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Abstract
In protein synthesis initiation, the eukaryotic translation initiation factor (eIF) 2 (a G protein)
functions in its GTP-bound state to deliver initiator methionyl-tRNA (tRNAi

Met) to the small
ribosomal subunit and is necessary for protein synthesis in all cells1,2. Phosphorylation of eIF2
[eIF2(αP)] is critical for translational control in diverse settings including nutrient deprivation,
viral infection and memory formation3,4,5. eIF5 functions in start site selection as a GTPase
accelerating protein (GAP) for the eIF2•GTP•tRNAi

Met ternary complex (TC) within the ribosome
bound pre-initiation complex6,7,8. Here we define new regulatory functions of eIF5 in the
recycling of eIF2 from its inactive eIF2•GDP state between successive rounds of translation
initiation. Firstly we show that eIF5 stabilizes the binding of GDP to eIF2 and is therefore a bi-
functional protein that acts as a GDP dissociation inhibitor (GDI). We find that this activity is
independent of the GAP function and identify conserved residues within eIF5 that are necessary
for this role. In addition we show that eIF5 is a critical component of the eIF2(αP) regulatory
complex that inhibits the activity of the guanine-nucleotide exchange factor (GEF) eIF2B.
Together our studies define a new step in the translation initiation pathway, one that is critical for
normal translational controls.

eIF2•GTP is one of multiple translation initiation factors that plays an essential role in
facilitating precise ribosome-bound tRNAi

Met recognition of initiator codons on mRNAs. A
second factor, eIF5 binds eIF2 and accelerates GTP hydrolysis and release of both factors
prior to small and large ribosomal subunit joining2. Modulating the activity of eIF2 via
phosphorylation is a key control step in protein synthesis. eIF2α protein kinases respond to
diverse cues and can mediate both general protein synthesis repression as well as
translational activation of specific mRNAs including those bearing multiple short upstream
open reading frames (uORFs) in their leaders. eIF2(αP) inhibits the GEF activity of eIF2B
blocking the reactivation of eIF2•GTP1,2. Recent observations suggested that eIF5 has
additional functions in translation. Both eIF2 and eIF5 are dissociated from ribosomes
together9,10. In addition, in yeast, there is an abundant cellular fraction of eIF2/eIF5
complexes that greatly exceeds the detectable levels of TC11, suggesting that eIF5 may play
a part in the recycling of eIF2•GDP. GDI proteins antagonise GEFs and have been described
for some G proteins12, although not for translation initiation. We therefore assessed if eIF5
possesses GDI activity.
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Yeast eIF2αβγ complexes were purified using his-tagged eIF2γ13. GDP release (Koff) was
measured in a filter binding assay where eIF2•[3H]GDP complexes were dissociated in the
presence of excess unlabelled GDP and magnesium ions (Fig.1a). Increasing [Mg2+]
progressively stabilized GDP binding to eIF2, as expected, because Mg2+ helps coordinate
the GDP-β phosphate-eIF2γ interaction14 (Fig.S1). The effect of increasing concentrations
of recombinant eIF5 on the GDP dissociation rate was assessed using a glutathione S-
transferase eIF5 fusion protein (GST-eIF5) purified from Escherichia coli (Figs.1b, S1, S2).
A significant and progressive stabilization of GDP binding to eIF2 was observed with
increasing eIF5 (Koff reduced from 0.12 to 0.077 min−1 with equimolar eIF2 and eIF5),
which approached saturation at a 4:1 ratio. Importantly, GST alone did not have this activity
(Fig.1b). We observed the GDP stabilization effect of eIF5 over a range of physiological
magnesium concentrations. The data also show that Mg2+ is required for eIF5 GDI activity,
as eIF5 has minimal GDI function in the absence of added Mg2+. However as Mg2+

concentration is increased within the physiological range, Mg2+ and eIF5 act together to
stabilize GDP binding to eIF2 (Fig.S1). eIF5-FLAG, purified from yeast, behaved
identically to GST-eIF5 (Fig.1c, #2& #10). These experiments demonstrate that eIF5 can act
as a GDI factor for eIF2•GDP.

The invariant Arg15 residue in eIF5 is critical for eIF5-dependent GAP activity and the
eIF5R15M mutation eliminates this function6-8. The R15M mutant retains full eIF5 GDI
activity (Fig.1c, #3) demonstrating that GAP and GDI activities are independent. The
tif5-7A allele is a well-characterised eIF5 mutant in which seven evolutionarily-conserved
residues in the carboxy-terminal domain (CTD) are mutated to alanines15. These amino acid
substitutions impair eIF5-eIF2 interactions11,15,16. We found that eIF57A-FLAG
eliminated GDI function, as did a single conservative substitution within this motif at
Trp391 (eIF5W391F; Fig.1c, #11& #4). GST-protein affinity chromatography was performed
to examine interactions between purified eIF5 and eIF2. This confirmed that GST-
eIF5W391F reduces the affinity of eIF5 for purified eIF2, similar to that described for the 7A
mutant (Fig.2, lane 5)15 and shows that the eIF2 binding domain provided by the eIF5-CTD
is necessary for GDI activity.

To delineate regions of eIF5 necessary for its GDI activity we used sequence alignments and
available structural information to define the ‘amino terminal domain’ (NTD, residues
1-152)17 and CTD (residues 241-405) of yeast eIF518. The intervening sequence (residues
153-240) is defined here as the ‘linker region’ (LR). GST-fusion proteins comprising these
domains were assessed for eIF2 interaction and GDI activity (Figs. 1 and 2). Only GST-
eIF5LR+CTD retained both activities, while the GST-eIF5CTD could bind to eIF2, but did not
retain GDI function. These experiments suggested that residues within the LR are required
in addition to the CTD for GDI activity. Sequence alignments from diverse organisms
identified a highly-conserved 20 residue stretch within the LR which we have called the
'DWEAR' motif after the five absolutely conserved residues it contains (Fig.S3). A mutant
allele was made within full-length eIF5 in which seven DWEAR motif residues were
mutated to alanines; we term this the LR7A allele (eIF5LR7A). GST-eIF5LR7A retained eIF2-
binding affinity (Fig.2, lane 6) but eliminated GDI function (Fig.1c, #5). These analyses
separate eIF2 binding and GDI functions and identify conserved residues critical for GDI
activity within the LR and CTD.

As GDP binds eIF2γ, we asked whether the eIF5LR+CTD could interact directly with eIF2γ
to mediate GDI function. The eIF5 CTD was previously shown to interact with eIF2β15. In
addition eIF2γ was found to bind a construct containing eIF5 residues 1-279 but not
residues 280-40519 i.e. extending from the NTD through our LR into the CTD. We assessed
the ability of GST-fusion proteins to interact with eIF2 from yeast cell extracts expressing c-
Myc-6xHis tagged eIF2γ from either a single copy (sc) or high copy (hc) plasmid to provide
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a source both of eIF2αβγ complexes and excess free eIF2γ. As expected, GST-eIF5 could
specifically interact with eIF2αβγ, as demonstrated by immunoblotting signals for the α
and γ subunits, and with the excess eIF2γ when overexpressed (Fig.3, lanes 5-6). Consistent
with Fig.2, eIF5 constructs with an intact CTD interacted with eIF2αβγ complexes in cell
extracts similarly to full-length wild-type eIF5, while the W391F mutation weakened
binding. However, among the mutants tested, only the eIF5LR+CTD construct containing an
intact LR and CTD region stimulated binding to the excess eIF2γ (lane 12). Thus the LR7A
allele interacts with eIF2 complexes but not excess free eIF2γ (lane 10). These results are
consistent with eIF2β forming a major site for eIF5-CTD binding, while conserved residues
within the LR region define a new region of eIF5 required for eIF2γ interaction and GDI
function.

To examine the effects of mutations on eIF5 function in vivo, the R15M, W391F and LR7A
mutations were introduced into eIF5-FLAG on both sc and hc plasmids, then transformed
into an eIF5 deleted (tif5Δ) yeast strain by plasmid shuffling so that each mutant became the
sole source of eIF5. The R15M GAP mutant was lethal, despite appropriate expression
(Fig.S4), while W391F and LR7A mutants grew well (Fig.4a). These data demonstrate GAP
activity is the essential function of eIF5 and imply that these mutations eliminating GDI
function have minimal impact on GAP activity or growth under standard conditions.

Translation of GCN4 mRNA is highly-sensitive to eIF2 activity and is widely used as a
reporter for the activity of translation initiation factors20. Derepression of GCN4 translation
can be scored by monitoring cell growth in the presence of the HIS3 inhibitor 3-amino-
triazole (3AT). Growth of wild-type cells on media containing 3AT is dependent upon
activation of Gcn2p, the eIF2α kinase that responds to amino acid starvation (Fig.4a,
gcn2Δ), which inhibits eIF2B GEF activity lowering TC abundance. This enables ribosomes
to bypass inhibitory uORFs in GCN4 mRNA that normally repress GCN4 translation20. As
the GDI deficient mutants exhibit different eIF2 binding activities in vitro (Figs. 2 and 3) we
anticipated that both mutants could provide complementary tools to probe GDI function in
vivo. hc eIF5 bypasses the requirement for eIF2(αP) for GCN4 activation, conferring
resistance to 3AT in gcn2Δ cells11 (Fig.4b, row 6). An increase in the concentration of an
eIF2/eIF5 complex in cells, which antagonises eIF2B GEF activity, explains this
phenotype11. The GDI mutant, hc eIF5LR7A, fails to grow on 3AT medium (Fig.4b, row 8),
consistent with reduced eIF2B antagonism in vivo. In agreement with this, immune
precipitation of hc FLAG-eIF5LR7A failed to enhance binding with eIF2 over that bound to
sc eIF5 (Fig.S5a). Therefore these data are consistent with the idea that loss of GDI function
in eIF5LR7A can diminish competition between eIF5 and eIF2B (GEF) for eIF2.

We assessed whether eIF5 GDI was required for the normal response to eIF2
phosphorylation in GCN2 cells and found that W391F mutant cells fail to grow on 3AT
medium, showing they cannot induce GCN4 translation (Fig.4a, row 2). This Gcn−

phenotype is shared with other eIF5-CTD mutations21, and was previously ascribed to a
defect within the 48S initiation complex causing enhanced leaky-scanning of uORF1 within
the GCN4 mRNA leader21. However, this explanation does not take into account the eIF5
GDI function. Because the eIF5W391F mutation reduces levels of the eIF2/eIF5 complex
(Figs 2, 3, S5) and eliminates GDI activity, we postulated that eIF5 binding to eIF2•GDP is
necessary to inhibit eIF2B GEF function via eIF2(αP) and that the observed reduced affinity
of eIF5W391F for eIF2 was sufficient to alter the sensitivity of cells to eIF2(αP), thus causing
the 3AT sensitivity. To test whether eIF5W391F could affect global translational sensitivity
to eIF2(αP), we introduced constitutively active GCN2c alleles that hyper-phosphorylate
eIF2α to high-levels independent of amino acid starvation and down-regulate global
translation initiation conferring severely reduced rates of growth22 (Fig.4c, row 2). The
eIF5W391F allele reverted slow-growth phenotypes associated with two different GCN2c
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alleles of varying phenotypic severity (Fig.4c, row 3 and Fig.S5b). Immunoblotting analysis
showed that the eIF5 mutation did not alter the ability of Gcn2p to phosphorylate eIF2α
(Fig.S5c). The Gcn− and GCN2c growth-reversion phenotypes reported here cannot be
explained by enhanced leaky-scanning and are identical to those conferred by mutations in
eIF2B subunits which alter the ability of eIF2B to respond to eIF2(αP)13,23 and by the
overexpression of eIF2B or eIF224. Thus in W391F mutant cells, translation is significantly
less sensitive to the inhibitory effects of eIF2(αP).

We found that over-expression of eIF5W391F restored eIF2/eIF5 complex levels to those
found in wildtype cells (Fig.S5a). Consistent with this, hc eIF5W391F reversed the growth
enhancement associated with GCN2c alleles (Fig.4c, row 5) as well as the Gcn− phenotype
(compare Fig.4a, row 2 and Fig.4b, row 3) and partially reverted the Gcd− phenotype caused
by hc eIF5 (compare Fig.4b, rows 6 and 7). Although we assume that the W391F mutation,
in common with other CTD mutations21, has a minor impact upon pre-initiation complex
formation and GAP function, the W391F phenotypes and their reversion are consistent with
reduced eIF2/eIF5 complex formation and GDI activity promoting eIF2 nucleotide exchange
and disrupting the ability of cells to regulate translation appropriately in response to
eIF2(αP) (Fig.S6b).

These data suggested that the eIF2/eIF5 complex was a new critical component of the
regulatory circuit that inhibits eIF2B GEF function and regulates translation by diverse
means. To test this prediction, we immune precipitated FLAG-eIF5 from wild-type cells
grown in amino acid complete medium and following starvation when eIF2 phosphorylation
was enhanced ~4-fold (Fig.4d). A significantly greater fraction of eIF2 was found associated
with the precipitated FLAG-eIF5 following amino acid starvation (2-2.5 fold), indicating
that the affinity of eIF5 for eIF2 is enhanced, or that the release of eIF5 from eIF2 is
retarded, when the latter is phosphorylated. However we do not suggest that eIF5 interacts
directly with eIF2α because the increase in precipitated eIF2(αP) observed following amino
acid starvation is in proportion with its higher total abundance (Fig.4d).

Taken together our data demonstrate that eIF5-GDI is a novel component of the inhibitory
eIF2(αP) pathway that restricts the recycling of eIF2 to TC and acts in addition to the well
defined inhibition of eIF2B whereby eIF2α phosphorylation promotes its association with
the eIF2Bαβδ subunits25, to impair eIF2Bε subunit-mediated nucleotide exchange26. Thus
our data are consistent with a model where eIF5 is a multifunctional protein with separate
GDI and GAP activities, both necessary for controlled translation initiation in eukaryotes
and we propose an altered scheme (Fig.4e, Fig.S6) to account for eIF5-GDI activity and the
eIF2•GDP/eIF5 complex in modulating the recycling of eIF2 in response to eIF2
phosphorylation between rounds of translation initiation.

Methods summary
Plasmid and strain construction employed standard methods27. Plasmid, oligonucleotide and
yeast construction details are given in Tables S1-S3. eIF2 and eIF5 proteins were purified as
previously described13,28. The eIF5 GDI activity assay is a variant of an assay used to
measure eIF2B GEF activity13. Full methods are provided in the electronic version of this
paper.

Methods
Yeast Genetics

Yeast strains were grown in standard media as described27. Plasmid transformations used
the lithium acetate method29 and plasmid shuffling employed 5-fluoro-orotic acid as
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described27. Cells were grown to exponential phase then diluted to A600=0.1 and ten-fold
serially diluted. 2μl of each dilution was spotted onto the indicated medium and incubated at
30°C.

Plasmid constructions
Individual mutants were generated by overlapping primer site directed mutagenesis
(Stratagene) or using standard PCR cloning methods. The L7RA mutant was commercially
synthesised (Mr Gene GmbH) then sub-cloned.

SDS PAGE/ Immunoblotting
This was performed as described previously26 using specific antibodies for eIF5, eIF2α and
2γ (custom antibodies), c-Myc-HRP (9E10, Santa Cruz Biotechnology), FLAG (M2,
Sigma) and eIF2α–P (9721, Cell Signaling Technology). HRP secondary chemiluminescent
detection as per manufacturer's instructions (Perkin Elmer).

Protein purification
eIF2 was purified as described previously13 using strain GP3511. For purification of GST-
tagged eIF5 wt and mutant constructs, ArcticExpress™ BL21 DE3 RIL E. coli cells
(Stratagene) were transformed with recombinant pGEX-4T-1 plasmids and then grown in
LB medium to an A600 of 0.7. Expression was induced using 1 mM of isopropyl-β-d-
thiogalactopyranoside (IPTG) and cells were then grown overnight at 12oC. Cells were
harvested and lysed with BugBuster® (EMDBiosciences) with protease inhibitors added [1
× complete EDTA-free protease inhibitor tablet (Roche)] before clearing by centrifugation
(16,000 × g, 20 minutes, 4°C). The soluble lysate was then mixed for 2hrs at 4°C with
glutathione-Sepharose beads (GE Healthcare) equilibrated in 1 × PBS. The beads were then
washed thrice, then suspended in glutathione elution buffer (50 mM Tris-HCl [pH 9.0], 500
mM NaCl, 50 mM glutathione, 1 mM DTT, 0.1 % Triton X-100) and incubated overnight at
4°C. Eluates were dialysed into storage buffer (30 mM HEPES [pH 7.5], 100 mM KCl, 0.1
mM MgCl2, 10 % glycerol, 1 mM DTT) and stored at −80°C. Quantification was performed
using the Bradford Protein Assay (Bio-Rad).

To purify FLAG tagged eIF5 from yeast, strains expressing hc eIF5-FLAG (GP5424) or
eIF5-7A-FLAG (GP5423) were grown in SCD medium (2% dextrose) but without leucine to
A600 of 3-5. Cells were harvested, washed in ice-cold water and then resuspended in high-
salt lysis buffer (100mM Tris-HCl [pH 8.0], 500 mM KCl, 5 mM MgCl2, 5 mM NaF, 2.5
mM PMSF, 10% glycerol, 0.1% Triton X-100 with 1 μg/ml pepstatin A, 1 μg/ml leupeptin,
5 μg/ml aprotinin, and 1 × complete EDTA-free protease inhibitor tablet [Roche]). Lysis
was performed by grinding with a pestle and mortar under liquid nitrogen and lysates were
then cleared by centrifugation (16,000 × g, 20 minutes, 4°C). The extract was then incubated
for 2 hours at 4°C with EZview™ Red ANTI-FLAG® M2 Affinity Gel (Sigma) equilibrated
in high-salt lysis buffer, washed once with high-salt lysis buffer then twice with low-salt
lysis buffer (as high-salt lysis buffer but with only 100 mM KCl). Bound protein was then
released by incubation for 30 minutes in the presence of 0.1 mg/ml of 3xFLAG peptide
(Sigma) and dialysed into storage buffer. Quantification was performed using the Bradford
Assay (Bio-Rad).

FLAG immune precipitations
These were performed similarly to purifications but using buffers containing 80 mM KCl to
maintain interactions.
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GDI activity
eIF2•[3H]GDP binary complexes were formed in 75 mm × 12 mm soda-lime glass tubes
(Fisher). Typically using eIF2 (60 pmol) and 0.25 μCi [3H]GDP (10-15 Ci/mmol) in assay
buffer (30 mM HEPES pH 7.5, 100 mM KCl, 0.1 mM EDTA, 1 mM DTT, 2 mg/ml CPK).
Complex formation was carried out for 10 minutes at room temperature before stabilisation
by addition of MgCl2 to 2.9 mM and incubation for a further 2 minutes at room temperature.
Purified eIF5 (120 pmol) or sample buffer was then bound to the eIF2 binary complex for 30
minutes at 10°C. Dissociation of the binary complex was initiated by addition of a >100-fold
excess of unlabelled GDP (2 nmol). 12 μl samples were taken immediately (t=0) and at 2, 4,
6, 8 and 10 minutes. At each time point, samples were added to 2.5 ml ice-cold Stop buffer
(30 mM HEPES [pH 7.5], 100 mM KCl, 0.1 mM EDTA, 5 mM MgCl2), filtered through
Whatman 0.45 μm 25mm cellulose nitrate filters using a Millipore vacuum manifold then
washed twice with 2.5 ml of ice-cold Stop buffer. Filters were dried at 65°C then counted by
liquid scintillation in Ultima Gold™ F (Perkin Elmer). Experimental data were fitted to
exponential dissociation curves to obtain the dissociation rate constant (Koff).

GST affinity chromatography
1. Using purified eIF2—Purified GST-eIF5 proteins or GST alone (140 pmol) and eIF2
(110 pmol) were incubated in 400 μl of interaction buffer (30 mM HEPES [pH 7.5], 100
mM KCl, 0.1 mM EDTA, 1 mM DTT, 2.5 mM MgCl2, 0.05% Triton X-100) with 50 μl of
glutathione-Sepharose beads for 2 hours at 4°C. The beads were then washed 3 times with 1
ml of interaction buffer and the bound proteins eluted by boiling in sample buffer. Bound
eIF2 was then resolved by SDS-PAGE separation and detected immunoblot analysis using
the indicated antibodies.

2. Using cell extracts—Strains GP5463 and GP5661 expressing sc and hc c-Myc-tagged
GCD11 (respectively) were grown in SC-Leu-Trp medium to A600 of 3-5. Cells were
harvested, washed in water and then resuspended in 1ml low-salt lysis buffer. Lysis was
performed using 1.0 mm zirconia/silica beads (Thistle Scientific) and the FastPrep 24
homogeniser at 4°C (MP Biomedicals). Lysates were cleared by centrifugation (16,000 × g,
20 minutes, 4°C) and proteins quantified using Bradford assay (Bio-Rad). Total protein
lysate (500 μg) was incubated with purified GST-eIF5 (140 pmol) or GST alone and 40 μl
of glutathione-Sepharose beads in a total volume of 1 ml of low-salt lysis buffer for 2 hrs at
4°C. The resin was washed twice with 1 ml of low-salt lysis buffer and the bound proteins
eluted by boiling in sample buffer. Bound eIF2α and γ was assayed by immunoblot
analysis.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. eIF5 has GDI activity
a) Scheme for GDI activity assay. b) Increasing eIF5 stabilises GDP-binding to eIF2. Koff
GDP from 60 pmol eIF2 with varying concentrations of GST-eIF5 (0-240 pmol, open
circles) or GST alone (filled circle). Molar eIF2:GST-eIF5 protein ratios are indicated. c)
Defining regions required for GDI activity. Mean Koff GDP (60 pmol eIF2) for indicated
constructs derived from reactions with GST- or FLAG-eIF5 proteins (120 pmol). Black bars
represent a significant reduction in Koff GDP (P<0.0001, unpaired Student's t-test). Errors
show standard deviation (n>3). 2.9 mM Mg2+ was used in b) and c).
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Figure 2. The CTD of eIF5 is critical for interaction with eIF2
Affinity chromatography assay between eIF2 (110 pmol) and the indicated immobilized
GST-eIF5 constructs. eIF2 was detected by immunoblotting using antibodies specific for a)
eIF2γ or b) eIF2α. Representative blots are shown. Signal intensity was quantified (Adobe
Photoshop) and the mean ± standard deviation (n=3) are shown below. c) Total protein in
each sample stained with Ponceau S. Inputs (lanes 1) represent 10% of total.
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Figure 3. The Linker Region of eIF5 interacts with γ subunit of eIF2
Affinity chromatography as in figure 2 between indicated immobilized GST-eIF5 constructs
and total cell extracts (500 μg) expressing c-Myc-6xHis-eIF2γ from either a single copy
(sc) or high copy (hc) plasmid. Immunoblots were developed with c-Myc and eIF2α
antibodies. Total protein in each sample was stained with Ponceau S. Inputs (lane 1)
represent 5% (blots) or 1% (stain) of total.
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Figure 4. GDI activity antagonises eIF2B and affects GCN4 activation in vivo
a-c) Strains expressing single (sc) or high copy (hc) eIF5 plasmids as the source of eIF5 and
co-transformed with plasmids expressing GCN2, vector alone (gcn2Δ) [a, b] or the
constitutively active mutant GCN2M788V,E1591K (GCN2c) [c] were grown as stated. d) Left,
immunoblots following FLAG-eIF5 immune precipitation of protein complexes from cells
grown in nutrient sufficient conditions (SCD) and following starvation (SD+3AT). Right,
quantification ± standard deviation (n=3). e) Model for recycling and regulation of eIF2,
incorporating eIF5 GDI activity. Dashed grey arrows indicate steps that limit eIF2 recycling.
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