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Environmental DNA metabarcoding is a powerful approach for use in biomonitoring and impact assess-
ments. Amplicon-based eDNA sequence data are characteristically highly divergent in sequencing depth
(total reads per sample) as influenced inter alia by the number of samples simultaneously analyzed per
sequencing run. The random forest (RF) machine learning algorithm has been successfully employed to
accurately classify unknown samples into monitoring categories. To employ RF to eDNA data, and avoid
sequencing-depth artifacts, sequence data across samples are normalized using rarefaction, a process that
inherently loses information. The aim of this study was to inform future sampling designs in terms of the
relationship between sampling depth and RF accuracy. We analyzed three published and one new bacte-
rial amplicon datasets, using a RF, based initially on the maximal rarefied data available (minimum mean
of > 30,000 reads across all datasets) to give our baseline performance. We then evaluated the RF classi-
fication success based on increasingly rarefied datasets. We found that extreme to moderate rarefaction
(50–5000 sequences per sample) was sufficient to achieve prediction performance commensurate to the
full data, depending on the classification task. We did not find that the number of classification classes,
data balance across classes, or the total number of sequences or samples, were associated with predictive
accuracy. We identified the ability of the training data to adequately characterize the classes being
mapped as the most important criterion and discuss how this finding can inform future sampling design
for eDNA based biomonitoring to reduce costs and computation time.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Marine coastal ecosystems offer numerous ecosystem services
and therefore are subject to a multitude of stressors from anthro-
pogenic activities, resulting in eutrophication, pollution, overex-
ploitation, and introduction of invasive species [1–4]. These local
stressors are complemented by global effects such as increasing
temperatures, sea level rise, and ocean acidification [5,6]. These
stressors may severely affect marine coastal ecosystems and com-
promise ecosystem services [7]. Therefore, environmental biomon-
itoring programs for an efficient management and protection of
marine coastal ecosystem are in place, which are laid down in
national and international Directives, such as the Marine Strategy
Framework Directive [8].

The biological component is a backbone of environmental mon-
itoring. In contrast to chemical monitoring approaches, which
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provide only an environmental quality snapshot, biological indica-
tors are affected by the total range of environmental species they
are exposed to, and thus provide a cumulative measure of environ-
mental health [9]. Traditional methods applied to analyze marine
bioindicators (mostly meio- and macrofauna) are based on mor-
phological identification and observational surveys. Such surveys
are time consuming, expensive, and characterized by low upscaling
potential for high-throughput monitoring to resolve environmen-
tal changes on small spatial and temporal scales. In addition, evi-
dent limitations of this traditional approach are the identification
and quantification of rare species and the ability to distinguish
morphologically close or identical species (i.e., cryptic species), or
poorly characterized juvenile stages of known species [10].

Concerted efforts of the scientific community in recent years
were therefore the development of fast, less expensive, and more
robust coastal biomonitoring methods with high potential for
automation and upscaling. Environmental DNA (eDNA) metabar-
coding of marine communities emerged as a very promising strat-
egy that meets these requirements. It uses short, standardized
gene regions obtained from environmental samples as internal
taxon tags to provide rapid characterization of whole communities.
Recently, a remarkable number of applied environmental metabar-
coding studies tested the potential use of metabarcoding data to
assess the ecological status of natural marine communities
exposed to various anthropogenic pressures (reviewed in [11]).
In specific, bacteria and protists, which dominate most ecosystems
in terms of biomass, and structural and functional diversity are
likely the best option on which to perform efficient next-
generation marine biomonitoring [9,12–22].

A major challenge in eDNA-based biomonitoring was the infer-
ence of biotic indices (BI), which inform about environmental qual-
ity (EQ) of the ecosystem under study. One solution was the
development of specific indices such as the microgAMBI that
exploits the taxonomic information obtained from eDNA metabar-
codes and the ecological function of identified microbial taxa
[12,13]. Because of severely incomplete gene reference databases
for microbial taxa, the microgAMBI relies on the ecological func-
tions of higher taxon ranks rather than species, which were
obtained from previously published reports. Consequently, a large
proportion of the obtained eDNA metabarcode datasets, which
could not be assigned to the required taxonomic ranks, but which
may be important indicators, cannot be used for the inference of
the microgAMBI. As an alternative, other authors correlated
obtained amplicon sequence variants (ASVs) of microbial commu-
nities to gradients of environmental stressors and assigned an
index value to significantly correlating ASVs [16,17]. These indica-
tor ASVs were then used as parameters in modified versions of tra-
ditional BIs originally developed for macroinvertebrate
bioindicators. The most promising approach, however, to infer EQ
from metabarcode datasets is supervised machine learning (SML)
[16,23]. The principle and power of this approach is reviewed in
detail in Cordier et al. 2018 [9]. In brief, SML is taxonomy-
independent and does not rely on available knowledge about the
ecology of the species hidden behind microbial ASVs. This elimi-
nates difficulties relating to incomplete nucleotide reference data-
bases and a lack of knowledge about the ecology of numerous yet
unknown marine microbes. Classification via SML is first used on a
training dataset, which consists of two sets of data that are
obtained from the same samples. These are the ASVs of the micro-
bial community in this sample and the reference labels (for exam-
ple the BI obtained from conventional macroinvertebrate
monitoring of the same sample). A predictive model is trained to
link specific bacterial ASVs to specific reference groups. The accu-
racy of a model can then be evaluated with a kappa statistic: kappa
values ranging from 0.01 to 0.2 indicate ‘‘poor agreement” between
two classifications (traditional macrofauna-based vs. eDNA-based
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EQ classification); and values of > 0.8 indicate ‘‘perfect agreement”
[24]. The successfully trained model can then be used for making
predictions of reference labels on upcoming genetic metabarcode
samples without collecting additional data as reference. The most
successfully applied SML approach for classification using ASVs is
Random Forest (RF) for massive and noisy DNA amplicon datasets
[9,25–28].

This approach marrying environmental genomics and BI infer-
ence is of high relevance for industry and politics (environmental
management and decision making) alike. A decisive criterion for
the implementation of this approach in routine monitoring prac-
tice is the costs associated with each technology. A part of this
costs depends on the required depths of sequencing to make as
accurate as possible inference of BI and EQ for an ecosystem under
surveillance. In our study we use three eDNA datasets from previ-
ous reports and one new original dataset to infer the minimal
sequence depths for marine microbial communities to exploit
these data with an RF approach to infer the origin of ballast water
and to predict EQ of ecosystems under the impact of urban infras-
tructure and of aquaculture disturbance. The main questions are:
(1) What is the lower limit of sequences for accurate RF predictions
in marine coastal monitoring using microbial communities? (2) Is
this limit the same for different monitoring targets? A major goal
of the study is to inform adequate sampling designs for future
eDNA metabarcoding-based marine coastal monitoring surveys.
2. Methods

2.1. Datasets

We have analyzed four datasets of bacterial Illumina amplicons
of the hypervariable V3-V4 16S rRNA gene region. The first dataset
[29] included 6,213,619 sequences, obtained from 51 sediment
samples of the Basque coast, subjected to various anthropogenic
impacts [12]. The authors inferred a novel biotic index, micro-
gAMBI, from these data to assess EQ for each of the samples. The
second dataset [30], published by Gerhard and Gunsch [31]
included 22,105,927 sequences, obtained from 68 ballast and har-
bor water samples, to train a Random Forest algorithm for the pre-
diction of geographic ballast water origin. The third dataset [32]
included 15,135,391 sequences, obtained from 129 sediment sam-
ples to predict the biotic index AMBI for the assessment of
aquaculture-induced benthic disturbance at five Norwegian open
cage salmon (Salmo salar) farming sites [9]. The fourth dataset
[33] is original and was obtained from a time series of a Scottish
salmon (Salmo salar) farm to predict distance from farm and the
salmon production phase in which samples were collected. This
dataset included 9,496,674 sequences in 76 samples. Details about
sampling and data acquisition for this dataset will be described in
the following section.
2.2. Sampling of Scottish salmon farm sediment

Sediment was collected at three stations along a northwest
(NW) transect from the northwesterly cage edge (CE) to a reference
site (REF) in the direction of the prevailing current flow, located ca.
800 m distant from the CE. An intermediate impact zone (AZE) was
located at ca. 100 m distance from the cage edge. Sampling
occurred monthly from March 2018 to March 2019. Due to
weather conditions, sampling could not be conducted in November
and December 2018. At each site, three biological replicates were
taken from a van Veen grab (0.1 m2 area), each replicate consisting
of 10 g of surface sediment (upper few millimeters) collected using
plastic spatulas. Immediately following collection, samples were
stored in the dark and on ice (max. 6 h) and then stored at
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�20 �C. For the purposes of shipping, samples were then defrosted
overnight (4 �C) then transferred to equal volumes of LifeGuard
nucleic acid preservation solution (Qiagen) until further processing
for eDNA metabarcoding.

2.3. DNA extraction, amplification and Illumina sequencing of Scottish
salmon farm samples

Following our previously described protocol [16], environmen-
tal DNA was obtained from sediment samples using the PowerSoil
DNA kit (Qiagen, Hilden, Germany) according to the manufac-
turer’s manual. As DNA metabarcodes, we obtained the ca.
450 bp long hypervariable V3-V4 region of the bacterial 16S rRNA
gene. The PCR protocol with the Bakt_341F (CCTACGGGNGGCWG-
CAG) and the Bakt_805R (GACTACHVGGGTATCTAATCC) primer
pair [34] employed an initial activation step of NEB’s Phusion
High-Fidelity DNA polymerase at 98 �C for 30 s, followed by 27
identical three-step cycles consisting of 98 �C for 10 s, 62 �C for
30 s, and 72 �C for 30 s; then a final 5-min extension at 72 �C as
previously described [16]. Standard negative controls were run
with each PCR assay using the same reaction mixture as described
above without adding template DNA to the mixture. From the
resulting PCR products, sequencing libraries were constructed
using the NEB Next� UltraTM DNA Library Prep Kit for Illumina
(NEB, USA). The quality of the libraries was assessed with an Agi-
lent Bioanalyzer 2100 system. V3-V4 libraries were sequenced on
an Illumina MiSeq platform, generating 2x300-bp paired-end
reads. A standard negative control of a DNA template-free library
as well as with PhiX Control v3 library spiked in was run with
the samples.

2.4. Sequence data processing for all four datasets

Sequences were processed using the Divisive Amplicon Denois-
ing Algorithm DADA2 [35], as described for hypervariable taxo-
nomic marker genes from metabarcoding studies [15] with the
model trained on Illumina runs and the following criteria: bacterial
V3-V4 sequences were filtered using filterAndTrim according to the
instructions with truncLen = 225 for V3-V4 sequences and truncl-
Len = 150 for V4 sequences. To maximize the quality of the final
sequence reads used for downstream analyses, we chose the fol-
lowing maxEE values for the individual data set: BasCo = 1,
BallWa = 1, NorSa = 2, ScoSa = 1. Bacterial sequences were merged
using 20 base pairs overlap with allowed mismatch of 2. To mini-
mize ecologically uninformative noise, only ASVs with at least 50
reads were maintained for downstream analyses, similar to previ-
ous publications [9,36,37]. Samples with less than 15,000 reads
were discarded. Furthermore, the South African harbor and ballast
water samples from the BallWa dataset consisted of only eight
samples. This is a too small sample size to allow location-specific
discrimination, and, therefore, we eliminated these eight samples.
Thus, fewer samples were used for our analyses than were
included in the original data sets. In summary, for our analyses
we included 39 samples for the Basque costal dataset (BasCo), 59
samples for the ballast water dataset (BallWa), 95 samples for
the Norwegian salmon farm dataset (NorSa) and 76 samples for
the new Scottish salmon farm dataset (ScoSa). After processing,
the ScoSa dataset was split near-equal (in terms of sample num-
bers) to represent salmon production phases. These production
phases were defined as pre-production phase (n samples = 25, col-
lected between March and May 2018), early salmon production
phase (n samples = 24, collected between June and August 2018)
and late salmon production phase (n samples = 27, collected
between September 2018 and March 2019). For details, we refer
to Supplementary File 1. Sampling in May 2018 occurred immedi-
ately after addition of salmon breed to the cages. Thus, in the pre-
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production phase, no salmon-related impact on the seafloor is
expected. In the early salmon production phase, the average fish
biomass was 107 tons in the aquaculture installation under study,
whereas in the late production phase, this number had increased to
on average of 680 tons.

2.5. Supervised Machine learning (SML) predictions

Using RF, we predicted the following measures for the four dif-
ferent datasets: The microgAMBI class (‘‘high”, ‘‘good”, ‘‘moderate”
or ‘‘poor”) was predicted for the BasCo dataset, using the micro-
gAMBI identified for each sample in the original publication [12].
Geographic origin (Singapore, USA or China, excluding South
Africa) of ship ballast water was predicted for the BallWa dataset,
using the ground truth data for each sample from the original pub-
lication [31]. The AMBI biotic index class (‘‘good”, ‘‘moderate”,
‘‘poor” or ‘‘bad”) was predicted for the NorSa dataset, which was
obtained as reference from an official compliance monitoring sur-
vey of these farms using benthic macroinvertebrates [9]. Addition-
ally, the farm of sample origin was predicted. For the new ScoSa
dataset, we also predicted two variables for each sample, namely
distance from farm and salmon production phase in which samples
were collected. Predictive models were trained using the RF algo-
rithm [38] implemented in the randomForest v. 4.6.14 package
for classification and regression [39]. First, RF is used on a training
dataset, one for each of the four bacterial ASV datasets used in this
study (BasCo, BallWa, NorSa and ScoSa). Such training data consist
of two sets of data that are obtained from the same sample: (a) the
obtained bacterial ASVs as features and (b) the reference labels.
These reference labels were microgAMBI class, ballast water origin,
AMBI class/Farm and distance/salmon production phase for the
BasCo, BallWa, NorSa and ScoSa datasets, respectively. The RF algo-
rithm is then trained to relate specific (combinations of) ASVs to
defined reference label values (regression) or categories
(classification).

An essential feature of the RF algorithm is its use of out-of-bag
(OOB) samples. For each observation, a random forest predictor is
constructed by averaging only those decision trees in which this
observation did not appear. Therefore, an OOB error estimate
(OOB-E) is almost identical to that obtained by N-fold cross-
validation [40]. Setting the RF parameters for classification
approaches, the inventors recommend determining the default
mtry value to the square root number of features.

In the first step, so-called ‘‘full models” (FM) were calculated
exploiting all available sequences of each of the four datasets. Prior
to RF, we transformed the ASV-to-sample matrix into a relative
abundance matrix for each ASV (using the number of reads for
the respective ASV divided by the number of all reads in a sample)
to compensate for any differences in the sequencing depth
between samples [12,31]. With this matrix RF models were calcu-
lated using features and reference labels as mentioned above. For
each model we ran 6000 trees. Randomly chosen datasets did not
show any OOB-E improvements when increasing the number of
decision trees further. For each dataset we repeated the calculation
of the FM was repeated several times: for the first FM, the mtry
value was set to default as recommended. Depending on this
default value, six further models were calculated, each with the
defaultmtry value plus/minus one, plus/minus two and plus/minus
three. Each of these analyses were repeated two times using differ-
ent base trees to secure the prediction capacity of the full model.
The R package caret [41] was used to infer kappa statistics for each
RF model.

In the second step we then constructed RF models with the rar-
efied (downsampled) datasets to ask the following question: what
minimum number of sequences within a sample is required to
obtain an RF prediction performance which is of the same or
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similar quality as the prediction obtained from the full dataset (FM
analysis). From here on, we refer to the prediction accuracy
obtained from the full dataset (FM) as ‘‘targeted RF prediction per-
formance”. From each of the four full datasets, we created 13 rar-
efied datasets (52 datasets in total). With exception of the
BallWa dataset, the number of sequences per sample in the first
rarefied dataset was equal to the number of sequences obtained
for the sample with the lowest sequence coverage. This was
15,177 for the ScoSa dataset, 16,501 for the BasCo dataset, and
15,048 for the NorSa dataset. Because the lowest number of
sequences per sample within the BallWa dataset was nearly twice
as high as for the other three datasets, we have set the number of
this first downsampled BallWa model to 15,000 sequences to
enable more solid comparisons with the other three datasets.
Downsampling for the following 12 models in each of the four
datasets employed 12,500, 10,000, 7500, 5000, 2500, 1000, 500,
400, 300, 200, 100 and 50 sequences. For each of the 52 downsam-
pled datasets, RF analyses were conducted as described above for
the full model. A schematic graphic of this study design is shown
in Fig. 1. Additionally, exemplary information about model con-
struction and downsampling can be found in Supplementary File 2.
3. Results

3.1. Sequence data overview and rarefaction

The number of merged high-quality bacterial amplicons and
obtained ASVs for the individual datasets were as follows (ampli-
cons/ASVs): ScoSa 2,653,449/28,151, BasCo 2,310,195/63,943,
Fig. 1. Workflow. Using the full ASVs-to-sample matrix from each dataset analyzed in
dataset (=full model) was then used a reference (benchmark) to assess to which degre
prediction performance compared to the full model. The full model is thus the targeted
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BallWa 5,024,841/49,843, and NorSa 2,472,237/89,883. The num-
ber of ASVs with at least 50 sequence reads, which were used for
downstream RF analyses were 3039 (ScoSa), 8406 (BasCo), 6318
(BallWa) and 6012 (NorSa). At their maximum sampling depth,
nearly all samples were approaching sample saturation (Fig. 2a–
d). Compared to the Chao1 estimator (=100% ASV coverage), the
full sequence datasets reached a coverage of 99% (ScoSa), 98%
(BasCo), 85% (BallWa) and 67% (NorSa) (Fig. 3a–d). The decrease
of coverage (saturation) with downsampling for subsequent RF
analyses was notably different for the four datasets. As an example,
when downsampling each dataset to 5000 reads, the coverage was
59% for the ScoSa dataset, 49% for the BasCo dataset, 34% for the
BallWa dataset and 31% for the NorSa dataset. At the lowest
sequence number (n sequences = 50), all samples were severely
undersampled with saturation ranging between 4.2% (ScoSa,
Figs. 2a and 3a) and 1.8% (NorSa, Figs. 2d and 3d) compared to
the full community ASV richness as estimated by Chao1.

3.2. Random forest predictions of full and downsampled datasets

ScoSa (Fig. 4): For the ScoSa dataset we predicted the distance
of samples from the salmon farm and the salmon production phase
based on the V3-V4 metabarcodes of the benthic bacterial commu-
nities. To predict the distance from the salmon farm (Fig. 4a, pre-
diction categories: cage edge, allowable zone of effect, reference),
the RF model, which was trained on the full dataset, achieved a
mean prediction accuracy of 89.2% (mean out-of-bag error:
10.8%) at a kappa > 0.8. When downsampling, kappa remained
above this threshold for ‘‘almost perfect agreement” down to
5000 sequences per sample. At this sampling size, the mean
this study, we build RF models for each of these datasets. The best model of each
e sequences can be removed from each dataset (=downsampling) without losing
RF prediction performance.
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prediction accuracy was still 82.2%. Thus, a minimum of 5000
sequences within each sample was required to achieve the tar-
geted RF prediction performance (FM-based prediction accuracy
as reference). At sampling sizes ranging between 2500 and 300
sequences per sample, RF could still predict the distance from
the salmon farm with a minimal precision of 71.3% (model_300)
at a kappa ranging between 0.6 and 0.8 (moderate agreement).
Poor agreement was obtained when less than 300 sequences per
sample were used for the RF model.

When predicting the salmon production phase in which a speci-
fic sample was taken (Fig. 4b, prediction categories: pre-
production phase, early production phase, late production phase),
prediction accuracy was 92.6% for the full dataset at a kappa of
0.88. When downsampling the full ScoSa dataset, 50 sequences
per sample emerged as sufficient to maintain a prediction accuracy
as high as 89.5% at an almost perfect agreement (kappa > 0.8
(0.82)) between the predicted and the actual salmon production
phase of a sample. Thus, as few as 50 sequences within each sam-
ple were sufficient to achieve the targeted RF prediction
performance.

BasCo (Fig. 5): For the BasCo dataset we predicted the biotic
index microgAMBI, based on which the ecological quality (EQ) of
a sample was inferred (prediction categories: high, good, moderate,
or poor ecological quality). Even when the full dataset was used to
train the RF model, the mean precision of prediction was only
78.3% at moderate agreement (kappa = 0.71) between reference
EQ values and predicted EQ values. To achieve the targeted RF pre-
diction performance of the full model(based on 214,250 sequences
per sample) a minimum of 5000 sequences per sample was suffi-
cient. Kappa values indicated moderate agreement down to 500
sequences per sample. Compared to the full dataset, the precision
decreased, however, for 12.5% (OOB error at model_500: 31.5%).

BallWa (Fig. 6): For the BallWa dataset we predicted the origin
of ballast water samples using the bacterial V3-V4 16S rDNAmark-
ers detected in each of the 59 individual samples (categories:
China, Singapore, USA). Despite this dataset had the highest num-
ber of sequences per sample of all four datasets tested, kappa
statistics returned only a moderate agreement between the actual
origin of a ballast water sample and the predicted origin even for
the full dataset. Mean precision for origin prediction for the full
dataset was 84.6% (kappa = 0.74). In the downsampled datasets,
at least 2500 sequences per sample were required to match the
performance category of the full dataset (targeted RF prediction
performance). At this number of sequences within each sample,
the mean prediction accuracy remained in the same order of mag-
nitude compared to the full dataset (82.2% for model_2500) at
moderate agreement (kappa = 0.70). Down to 300 sequences per
sample, kappa remained in this category with a mean prediction
accuracy of 75.3%. Only when less than 300 sequences per sample
were used, agreement between observed and predicted sample ori-
gin was poor with OOB errors exceeding 25%.

NorSa (Fig. 7): For the NorSa dataset, we used the bacterial V3-
V4 16S rDNA metabarcodes obtained from each of the 95 individ-
ual samples to predict two variables. First, the geographic location
of the salmon farming site (Fig. 7a, predicted categories: Aukrasan-
den, Beitveitness, Bjornsvik, Nedre Kvarv and Storvika). Second, the
biotic index AMBI (and resulting EQ category) for each sample,
which was originally obtained from macroinvertebrates during a
Fig. 2. Rarefaction curves (sampling saturation profiles) of the datasets used in this stu
sediment samples from the Basque coast); (c) BallWa (ballast water samples); (d) NorSa
full data of each dataset, based on which the full model used to define the ‘‘targeted RF pr
dataset that is displayed in the lower graphics. In the lower graphics, sampling sizes used
of sample saturation (ASV coverage) at each downsampling size for each of the four datas
referred to the web version of this article.)
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routine compliance monitoring of these salmon farms (predicted
categories: good, moderate, poor, or bad ecological quality).
Despite this dataset had the lowest sample saturation (coverage)
(Fig. 3d), prediction accuracy for EQ category was similarly high
for the full dataset (92.6%) and for the dataset that included only
1000 sequences per sample (90.8%) (Fig. 7b). Kappa statistics
revealed a high agreement between actual and predicted EQ cate-
gory for each of the 95 samples for the full dataset and for the
model_1000 datasets (0.88 and 0.84, respectively). At 500 and
400 sequences per sample, the mean precision of prediction
dropped to 89.0% and 88.1% respectively, yet kappa values were
still > 0.8. Only when number of sequences decreased below 400
sequences per sample, kappa values decreased below this
threshold.

Table 1 summarizes these results and provides a comparative
overview of the average number of sequences in the full data of
each dataset and the minimum sampling size at which RF predic-
tions for the individual variables were still in the same (kappa
and accuracy) category compared to the full dataset. This overview
shows that in the ‘‘worst case scenario” (ScoSa – distance from
cage prediction, Fig. 4a), as few as 5000 sequences per sample were
required to achieve RF prediction accuracies as good as for the cor-
responding full dataset (with 37.642 sequences per sample on
average).

4. Discussion

Advances in various high-throughput sequencing technologies
have opened up new opportunities to exploit massive sequence
datasets from environmental samples for developing prognostic
and predictive markers for biomonitoring. RF learning algorithms
are increasingly used in microbial ecology for classification prob-
lems [31,42]. While several studies have compared the power of
RF classifications with other classifiers or different model parame-
ters within RF, no environmental sequencing study has evaluated
the relationship between training data volume and RF accuracy.
Therefore, in the specific problem addressed in our study, we are
asking, how many amplicon sequences of marine bacterial com-
munities are required per sample to achieve a desired level of RF
prediction performance. A common sense logic could be ‘‘the more
data, the better”. However, the larger the (amplicon) datasets, the
more expensive are the sequencing costs and the longer is the
computation time needed to train the model. In addition, too much
data (=too many features) may have a tendency to overfit (lower
variation in individual trees resulting in a ‘‘less random” forest).
This is prevented using smaller datasets (increase of variation in
the individual trees within the forest, decorrelation) [40,43]. How-
ever, removing too many features can impair model performance.
Thus, finding the ideal number of sequences per sample is an
important step towards an optimal sampling design for environ-
mental sequencing studies which use RF learning algorithms for
sample classification.

Our results from four test datasets (V3-V4 16S rDNA gene
amplicon surveys of marine bacterial communities from different
environments) showed that there is no general answer to this
question. Depending on the dataset and the question asked, we
identified subsets as little as 50 sequences as powerful as the
full dataset of 15,000 sequences (ScoSa salmon production phase
dy. (a) ScoSa (Scottish salmon farm sediment samples) dataset; (b) BasCo (marine
(Norwegian salmon farm sediment samples). The upper smaller graphics shows the
ediction performance” was build (see Fig. 1). The red square is the excerpt of the full
for downsampling (see Fig. 1) are marked with vertical lines. This visualizes the level
ets. (For interpretation of the references to colour in this figure legend, the reader is
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Fig. 4. Change of OOB (out of bag error) and kappa value with decreasing dataset size (number of sequences) used for RF prediction for the ScoSa dataset to predict distance
from the salmon cage site (a), and the salmon production phase (b) based on benthic bacterial community composition. The boxplot of each downsampled dataset consists of
RF prediction results obtained from 21 models. Each boxplot shows median, quartiles (25%–75%), min and max values as well as outliers. Kappa values of > 0.8 (marked in
green) indicate ‘‘perfect agreement” between observed and predicted classifications (distance from salmon cages for the ScoSa distance dataset in Fig. 4a and salmon
production phase in Fig. 4b). Kappa values marked in red (<0.6) indicate poor agreement. In case of distance prediction (Fig. 4a), perfect agreements can be achieved when the
full dataset is downsampled to 5000 sequences. In case of salmon production phase predictions as few as 50 sequences still allow for a perfect prediction accuracy compared
to the full model (Fig. 4b). Nonmetric multidimensional scaling (NMDS) plots in the lower right corner show the clustering of all individual samples of the full ASV dataset,
colored by the specific prediction classes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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prediction) and in other cases the subsets required a minimum
of 5000 sequences (ScoSa distance predictions, BasCo micro-
gAMBI predictions) to achieve as accurate predictions as the full
dataset.
Fig. 3. Relative proportion of remaining ASVs at individual downsampling steps for the S
(d). The Chao1 estimator was used to infer the maximum number of ASVs from each da
were sampled in each dataset. This number was set as 100%. ‘‘Full” refers to the actually sa
a dataset and the expected number of ASVs if they were sampled to completion (=Chao
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The discrepancies could be explained by the complexity of the
problem addressed in this study. Statistical heuristic to determine
a suitable number of sequences per sample for classification prob-
lems are a function of the number of classes in the classification,
coSa dataset (a), the BasCo dataset (b), the BallWa dataset (c) and the NorSa dataset
taset, which is the number of ASVs that could be detected in theory, when all ASVs
mpled ASVs in all datasets and indicates the discrepancy between the actual ASVs in
1 value).



Fig. 5. Change of OOB (out of bag error) and kappa value with decreasing dataset size (number of sequences) used for RF prediction for the BasCo to predict microgAMBI index
based on benthic bacterial community composition. For further details see legend of Fig. 4.

Fig. 6. Change of OOB (out of bag error) and kappa value with decreasing dataset size (number of sequences) used for RF prediction for the BallWa dataset to predict country
of origin for ballast water samples based on bacterial community composition. For further details see legend of Fig. 4.
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the distribution of classes across the complete dataset (=balance),
the total number of samples, and the ability of the training data
to adequately characterize the classes being mapped [44]. Also,
the tuning parameters when building a random forest could play
a role in this context [45].

Here, we can largely exclude some of these factors as explana-
tions for the observed discrepancies of 50 versus 5000 sequences
per sample as minimal data size. The number of classes is relatively
even among the test datasets of this study (min 3, max 5). In addi-
tion, the maximum discrepancy in the minimum dataset was
observed within the same number of classes (n = 3, ScoSa salmon
production phase prediction and ScoSa distance prediction). And,
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finally, the dataset with the highest number of classes (NorSa
aquafarm location prediction) required fewer sequences per sam-
ple (n = 1000) for a full dataset-like classification than a dataset
with the minimum number of classes (BallWa, min n
sequences = 2500).

Likewise, the total number of samples in a dataset is not an
obvious decisive factor that determines the minimum number of
sequences required for the targeted level of RF performance. The
highest number of samples (n = 95) was available for the NorSa
dataset. However, the minimum number of sequences required
for the targeted level of RF performance was notably higher com-
pared to a dataset with only 76 samples (ScoSa salmon production



Table 1
Summary of RF prediction results. The table shows the lower boundary (sequence numbers) at which an RF prediction performance was achieved in downsampled datasets that
matched the prediction performance of the respective full dataset (=targeted RF prediction performance).

Data
set

n
samples*

Averaged n reads per sample in full
dataset

RF reference label for
prediction

n prediction
classes

Min n sequences required for targeted RF prediction
performance**

ScoSa 76 37,642 Station (distance) 3 5000
Salmon production phase 3 50

BasCo 39 76,259 microgAMBI 4 5000
BallWa 59 91,598 Country of origin 3 2500
NorSa 95 31,057 Aquafarm location 5 1000

AMBI 4 1000

*Numbers refer to sample numbers which were used in this study. These are samples which had at least 15,000 sequences, which was the minimum number that we chose as
highest threshold for downsampled datasets.
**Full datasets as reference.

Fig. 7. Change of OOB (out of bag error) and kappa value with decreasing dataset size (number of sequences) used for RF prediction for the NorSa dataset to predict the
aquafarm location (a) and the AMBI ecological quality index based on benthic bacterial community composition. For further details see legend of Fig. 4.
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phase prediction). Furthermore, in the ScoSa dataset, the same
number of samples (n = 76) required only 50 sequences minimum
to predict salmon production phase (3 classes), while 5000 min
sequences were needed to predict distance to the salmon farming
site (also 3 classes).

We also consider it unlikely that the tuning parameters when
building a random forest could play a role for the obtained results.
Relevant tuning parameters are the choice of the base tree, the
number of trees in the forest, size of the leaf nodes and the rate
of data subsampling [45]. We have built 6000 trees, which out-
numbers the number of trees used in comparable analyses. For
example, for the original analysis of the NorSa dataset, 300 trees
were used [9]. 5000 trees were used for the original BallWa dataset
analysis [31], and Smith et al. [28] used 1000 trees for RF analyses
to classify unpolluted sites from those contaminated with ura-
nium, nitrate, or oil using V4 16S rRNA gene amplicons of bacterial
communities. Also, we have constructed � 300 models with vary-
ing tuning parameters for each dataset. This strategy should mini-
mize the effect of tuning parameters in the identification of the
smallest number of sequences needed for the targeted classifica-
tion performance.

In case of training data class imbalance, classifications may
favor the classes that represent the largest proportion in the train-
ing samples (majority classes) [46]. Thus, classes that are under-
represented in the training data may thus be difficult to classify
correctly. It therefore seems reasonable to assume that the smaller
the number of sequences become within under-represented
classes, the more erroneous the classification performance. To test
whether this helps to explain the different minimum sequence
numbers that achieve targeted classification in the datasets ana-
lyzed in this study, we analyzed the (in)equality of class frequency
distributions using the Gini coefficient (not to be confused with
Gini impurity) and compared with the minimum number of
sequences in a sample that is required for the targeted prediction
performance. The results are presented in Supplementary File 3.
They clearly show that a data class imbalance is irrelevant as factor
to determine the required minimum of sequences within a sample
for targeted prediction performance. Previous analyses showed
that among several commonly used classifiers for ‘‘omics” data
RF is the optimal choice when feature distributions are skewed
and when class distributions are unbalanced [47].

We consider the ability of the training data to adequately char-
acterize the classes being mapped as the best proxy to assess the
number of sequences in a sample that is required for the targeted
classification performance. Especially from RF classifications using
image analyses, it is well known that classifications are more accu-
rate, when classes are mutually exclusive and have hard, well-
defined boundaries [44,48]. A possibility to visualize how well
the boundaries between classes are established based on the fea-
tures observed for the samples within each of the class is ordina-
tion plots such as multidimensional scaling (MDS). The
boundaries of classes (clusters in ordination plots) in such plots
can be calculated and visualized using confidence intervals [49].
The smaller the overlap of confidence intervals of individual
class-specific clusters, the higher is the probability that targeted
RF classification accuracy can be achieved with a low number of
sequences in a sample. Supplementary File 4 shows an example
for the ScoSa dataset. While salmon production phase clusters
are well separated with only little overlap of cluster-specific confi-
dence intervals, distance clusters are less clearly separated. This
corroborates well with our finding that in the former case only
50 sequences per sample are sufficient for the targeted RF classifi-
cation accuracy, while in the latter case at least 5000 sequences are
required. This observation confirms our assumption that datasets
with well-defined boundaries of classes require fewer sequences
within each sample in the training dataset to achieve the targeted
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classification performance. Subtle differences among the classes,
such as environmental gradients, season or geographic origin will
require more sequences within a sample. But even with very large
sequence datasets, RF predictions may not be satisfying, if these
sequences do not succeed to better define the boundaries of the
classes. This was the case for the BasCo dataset analyzed in this
study. Even when the full dataset (n = 76,259 sequences, sampled
to near saturation) was used to train the RF model, the mean pre-
cision of prediction was only 78.3% at moderate agreement
(kappa = 0.71) between reference EQ values and predicted EQ
values.

Well-defined, hard boundaries between classes with little to no
gradual transitions or edge overlap occur when the features within
a class (here: bacterial V3-V4 16S rRNA gene amplicons) are as
specific as possible for each individual class [44]. One way to visu-
alize the class specificity of features is Venn diagrams. Not surpris-
ingly, we found that the specificity of ASVs was notably higher for
the ScoSa salmon production phase dataset (n min sequences
required = 50) compared to the ScoSa distance dataset (n min
sequences required = 5000) (Supplementary File 5). In the latter,
35% of all sequences were common to all three distance classes,
whereas only 11% of all sequences were common to all three sal-
mon production phases.

The coefficient of variation (CV) of each feature in a dataset can
be interrogated as a measure to assess the ability of features (here:
ASVs) to discriminate prediction classes. The CVmeasures the stan-
dard deviation of an individual feature across the individual predic-
tion classes relative to the CV group mean (‘‘group” describes the
prediction target) [50]. The general expectation is as follows: the
higher the CV of an individual feature (ASV), the more specific is
its occurrence in individual prediction classes (=uneven distribu-
tion of an ASV, which leads to a higher CV). In conclusion, the more
features with a higher CV are included in a dataset, the higher is the
likelihood to obtain a more accurate RF prediction with only a sub-
set of the features included in a dataset. This is because the subset
with fewer features still includes sufficient information in each fea-
ture for reliable RF predictions. To test this logic, we have exem-
plary calculated the CV for the ScoSa salmon production phase
dataset and for the ScoSa station dataset. Indeed, the ScoSa salmon
production phase dataset, which has still reliable RF prediction
accuracies with as few as 50 features, has a notably higher CV den-
sity distribution compared to the ScoSa station dataset, which
requires at least 5000 features to achieve the targeted RF prediction
performance. For CV kernel density plots and more detailed infor-
mation and analyses we refer to Supplementary File 6.
5. Conclusions

In conclusion of our study, even for the ‘‘worst case scenario”
when classes had no hard boundaries but substantial gradual tran-
sition and edge overlap (Supplementary File 4) we identified 5000
sequences as a threshold for the number of sequences within a
sample, beyond which no substantial improvements are achieved
in RF classification performance. This could be a rule of thumb
guiding future studies using taxonomic metabarcodes of marine
microbial communities for RF classification in ecological studies.
Our examples included classifications of environmental quality
and stressor impact, as well as spatial and temporal scaling, all of
which are central topics in microbial ecology. Considering that
environmental DNA metabarcoding studies of marine microbial
communities usually acquire substantially higher number of
sequences [9,17,31,36,37,51] without prior adaptations of
sequencing depths to the research questions addressed, our study
may guide future sampling designs in RF classification based on
microbial amplicon sequences to save financial and computational
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resources, while avoiding possible bias of overfitting and reducing
noise due to too large datasets. Also, our study has identified
parameters that are helpful to assess whether fewer or more
sequences are needed as features to distinguish prediction classes.
Both, feature specificities as well as multidimensional scaling plots
allow for assessments of the minimum sequencing depth required
for an RF performance that does not improve substantially with
notably larger sequencing efforts. We therefore recommend a
small-scale pilot study before designing large-scale experiments
to assess the general tendency of features (sequences within each
sample) to distinguish prediction classes.
CRediT authorship contribution statement

Verena Dully: Writing - review & editing. Thomas A. Wilding:
Writing - review & editing. Timo Mühlhaus: Writing - review &
editing. Thorsten Stoeck: Supervision, Conceptualization, Funding
acquisition, Writing - original draft.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

This study was supported by grants from the Deutsche
Forschungsgemeinschaft (DFG, grant STO414/15-1 and
STO414/15-2) and from the ASSEMBLE plus program, both
awarded to TS. The authors are very grateful for the support of
Scottish Sea Farms Limited, which granted access to the Scottish
salmon farm. We also thank Gail Twigg (SAMS) and the crew of
the R/V Seol Mara and for technical support during sampling. Fur-
thermore, we thank two anonymous reviewers for their valuable
comments on our manuscript.
Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.csbj.2021.04.005.

References

[1] Miller ML, Auyong J. Coastal zone tourism: a potent force affecting
environment and society. Mar Policy 1991;15(2):75–99.

[2] Olenin S, Elliott M, Bysveen I, Culverhouse PF, Daunys D, et al.
Recommendations on methods for the detection and control of biological
pollution in marine coastal waters. Mar Pollut Bull 2011;62(12):2598–604.

[3] Rosenberg R. Eutrophication—The future marine coastal nuisance? Mar Pollut
Bull 1985;16:227–31.

[4] Shahidul IM, Masaru T. Impacts of pollution on coastal and marine ecosystems
including coastal and marine fisheries and approach for management: a
review and synthesis. Mar Pollut Bull 2004;48:624–49.

[5] IPCC (2007) Climate Change 2007: Fourth Assessment Report. The Physical
Science Basis, Summary for Policymakers. Intergovernmental Panel on Climate
Change. Available: https://previa.uclm.es/area/amf/antoine/energias/
Ipcc_anotado.pdf. Accessed 2021 Jan 25.

[6] Mead MI, Popoola OAM, Stewart GB, Landshoff P, Calleja M, et al. The use of
electrochemical sensors for monitoring urban air quality in low-cost, high-
density networks. Atmos Environ 2013;70:186–203.

[7] Hoegh-Guldberg O, Bruno JF. The impact of climate change on the world’s
marine ecosystems. Sci J 2010;328:1523–8.

[8] MSFD (2008) Directive 2008/56/EC of the European Parliament and of the
Council of 17 June 2008 establishing a framework for community action in the
field of marine environmental policy. Official Journal of the European Union.
Available: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%
3A32008L0056. Accessed 2021 Jan 25.

[9] Cordier T, Forster D, Dufresne Y, Martins CIM, Stoeck T, et al. Supervised
machine learning outperforms taxonomy-based environmental DNA
metabarcoding applied to biomonitoring. Mol Ecol Resour 2018;18:1381–91.
2267
[10] Danovaro R, Carugati L, Berzano M, Cahill AE, Carvalho S, Chenuil A, et al.
Implementing and innovating marine monitoring approaches for assessing
marine environmental status. Front Mar Sci 2016;3. https://doi.org/10.3389/
fmars.2016.00213.

[11] Pawlowski J, Kelly-Quinn M, Altermatt F, Apothéloz-Perret-Gentil L, Beja P,
et al. The future of biotic indices in the ecogenomic era: Integrating (e) DNA
metabarcoding in biological assessment of aquatic ecosystems. Sci Total
Environ 2018;637:1295–310.

[12] Aylagas E, Borja Á, Tangherlini M, Dell’Anno A, Corinaldesi C, et al. A bacterial
community-based index to assess the ecological status of estuarine and
coastal environments. Mar Pollut Bull 2017;114:679–88.

[13] Borja A. Testing the efficiency of a bacterial community-based index
(microgAMBI) to assess distinct impact sources in six locations around the
world. Ecol Indic 2018;85:594–602.

[14] Cordier T, Lanzén A, Apothéloz-Perret-Gentil L, Stoeck T, et al. Embracing
environmental genomics and machine learning for routine biomonitoring.
Trends Microbiol 2019;27:387–97.

[15] Forster D, Filker S, Kochems R, Breiner H-W, Cordier T, et al. A comparison of
different ciliate metabarcode genes as bioindicators for environmental impact
assessments of salmon aquaculture. J Eukaryotic Microbiol 2019;66:294–308.

[16] Frühe L, Cordier T, Dully V, Breiner HW, Lentendu G, et al. Supervised machine
learning is superior to indicator value inference in monitoring the
environmental impacts of salmon aquaculture using eDNA metabarcodes.
Mol Ecol 2020. https://doi.org/10.1111/mec.15434.

[17] Keeley N, Wood SA, Pochon X. Development and preliminary validation of a
multi-trophic metabarcoding biotic index for monitoring benthic organic
enrichment. Ecol Ind 2018;85:1044–57.

[18] Pawlowski J, Esling P, Lejzerowicz F, Cedhagen T, Wilding TA. Environmental
monitoring through protist next-generation sequencing metabarcoding:
assessing the impact of fish farming on benthic foraminifera communities.
Mol Ecol Resour 2014;14:1129–40.

[19] Pawlowski J, Lejzerowicz F, Apotheloz-Perret-Gentil L, Visco J, Esling P. Protist
metabarcoding and environmental biomonitoring: time for change. Euro J
Protistol 2016;55:12–25.

[20] Stoeck T, Frühe L, Forster D, Cordier T, Martins CIM, et al. Environmental DNA
metabarcoding of benthic bacterial communities indicates the benthic
footprint of salmon aquaculture. Mar Pollut Bull 2018;127:139–49.

[21] Stoeck T, Kochems R, Forster D, Lejzerowicz F, Pawlowski J. Metabarcoding of
benthic ciliate communities shows high potential for environmental
monitoring in salmon aquaculture. Ecol Ind 2018;85:153–64.

[22] Verhoeven JTP, Salvo F, Knight R, Hamoutene D, Dufour SC. Temporal bacterial
surveillance of salmon aquaculture sites indicates a long lasting benthic
impact with minimal recovery. Front Microbiol 2018;9:3054.

[23] Cordier T, Alonso-Séz L, Apotheloz-Perret-Gentil L, Aylagas E, Bohan DA, et al.
Ecosystems monitoring powered by environmental genomics: a review of
current strategies with an implementation roadmap. Mol Ecol 2020. https://
doi.org/10.1111/mec.15472.

[24] Landis JR, Koch GG. Application of Hierarchical Kappa-Type statistics in
assessment of majority agreement among multiple observers. Biometrics
1977;33:363–74.

[25] Chen X, Ishwaran H. Random forests for genomic data analysis. Genomics
2012;99:323–9. https://doi.org/10.1016/j.ygeno.2012.04.003.

[26] Deist TM, Dankers FJWM, Valdes G, Wijsman R, Hsu I-C, et al. Machine learning
algorithms for outcome prediction in (chemo)radiotherapy: an empirical
comparison of classifiers. Med Phys 2018;45:3449–59.

[27] Ließ M, Glaser B, Huwe B. Uncertainty in the spatial prediction of soil texture:
Comparison of regression tree and Random Forest models. Geoderma
2012;170:70–9.

[28] Smith MB, Rocha AM, Smillie CS, Olesen SW, Paradis C, et al. Natural bacterial
communities serve as quantitative geochemical biosensors. MBio 2015.
https://doi.org/10.1128/mBio.00326-15.

[29] AZTI. Sediment samples for bacterial diversity analysis. NCBI SRA, Accession
Number: PRJNA322754, 2016. https://www.ncbi.nlm.nih.gov/bioproject/
PRJNA322754.

[30] Duke University. Metabarcoding and machine learning analysis of
environmental DNA in ballast water arriving to hub ports. NCBI SRA,
Accession Number: PRJNA628526, 2020. https://www.ncbi.nlm.nih.gov/
bioproject/?term=PRJNA628526.

[31] Gerhard WA, Gunsch CK. Metabarcoding and machine learning analysis of
environmental DNA in ballast water arriving to hub ports. Environ Int
2019;124:312–9.

[32] University of Kaiserslautern. Bacterial eDNA metabarcodes for environmental
monitoring. NCBI SRA, Accession Number: PRJNA417767, 2017. https://www.
ncbi.nlm.nih.gov/bioproject/?term=PRJNA417767.

[33] University of Kaiserslautern. V3V4 Data Salmon Farm Scotland. NCBI SRA,
Accession Number: PRJNA667346, 2020. https://www.ncbi.nlm.nih.gov/
bioproject/?term=PRJNA667346.

[34] Herlemann DP, Labrenz M, Jurgens K, Bertilsson S, Waniek JJ, et al. Transitions
in bacterial communities along the 2000 km salinity gradient of the Baltic Sea.
Isme J 2011;5. https://doi.org/10.1038/ismej.2011.41.

[35] Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, et al. DADA2: High-
resolution sample inference from Illumina amplicon data. Nat Methods
2016;13:581–3.

[36] Dully V, Balliet H, Frühe L, Däumer M, Thielen A, et al. Robustness, sensitivity
and reproducibility of eDNA metabarcoding as an environmental
biomonitoring tool in coastal salmon aquaculture – an inter-laboratory

https://doi.org/10.1016/j.csbj.2021.04.005
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0005
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0005
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0010
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0010
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0010
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0015
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0015
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0020
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0020
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0020
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0030
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0030
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0030
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0035
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0035
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0045
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0045
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0045
https://doi.org/10.3389/fmars.2016.00213
https://doi.org/10.3389/fmars.2016.00213
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0055
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0055
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0055
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0055
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0060
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0060
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0060
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0065
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0065
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0065
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0070
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0070
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0070
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0075
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0075
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0075
https://doi.org/10.1111/mec.15434
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0085
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0085
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0085
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0090
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0090
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0090
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0090
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0095
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0095
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0095
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0100
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0100
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0100
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0105
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0105
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0105
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0110
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0110
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0110
https://doi.org/10.1111/mec.15472
https://doi.org/10.1111/mec.15472
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0120
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0120
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0120
https://doi.org/10.1016/j.ygeno.2012.04.003
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0130
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0130
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0130
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0135
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0135
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0135
https://doi.org/10.1128/mBio.00326-15
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA322754
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA322754
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA628526
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA628526
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0155
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0155
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0155
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA417767
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA417767
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA417767
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA417767
https://doi.org/10.1038/ismej.2011.41
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0175
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0175
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0175


V. Dully, T.A. Wilding, T. Mühlhaus et al. Computational and Structural Biotechnology Journal 19 (2021) 2256–2268
study. Ecol Indic 2021;121(12):107049. https://doi.org/10.1016/j.
ecolind.2020.107049.

[37] Lanzen A, Mendibil I, Borja A, Alonso-Saez L. A microbial mandala for
environmental monitoring: Predicting multiple impacts on estuarine
prokaryote communities of the Bay of Biscay. Mol Ecol 2020. https://doi.org/
10.1111/mec.15489.

[38] Breiman L. Random forests. Mach Learn 2001;45:5–32.
[39] Liaw A, Wiener M. Classification and regression by randomForest. R News

2002;2:18–22.
[40] Hastie T, Tibshirani R, Friedman J (2009) Random Forests. In: Springer,

Stanford. The elements of statistical learning. 2nd ed. pp. 587-604.
[41] Kuhn M, Wing J, Weston S, Williams A, Keefer C et al. (2020) Caret:

Classification and Regression Training. https://github.com/topepo/caret/
[42] Roguet A, Eren AM, Newton RJ, McLellan SL. Fecal source identification using

random forest. Microbiome 2018;6:6–185.
[43] James G, Witten D, Hastie T, Tibshirani R. An introduction to statistical learning

with applications in R. New York: Springer; 2013. p. 426.
[44] Millard K, Richardson M. On the importance of training data sample selection

in random forest image classification: a case study in peatland ecosystem
mapping. Remote Sens 2015;7(7):8489–515.
2268
[45] Tang C, Garreau D, Luxburg U v (2018) When do random forests fail?
Conference on Neural Information Processing Systems. Available: https://
www.researchgate.net/publication/
328229072_When_do_random_forests_fail. Accessed 2021 Jan 26.

[46] Haibo He, Garcia EA. Learning from imbalanced data. IEEE T Knowl Data En
2009;21(9):1263–84.

[47] Guo F, Wang G, Su Z, Liang H, Wang W, Lin F, et al. What drives forest fire in
Fujian, China? Evidence from logistic regression and Random Forests. Int J
Wildland Fire 2016;25:505. https://doi.org/10.1071/WF15121.

[48] Foody GM. Status of land cover classification accuracy assessment. Remote
Sens Environ 2002;80:185–201.

[49] Oksanen J, Blanchet FG, Frinedly M, Kindt R, Legendre P et al. (2019) vegan:
Community Ecology Package. Ordination methods, diversity analysis and other
functions for community and vegetation ecologists. Version 2.5-6. https://
cran.r-project.org/web/packages/vegan/index.html.

[50] Lepš J, Šmilauer P. Biostatistics with R: an introductory guide for field
biologists. Cambridge: Cambridge University Press; 2020. p. 365.

[51] Cordier T, Esling P, Lejzerowicz F, Visco J, Ouadahi A, et al. Predicting the
ecological quality status of marine environments from eDNA Metabarcoding
data using supervised machine learning. Environ Sci Technol 2017;51
(16):9118–26. https://doi.org/10.1021/acs.est.7b01518.

https://doi.org/10.1016/j.ecolind.2020.107049
https://doi.org/10.1016/j.ecolind.2020.107049
https://doi.org/10.1111/mec.15489
https://doi.org/10.1111/mec.15489
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0190
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0195
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0195
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0210
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0210
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0215
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0215
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0220
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0220
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0220
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0230
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0230
https://doi.org/10.1071/WF15121
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0240
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0240
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0250
http://refhub.elsevier.com/S2001-0370(21)00114-8/h0250
https://doi.org/10.1021/acs.est.7b01518

	Identifying the minimum amplicon sequence depth to adequately predict classes in eDNA-based marine biomonitoring using supervised machine learning
	1 Introduction
	2 Methods
	2.1 Datasets
	2.2 Sampling of Scottish salmon farm sediment
	2.3 DNA extraction, amplification and Illumina sequencing of Scottish salmon farm samples
	2.4 Sequence data processing for all four datasets
	2.5 Supervised Machine learning (SML) predictions

	3 Results
	3.1 Sequence data overview and rarefaction
	3.2 Random forest predictions of full and downsampled datasets

	4 Discussion
	5 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Supplementary data
	References


