, Cosler LE, Lyman GH (2005) Economic analysis of targeting chemotherapy using a 21-
gene RT-PCR assay in lymph-node-negative, estrogen-receptor-positive, early-stage breast cancer.
Am J Manag Care 11: 313–324. PMID: 15898220

6. Tian S, Roepman P, Van't Veer LJ, Bernards R, de Snoo F, Glas AM (2010) Biological functions of the
genes in the mammaprint breast cancer profile reflect the hallmarks of cancer. Biomark Insights 5:
129–138. doi: 10.4137/BMI.S6184 PMID: 21151591

7. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, et al. (2013) Mutational
heterogeneity in cancer and the search for new cancer-associated genes. Nature 499: 214–218. doi:
10.1038/nature12213 PMID: 23770567

8. Kittaneh M, Montero AJ, Gluck S (2013) Molecular profiling for breast cancer: a comprehensive review.
Biomark Cancer 5: 61–70. doi: 10.4137/BIC.S9455 PMID: 24250234

9. Network TCGA (2012) Comprehensivemolecular portraits of human breast tumours. Nature 490: 61–70.
doi: 10.1038/nature11412 PMID: 23000897

10. Jeselsohn R, Yelensky R, Buchwalter G, Frampton G, Meric-Bernstam F, Gonzalez-Angulo AM, et al.
(2014) Emergence of Constitutively Active Estrogen Receptor-alpha Mutations in Pretreated Advanced
Estrogen Receptor-Positive Breast Cancer. Clin Cancer Res 20: 1757–1767. doi: 10.1158/1078-0432.
CCR-13-2332 PMID: 24398047

11. Bose R, Kavuri SM, Searleman AC, ShenW, Shen D, Koboldt DC, et al. (2013) Activating HER2 muta-
tions in HER2 gene amplification negative breast cancer. Cancer Discov 3: 224–237. doi: 10.1158/
2159-8290.CD-12-0349 PMID: 23220880

12. Banerji S, Cibulskis K, Rangel-Escareno C, Brown KK, Carter SL, Frederick AM, et al. (2012) Sequence
analysis of mutations and translocations across breast cancer subtypes. Nature 486: 405–409. doi: 10.
1038/nature11154 PMID: 22722202

13. Eisinger F, Stoppa-Lyonnet D, Longy M, Kerangueven F, Noguchi T, Bailly C, et al. (1996) Germ line
mutation at BRCA1 affects the histoprognostic grade in hereditary breast cancer. Cancer Res 56:
471–474. PMID: 8564955

14. FastQC. Available: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.

15. Fastx Toolkit. Available: http://hannonlab.cshl.edu/fastx_toolkit/.

16. Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinfor-
matics 26: 589–595. doi: 10.1093/bioinformatics/btp698 PMID: 20080505

17. McKenna A, HannaM, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. (2010) The Genome
Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Ge-
nome Res 20: 1297–1303. doi: 10.1101/gr.107524.110 PMID: 20644199

Mutational Profiles of Breast Cancer Classes

PLOS ONE | DOI:10.1371/journal.pone.0119383 March 24, 2015 19 / 23

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0119383.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0119383.s006
http://dx.doi.org/10.1038/nrclinonc.2010.192
http://www.ncbi.nlm.nih.gov/pubmed/21116236
http://dx.doi.org/10.1172/JCI60534
http://www.ncbi.nlm.nih.gov/pubmed/21965334
http://www.ncbi.nlm.nih.gov/pubmed/10963602
http://www.ncbi.nlm.nih.gov/pubmed/15898220
http://dx.doi.org/10.4137/BMI.S6184
http://www.ncbi.nlm.nih.gov/pubmed/21151591
http://dx.doi.org/10.1038/nature12213
http://www.ncbi.nlm.nih.gov/pubmed/23770567
http://dx.doi.org/10.4137/BIC.S9455
http://www.ncbi.nlm.nih.gov/pubmed/24250234
http://dx.doi.org/10.1038/nature11412
http://www.ncbi.nlm.nih.gov/pubmed/23000897
http://dx.doi.org/10.1158/1078-0432.CCR-13-2332
http://dx.doi.org/10.1158/1078-0432.CCR-13-2332
http://www.ncbi.nlm.nih.gov/pubmed/24398047
http://dx.doi.org/10.1158/2159-8290.CD-12-0349
http://dx.doi.org/10.1158/2159-8290.CD-12-0349
http://www.ncbi.nlm.nih.gov/pubmed/23220880
http://dx.doi.org/10.1038/nature11154
http://dx.doi.org/10.1038/nature11154
http://www.ncbi.nlm.nih.gov/pubmed/22722202
http://www.ncbi.nlm.nih.gov/pubmed/8564955
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://hannonlab.cshl.edu/fastx_toolkit/
http://dx.doi.org/10.1093/bioinformatics/btp698
http://www.ncbi.nlm.nih.gov/pubmed/20080505
http://dx.doi.org/10.1101/gr.107524.110
http://www.ncbi.nlm.nih.gov/pubmed/20644199


18. Van der Auwera GA CM, Hartl C, Poplin R, del Angel G, Levy-Moonshine A, Jordan T, Shakir K, Roa-
zen D, Thibault J, Banks E, Garimella K, Altshuler D, Gabriel S, DePristo M (2013) From FastQ Data to
High-Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline. Current Proto-
cols in Bioinformatics 43. PMID: 24509512

19. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. (2011) A framework for varia-
tion discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43: 491–498.
doi: 10.1038/ng.806 PMID: 21478889

20. Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-
throughput sequencing data. Nucleic Acids Res 38: e164. doi: 10.1093/nar/gkq603 PMID: 20601685

21. Ng PC, Henikoff S (2003) SIFT: Predicting amino acid changes that affect protein function. Nucleic
Acids Res 31: 3812–3814. PMID: 12824425

22. Y B, Y H (1995) Controlling the false discovery rate: a practical and powerful approach to multiple test-
ing. Journal of the Royal Statistical Society B 57: 289–300.

23. Simon R, Lam A, Li MC, Ngan M, Menenzes S, Zhao Y (2007) Analysis of gene expression data using
BRB-ArrayTools. Cancer Inform 3: 11–17. PMID: 19455231

24. Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, et al. (2012) The Pfam protein fami-
lies database. Nucleic Acids Res 40: D290–301. doi: 10.1093/nar/gkr1065 PMID: 22127870

25. Gonzalez-Perez A, Lopez-Bigas N (2011) Improving the assessment of the outcome of nonsynon-
ymous SNVs with a consensus deleteriousness score, Condel. Am J HumGenet 88: 440–449. doi: 10.
1016/j.ajhg.2011.03.004 PMID: 21457909

26. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. (2010) A method and
server for predicting damaging missense mutations. Nat Methods 7: 248–249. doi: 10.1038/
nmeth0410-248 PMID: 20354512

27. Clifford RJ, Edmonson MN, Nguyen C, Buetow KH (2004) Large-scale analysis of non-synonymous
coding region single nucleotide polymorphisms. Bioinformatics 20: 1006–1014. PMID: 14751981

28. Stone EA, Sidow A (2005) Physicochemical constraint violation by missense substitutions mediates im-
pairment of protein function and disease severity. Genome Res 15: 978–986. PMID: 15965030

29. Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, et al. (2009) InterPro: the integra-
tive protein signature database. Nucleic Acids Res 37: D211–215. doi: 10.1093/nar/gkn785 PMID:
18940856

30. Kallberg M, Wang H, Wang S, Peng J, Wang Z, Lu H, et al. (2012) Template-based protein structure
modeling using the RaptorX web server. Nat Protoc 7: 1511–1522. doi: 10.1038/nprot.2012.085 PMID:
22814390

31. Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and
function prediction. Nat Protoc 5: 725–738. doi: 10.1038/nprot.2010.5 PMID: 20360767

32. Capriotti E, Fariselli P, Casadio R (2005) I-Mutant2.0: predicting stability changes upon mutation from
the protein sequence or structure. Nucleic Acids Res 33: W306–310. PMID: 15980478

33. Dehouck Y, Kwasigroch JM, Gilis D, Rooman M (2011) PoPMuSiC 2.1: a web server for the estimation
of protein stability changes upon mutation and sequence optimality. BMC Bioinformatics 12: 151. doi:
10.1186/1471-2105-12-151 PMID: 21569468

34. Parthiban V, Gromiha MM, Schomburg D (2006) CUPSAT: prediction of protein stability upon point mu-
tations. Nucleic Acids Res 34: W239–242. PMID: 16845001

35. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. (2009) Circos: an information
aesthetic for comparative genomics. Genome Res 19: 1639–1645. doi: 10.1101/gr.092759.109 PMID:
19541911

36. Yoneda-Kato N, Tomoda K, Umehara M, Arata Y, Kato JY (2005) Myeloid leukemia factor 1 regulates
p53 by suppressing COP1 via COP9 signalosome subunit 3. EMBO J 24: 1739–1749. PMID:
15861129

37. Ross JS, Fletcher JA, Linette GP, Stec J, Clark E, Ayers M, et al. (2003) The Her-2/neu gene and pro-
tein in breast cancer 2003: biomarker and target of therapy. Oncologist 8: 307–325. PMID: 12897328

38. Chen C, Yang JM, Hu TT, Xu TJ, Yan G, Hu SL, et al. (2013) Prognostic role of human epidermal
growth factor receptor in gastric cancer: a systematic review and meta-analysis. Arch Med Res 44:
380–389. doi: 10.1016/j.arcmed.2013.07.001 PMID: 23871709

39. Keen JC, Zhou Q, Park BH, Pettit C, Mack KM, Blair B, et al. (2005) Protein phosphatase 2A regulates
estrogen receptor alpha (ER) expression through modulation of ER mRNA stability. J Biol Chem 280:
29519–29524. PMID: 15965230

40. Ma Y, Hu C, Riegel AT, Fan S, Rosen EM (2007) Growth factor signaling pathways modulate BRCA1
repression of estrogen receptor-alpha activity. Mol Endocrinol 21: 1905–1923. PMID: 17505062

Mutational Profiles of Breast Cancer Classes

PLOS ONE | DOI:10.1371/journal.pone.0119383 March 24, 2015 20 / 23

http://www.ncbi.nlm.nih.gov/pubmed/24509512
http://dx.doi.org/10.1038/ng.806
http://www.ncbi.nlm.nih.gov/pubmed/21478889
http://dx.doi.org/10.1093/nar/gkq603
http://www.ncbi.nlm.nih.gov/pubmed/20601685
http://www.ncbi.nlm.nih.gov/pubmed/12824425
http://www.ncbi.nlm.nih.gov/pubmed/19455231
http://dx.doi.org/10.1093/nar/gkr1065
http://www.ncbi.nlm.nih.gov/pubmed/22127870
http://dx.doi.org/10.1016/j.ajhg.2011.03.004
http://dx.doi.org/10.1016/j.ajhg.2011.03.004
http://www.ncbi.nlm.nih.gov/pubmed/21457909
http://dx.doi.org/10.1038/nmeth0410-248
http://dx.doi.org/10.1038/nmeth0410-248
http://www.ncbi.nlm.nih.gov/pubmed/20354512
http://www.ncbi.nlm.nih.gov/pubmed/14751981
http://www.ncbi.nlm.nih.gov/pubmed/15965030
http://dx.doi.org/10.1093/nar/gkn785
http://www.ncbi.nlm.nih.gov/pubmed/18940856
http://dx.doi.org/10.1038/nprot.2012.085
http://www.ncbi.nlm.nih.gov/pubmed/22814390
http://dx.doi.org/10.1038/nprot.2010.5
http://www.ncbi.nlm.nih.gov/pubmed/20360767
http://www.ncbi.nlm.nih.gov/pubmed/15980478
http://dx.doi.org/10.1186/1471-2105-12-151
http://www.ncbi.nlm.nih.gov/pubmed/21569468
http://www.ncbi.nlm.nih.gov/pubmed/16845001
http://dx.doi.org/10.1101/gr.092759.109
http://www.ncbi.nlm.nih.gov/pubmed/19541911
http://www.ncbi.nlm.nih.gov/pubmed/15861129
http://www.ncbi.nlm.nih.gov/pubmed/12897328
http://dx.doi.org/10.1016/j.arcmed.2013.07.001
http://www.ncbi.nlm.nih.gov/pubmed/23871709
http://www.ncbi.nlm.nih.gov/pubmed/15965230
http://www.ncbi.nlm.nih.gov/pubmed/17505062


41. Calin GA, di Iasio MG, Caprini E, Vorechovsky I, Natali PG, Sozzi G, et al. (2000) Low frequency of alter-
ations of the alpha (PPP2R1A) and beta (PPP2R1B) isoforms of the subunit A of the serine-threonine
phosphatase 2A in human neoplasms. Oncogene 19: 1191–1195. PMID: 10713707

42. Ruediger R, Pham HT, Walter G (2001) Disruption of protein phosphatase 2A subunit interaction in
human cancers with mutations in the A alpha subunit gene. Oncogene 20: 10–15. PMID: 11244497

43. Alaoui-Jamali MA, Song DJ, Benlimame N, Yen L, Deng X, Hernandez-Perez M, et al. (2003) Regula-
tion of multiple tumor microenvironment markers by overexpression of single or paired combinations of
ErbB receptors. Cancer Res 63: 3764–3774. PMID: 12839972

44. Wang J, Yuan Y, Zhou Y, Guo L, Zhang L, Kuai X, et al. (2008) Protein interaction data set highlighted
with human Ras-MAPK/PI3K signaling pathways. J Proteome Res 7: 3879–3889. doi: 10.1021/
pr8001645 PMID: 18624398

45. Arndt S, Poser I, Moser M, Bosserhoff AK (2007) Fussel-15, a novel Ski/Sno homolog protein, antago-
nizes BMP signaling. Mol Cell Neurosci 34: 603–611. PMID: 17292623

46. Katsuno Y, Hanyu A, Kanda H, Ishikawa Y, Akiyama F, Iwase T, et al. (2008) Bone morphogenetic pro-
tein signaling enhances invasion and bone metastasis of breast cancer cells through Smad pathway.
Oncogene 27: 6322–6333. doi: 10.1038/onc.2008.232 PMID: 18663362

47. Georgescu SP, Li JH, Lu Q, Karas RH, Brown M, Mendelsohn ME (2005) Modulator recognition factor
1, an AT-rich interaction domain family member, is a novel corepressor for estrogen receptor alpha. Mol
Endocrinol 19: 2491–2501. PMID: 15941852

48. Davis DA, Singer KE, De La Luz Sierra M, Narazaki M, Yang F, Fales HM, et al. (2005) Identification of
carboxypeptidase N as an enzyme responsible for C-terminal cleavage of stromal cell-derived factor-
1alpha in the circulation. Blood 105: 4561–4568. PMID: 15718415

49. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, et al. (2001) Involvement of chemokine re-
ceptors in breast cancer metastasis. Nature 410: 50–56. PMID: 11242036

50. Hao R, BondessonM, Singh AV, Riu A, McCollum CW, Knudsen TB, et al. (2013) Identification of Es-
trogen Target Genes during Zebrafish Embryonic Development through Transcriptomic Analysis. PLoS
One 8: e79020. doi: 10.1371/journal.pone.0079020 PMID: 24223173

51. Meijer D, van Agthoven T, Bosma PT, Nooter K, Dorssers LC (2006) Functional screen for genes re-
sponsible for tamoxifen resistance in human breast cancer cells. Mol Cancer Res 4: 379–386. PMID:
16778085

52. Brinkman A, van der Flier S, Kok EM, Dorssers LC (2000) BCAR1, a human homologue of the adapter
protein p130Cas, and antiestrogen resistance in breast cancer cells. J Natl Cancer Inst 92: 112–120.
PMID: 10639512

53. Cabodi S, Tinnirello A, Di Stefano P, Bisaro B, Ambrosino E, Castellano I, et al. (2006) p130Cas as a
new regulator of mammary epithelial cell proliferation, survival, and HER2-neu oncogene-dependent
breast tumorigenesis. Cancer Res 66: 4672–4680. PMID: 16651418

54. van der Flier S, Brinkman A, Look MP, Kok EM, Meijer-van Gelder ME, Klijn JG, et al. (2000) Bcar1/
p130Cas protein and primary breast cancer: prognosis and response to tamoxifen treatment. J Natl
Cancer Inst 92: 120–127. PMID: 10639513

55. Peng B, Sutherland KD, SumEY, Olayioye M, Wittlin S, Tang TK, et al. (2002) CPAP is a novel stat5-
interacting cofactor that augments stat5-mediated transcriptional activity. Mol Endocrinol 16:
2019–2033. PMID: 12198240

56. Koyanagi M, Hijikata M, Watashi K, Masui O, Shimotohno K (2005) Centrosomal P4.1-associated pro-
tein is a new member of transcriptional coactivators for nuclear factor-kappaB. J Biol Chem 280:
12430–12437. PMID: 15687488

57. Barash I (2012) Stat5 in breast cancer: potential oncogenic activity coincides with positive prognosis for
the disease. Carcinogenesis 33: 2320–2325. doi: 10.1093/carcin/bgs362 PMID: 23161573

58. Tweardy D, Chang JC (2011) Stat5: from breast development to cancer prognosis, prediction, and pro-
gression. J Clin Oncol 29: 2443–2444. doi: 10.1200/JCO.2010.34.2014 PMID: 21576641

59. Shostak K, Chariot A (2011) NF-kappaB, stem cells and breast cancer: the links get stronger. Breast
Cancer Res 13: 214. doi: 10.1186/bcr2886 PMID: 21867572

60. Yao J, Weremowicz S, Feng B, Gentleman RC, Marks JR, Gelman R, et al. (2006) Combined cDNA
array comparative genomic hybridization and serial analysis of gene expression analysis of breast
tumor progression. Cancer Res 66: 4065–4078. PMID: 16618726

61. Chen YJ, Shen MR, Maa MC, Leu TH (2008) Eps8 decreases chemosensitivity and affects survival of
cervical cancer patients. Mol Cancer Ther 7: 1376–1385. doi: 10.1158/1535-7163.MCT-07-2388
PMID: 18566210

62. Kikuno R, Nagase T, Waki M, Ohara O (2002) HUGE: a database for human large proteins identified in
the Kazusa cDNA sequencing project. Nucleic Acids Res 30: 166–168. PMID: 11752282

Mutational Profiles of Breast Cancer Classes

PLOS ONE | DOI:10.1371/journal.pone.0119383 March 24, 2015 21 / 23

http://www.ncbi.nlm.nih.gov/pubmed/10713707
http://www.ncbi.nlm.nih.gov/pubmed/11244497
http://www.ncbi.nlm.nih.gov/pubmed/12839972
http://dx.doi.org/10.1021/pr8001645
http://dx.doi.org/10.1021/pr8001645
http://www.ncbi.nlm.nih.gov/pubmed/18624398
http://www.ncbi.nlm.nih.gov/pubmed/17292623
http://dx.doi.org/10.1038/onc.2008.232
http://www.ncbi.nlm.nih.gov/pubmed/18663362
http://www.ncbi.nlm.nih.gov/pubmed/15941852
http://www.ncbi.nlm.nih.gov/pubmed/15718415
http://www.ncbi.nlm.nih.gov/pubmed/11242036
http://dx.doi.org/10.1371/journal.pone.0079020
http://www.ncbi.nlm.nih.gov/pubmed/24223173
http://www.ncbi.nlm.nih.gov/pubmed/16778085
http://www.ncbi.nlm.nih.gov/pubmed/10639512
http://www.ncbi.nlm.nih.gov/pubmed/16651418
http://www.ncbi.nlm.nih.gov/pubmed/10639513
http://www.ncbi.nlm.nih.gov/pubmed/12198240
http://www.ncbi.nlm.nih.gov/pubmed/15687488
http://dx.doi.org/10.1093/carcin/bgs362
http://www.ncbi.nlm.nih.gov/pubmed/23161573
http://dx.doi.org/10.1200/JCO.2010.34.2014
http://www.ncbi.nlm.nih.gov/pubmed/21576641
http://dx.doi.org/10.1186/bcr2886
http://www.ncbi.nlm.nih.gov/pubmed/21867572
http://www.ncbi.nlm.nih.gov/pubmed/16618726
http://dx.doi.org/10.1158/1535-7163.MCT-07-2388
http://www.ncbi.nlm.nih.gov/pubmed/18566210
http://www.ncbi.nlm.nih.gov/pubmed/11752282


63. Maharzi N, Parietti V, Nelson E, Denti S, Robledo-Sarmiento M, Setterblad N, et al. (2013) Identification
of TMEM131L as a novel regulator of thymocyte proliferation in humans. J Immunol 190: 6187–6197.
doi: 10.4049/jimmunol.1300400 PMID: 23690469

64. Howe LR, Brown AM (2004) Wnt signaling and breast cancer. Cancer Biol Ther 3: 36–41. PMID:
14739782

65. Jutooru I, Chadalapaka G, Lei P, Safe S (2010) Inhibition of NFkappaB and pancreatic cancer cell and
tumor growth by curcumin is dependent on specificity protein down-regulation. J Biol Chem 285:
25332–25344. doi: 10.1074/jbc.M109.095240 PMID: 20538607

66. Abdelrahim M, Safe S (2005) Cyclooxygenase-2 inhibitors decrease vascular endothelial growth factor
expression in colon cancer cells by enhanced degradation of Sp1 and Sp4 proteins. Mol Pharmacol
68: 317–329. PMID: 15883203

67. Mertens-Talcott SU, Noratto GD, Li X, Angel-Morales G, Bertoldi MC, Safe S (2013) Betulinic acid de-
creases ER-negative breast cancer cell growth in vitro and in vivo: role of Sp transcription factors and
microRNA-27a:ZBTB10. Mol Carcinog 52: 591–602. doi: 10.1002/mc.21893 PMID: 22407812

68. Higgins KJ, Liu S, AbdelrahimM, Yoon K, Vanderlaag K, Porter W, et al. (2006) Vascular endothelial
growth factor receptor-2 expression is induced by 17beta-estradiol in ZR-75 breast cancer cells by es-
trogen receptor alpha/Sp proteins. Endocrinology 147: 3285–3295. PMID: 16574784

69. Colak D, Nofal A, Albakheet A, Nirmal M, Jeprel H, Eldali A, et al. (2013) Age-specific gene expression
signatures for breast tumors and cross-species conserved potential cancer progression markers in
young women. PLoS One 8: e63204. doi: 10.1371/journal.pone.0063204 PMID: 23704896

70. ChenM, Geng JG (2006) P-selectin mediates adhesion of leukocytes, platelets, and cancer cells in in-
flammation, thrombosis, and cancer growth and metastasis. Arch Immunol Ther Exp (Warsz) 54: 75–84.
PMID: 16648968

71. Gil-Bernabe AM, Lucotti S, Muschel RJ (2013) Coagulation and metastasis: what does the experimen-
tal literature tell us? Br J Haematol 162: 433–441. doi: 10.1111/bjh.12381 PMID: 23691951

72. Cusi D, Barlassina C, Azzani T, Casari G, Citterio L, Devoto M, et al. (1997) Polymorphisms of alpha-
adducin and salt sensitivity in patients with essential hypertension. Lancet 349: 1353–1357. PMID:
9149697

73. Kelly TN, Rice TK, Gu D, Hixson JE, Chen J, Liu D, et al. (2009) Novel genetic variants in the alpha-
adducin and guanine nucleotide binding protein beta-polypeptide 3 genes and salt sensitivity of blood
pressure. Am J Hypertens 22: 985–992. doi: 10.1038/ajh.2009.118 PMID: 19574959

74. Braithwaite D, Moore DH, Satariano WA, Kwan ML, Hiatt RA, Kroenke C, et al. (2012) Prognostic im-
pact of comorbidity among long-term breast cancer survivors: results from the LACE study. Cancer Epi-
demiol Biomarkers Prev 21: 1115–1125. doi: 10.1158/1055-9965.EPI-11-1228 PMID: 22573797

75. Moeller C, Swindell EC, Kispert A, Eichele G (2003) Carboxypeptidase Z (CPZ) modulatesWnt signal-
ing and regulates the development of skeletal elements in the chicken. Development 130: 5103–5111.
PMID: 12944424

76. Smyth SS, Sciorra VA, Sigal YJ, Pamuklar Z, Wang Z, Xu Y, et al. (2003) Lipid phosphate phospha-
tases regulate lysophosphatidic acid production and signaling in platelets: studies using chemical inhib-
itors of lipid phosphate phosphatase activity. J Biol Chem 278: 43214–43223. PMID: 12909631

77. Panupinthu N, Lee HY, Mills GB (2010) Lysophosphatidic acid production and action: critical new play-
ers in breast cancer initiation and progression. Br J Cancer 102: 941–946. doi: 10.1038/sj.bjc.6605588
PMID: 20234370

78. Du J, Sun C, Hu Z, Yang Y, Zhu Y, Zheng D, et al. (2010) Lysophosphatidic acid induces MDA-MB-231
breast cancer cells migration through activation of PI3K/PAK1/ERK signaling. PLoS One 5: e15940.
doi: 10.1371/journal.pone.0015940 PMID: 21209852

79. Boucharaba A, Serre CM, Gres S, Saulnier-Blache JS, Bordet JC, Guglielmi J, et al. (2004) Platelet-
derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer.
J Clin Invest 114: 1714–1725. PMID: 15599396

80. Duan L, Motchoulski N, Danzer B, Davidovich I, Shariat-Madar Z, Levenson VV (2011) Prolylcarboxy-
peptidase regulates proliferation, autophagy, and resistance to 4-hydroxytamoxifen-induced cytotoxici-
ty in estrogen receptor-positive breast cancer cells. J Biol Chem 286: 2864–2876. doi: 10.1074/jbc.
M110.143271 PMID: 21087932

81. Chen N, Debnath J (2010) Autophagy and tumorigenesis. FEBS Lett 584: 1427–1435. doi: 10.1016/j.
febslet.2009.12.034 PMID: 20035753

82. GuoW, Chen D, Fan Z, Epstein HF (2011) Differential turnover of myosin chaperone UNC-45A iso-
forms increases in metastatic human breast cancer. J Mol Biol 412: 365–378. doi: 10.1016/j.jmb.2011.
07.012 PMID: 21802425

Mutational Profiles of Breast Cancer Classes

PLOS ONE | DOI:10.1371/journal.pone.0119383 March 24, 2015 22 / 23

http://dx.doi.org/10.4049/jimmunol.1300400
http://www.ncbi.nlm.nih.gov/pubmed/23690469
http://www.ncbi.nlm.nih.gov/pubmed/14739782
http://dx.doi.org/10.1074/jbc.M109.095240
http://www.ncbi.nlm.nih.gov/pubmed/20538607
http://www.ncbi.nlm.nih.gov/pubmed/15883203
http://dx.doi.org/10.1002/mc.21893
http://www.ncbi.nlm.nih.gov/pubmed/22407812
http://www.ncbi.nlm.nih.gov/pubmed/16574784
http://dx.doi.org/10.1371/journal.pone.0063204
http://www.ncbi.nlm.nih.gov/pubmed/23704896
http://www.ncbi.nlm.nih.gov/pubmed/16648968
http://dx.doi.org/10.1111/bjh.12381
http://www.ncbi.nlm.nih.gov/pubmed/23691951
http://www.ncbi.nlm.nih.gov/pubmed/9149697
http://dx.doi.org/10.1038/ajh.2009.118
http://www.ncbi.nlm.nih.gov/pubmed/19574959
http://dx.doi.org/10.1158/1055-9965.EPI-11-1228
http://www.ncbi.nlm.nih.gov/pubmed/22573797
http://www.ncbi.nlm.nih.gov/pubmed/12944424
http://www.ncbi.nlm.nih.gov/pubmed/12909631
http://dx.doi.org/10.1038/sj.bjc.6605588
http://www.ncbi.nlm.nih.gov/pubmed/20234370
http://dx.doi.org/10.1371/journal.pone.0015940
http://www.ncbi.nlm.nih.gov/pubmed/21209852
http://www.ncbi.nlm.nih.gov/pubmed/15599396
http://dx.doi.org/10.1074/jbc.M110.143271
http://dx.doi.org/10.1074/jbc.M110.143271
http://www.ncbi.nlm.nih.gov/pubmed/21087932
http://dx.doi.org/10.1016/j.febslet.2009.12.034
http://dx.doi.org/10.1016/j.febslet.2009.12.034
http://www.ncbi.nlm.nih.gov/pubmed/20035753
http://dx.doi.org/10.1016/j.jmb.2011.07.012
http://dx.doi.org/10.1016/j.jmb.2011.07.012
http://www.ncbi.nlm.nih.gov/pubmed/21802425


83. WuD, Asiedu M, Wei Q (2009) Myosin-interacting guanine exchange factor (MyoGEF) regulates the in-
vasion activity of MDA-MB-231 breast cancer cells through activation of RhoA and RhoC. Oncogene
28: 2219–2230. doi: 10.1038/onc.2009.96 PMID: 19421144

84. WuD, Haruta A, Wei Q (2010) GIPC1 interacts with MyoGEF and promotes MDA-MB-231 breast can-
cer cell invasion. J Biol Chem 285: 28643–28650. doi: 10.1074/jbc.M110.107649 PMID: 20634288

85. Tong SY, Ha SY, Ki KD, Lee JM, Lee SK, Lee KB, et al. (2009) The effects of obesity and HER-2 poly-
morphisms as risk factors for endometrial cancer in Korean women. BJOG 116: 1046–1052. doi: 10.
1111/j.1471-0528.2009.02186.x PMID: 19438491

86. Hunter DJ, Kraft P, Jacobs KB, Cox DG, Yeager M, Hankinson SE, et al. (2007) A genome-wide associ-
ation study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer.
Nat Genet 39: 870–874. PMID: 17529973

87. Breyer JP, Sanders ME, Airey DC, Cai Q, Yaspan BL, Schuyler PA, et al. (2009) Heritable variation of
ERBB2 and breast cancer risk. Cancer Epidemiol Biomarkers Prev 18: 1252–1258. doi: 10.1158/
1055-9965.EPI-08-1202 PMID: 19336545

88. Prajapati SC, Chauhan SS (2011) Dipeptidyl peptidase III: a multifaceted oligopeptide N-end cutter.
FEBS J 278: 3256–3276. doi: 10.1111/j.1742-4658.2011.08275.x PMID: 21794094

Mutational Profiles of Breast Cancer Classes

PLOS ONE | DOI:10.1371/journal.pone.0119383 March 24, 2015 23 / 23

http://dx.doi.org/10.1038/onc.2009.96
http://www.ncbi.nlm.nih.gov/pubmed/19421144
http://dx.doi.org/10.1074/jbc.M110.107649
http://www.ncbi.nlm.nih.gov/pubmed/20634288
http://dx.doi.org/10.1111/j.1471-0528.2009.02186.x
http://dx.doi.org/10.1111/j.1471-0528.2009.02186.x
http://www.ncbi.nlm.nih.gov/pubmed/19438491
http://www.ncbi.nlm.nih.gov/pubmed/17529973
http://dx.doi.org/10.1158/1055-9965.EPI-08-1202
http://dx.doi.org/10.1158/1055-9965.EPI-08-1202
http://www.ncbi.nlm.nih.gov/pubmed/19336545
http://dx.doi.org/10.1111/j.1742-4658.2011.08275.x
http://www.ncbi.nlm.nih.gov/pubmed/21794094

