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Abstract

RNA-seq (transcriptome sequencing) is primarily considered a method of gene
expression analysis but it can also be used to detect DNA variants in expressed
regions of the genome. However, current variant callers do not generally
behave well with RNA-seq data due to reads encompassing intronic regions.
We have developed a software programme called Opossum to address this
problem. Opossum pre-processes RNA-seq reads prior to variant calling, and
although it has been designed to work specifically with Platypus, it can be used
equally well with other variant callers such as GATK HaplotypeCaller. In this
work, we show that using Opossum in conjunction with either Platypus or GATK
HaplotypeCaller maintains precision and improves the sensitivity for SNP
detection compared to the GATK Best Practices pipeline. In addition, using it in
combination with Platypus offers a substantial reduction in run times compared
to the GATK pipeline so it is ideal when there are only limited time or
computational resources available.
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Introduction

RNA-seq (transcriptome sequencing)' is routinely employed
for gene expression analysis, but it can also be used to identify
genomic variants in expressed regions alongside whole-exome
(WES) and whole-genome sequencing (WGS). Recently, its
potential in improving diagnostics was demonstrated in a clinical
setting’. However, since the prevalent variant calling pipelines have
been designed specifically for DNA data, novel tools or modifica-
tions to the existing ones are needed for processing RNA-seq data.
Detecting variants in lowly expressed genes, covered by only a few
reads, poses strict demands on the precision and sensitivity of the
method. Moreover, the method needs to be able to cope with intron-
spanning RNA-seq reads.

A few pipelines for detecting SNPs in RNA-seq data have now been
released to address these challenges. eSNV-detect by Tang et al.’
employs a combination of mappers to overcome systematic errors
of individual aligners, followed by variant calling with Samtools
and Bcftools. SNPiR by Piskol er al.* relies on a single aligner
(BWA) to map reads across splice junctions and filters heavily after
variant calling done with GATK UnifiedGenotyper, at the cost of
decreased sensitivity. Also the developers of GATK have released
online their Best Practices for calling variants from RNA-seq data
(https://software.broadinstitute.org/gatk//guide/article?id=3891).
All of them mix and match parts of older pipelines developed for
DNA data processing in order to make sense of RNA-seq data.
The benchmarking in these studies has not been done consistently,
making it difficult to directly compare their performance.

Current state-of-the-art variant calling algorithms employ a
haplotype-driven strategy to achieve higher accuracy. For example
Platypus® performs a local de novo read assembly to generate
candidate variants and reconstruct haplotypes. Variants are then
called based on the estimated haplotypes. The approach works well
on length scales of up to a few kilobases (typically up to 1.5-2 kb)
but longer reads (e.g. reads mapping across large introns) would
disrupt it. For this reason Platypus should not be run directly on
RNA-seq data.

In this work, we have developed a software tool called Opossum®
specifically to process and filter RNA-seq data and make it suit-
able for (haplotype-based) variant calling. No additional processing
step (e.g. base quality recalibration) or filtering is required. The
presence of splice junctions in RNA-seq data means that reads
which have been mapped across splice junctions must be split
to remove intronic parts which would otherwise disrupt variant
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calling. Now, after splitting, we would generally lose information
of which new shorter reads originated from the same longer read.
This, in turn, would mean that more base-changes would be ignored
at the variant calling stage since typically bases are ignored from
both ends of each read, and also the possible overlap of originally
paired-end reads could not be detected any more. Opossum
overcomes these issues by merging overlapping reads and by
modifying the base qualities of bases at the ends of the original
reads before splitting them. As a result, all information is already
incorporated into the reads, and the variant caller can be run with
minimal settings. Opossum can be used together with different
aligners (TopHat’, Star®) and provides ways for adjusting for the
peculiarities of each aligner. While it has been designed to work
particularly with Platypus’, Opossum can be used equally well
with other variant callers such as GATK HaplotypeCaller’. Our
approach shows promising results, maintaining high precision
and improving sensitivity in detecting SNP variant calls compared
to the GATK Best Practices pipeline. As a reference, we have used
the strongly validated GIAB (Genome in a Bottle) dataset'’.

Methods

Operation

Opossum® is a Python-based software, requiring Python 2.7 (or
greater) along with Python packages Pysam v0.10.0 (https://github.
com/pysam-developers/pysam), itertools, argparse, os and sys.
Pysam v0.10.0 wraps htslib-1.3, samtools-1.3 and bcftools-1.3"2.
Opossum has not been tested with the Python 3.X series.

As input, Opossum requires a position-sorted BAM file, which
is then processed for variant calling. When running the program,
the user should specify whether the input BAM file includes any
soft clips (’SoftClipsExist’, default=False). The user can also
decide whether only properly paired reads should be considered
(’ProperlyPaired’, default=True) and what is the minimum accept-
able mapping quality for a read pair ("MapCutoff’, default=40).
Note that in TopHat and Star, mapping qualities can only take a
restricted set of values: from O to 3 if a read maps to multiple loca-
tions, 50 (TopHat) or 255 (Star) if a read is a uniquely mapped
(In the SAM format specification, a value of 255 indicates that a
mapping quality is not available. Opossum therefore reassigns to
these reads a quality value of 50. Alternatively Star can be run with
the option "—outSAMmapqUnique 50’ to modify the value assigned
to uniquely mapped reads). The precise 'MapCutoff’ value is
therefore not important for these mappers as long as it is between
4 and 49. However, it could become relevant if Opossum is used
in conjunction with other mappers e.g. HiSat2'® as quality scores
can then take up a wider range of values.

Opossum output is a sorted and indexed BAM file on which SNP
variant calling can be carried out with, e.g., Platypus with mini-
mal settings since Opossum has already cleaned the data. By
default, Platypus flags variants that do not fulfill all of its filtering
criteria’. These criteria have been designed to make the most out of
DNA data. The same criteria can well be used with RNA-seq data
if the user wants to maximize precision at the cost of sensitivity.
However, if the user seeks a greater balance between precision and
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sensitivity, it would be advisable to include also variants flagged as
’badReads’, ’SC’, and *Q20” among the final variants.

Implementation

Opossum starts by taking several quality control measures. It
discards secondary alignments and reads that have a mapping qual-
ity lower than the cutoff specified by the user (via "MapCutoff’).
Opossum also gets rid of reads in pairs that have been aligned in
the same direction or are pointing outwards, and paired-end reads
where the two reads have been mapped to different chromosomes.

Next, Opossum gets rid of read duplicates. Duplicates are defined
as read pairs having identical 5’ coordinates and orientations. After
duplicate reads have been collected, the primary read is chosen
among the properly paired reads based on which pair has the high-
est sum of base qualities. Then the primary read is compared with
each secondary read and modified to accommodate differences
in the following way: If the primary and secondary reads have a
base-wise discrepancy with a very low base quality (i.e. one or both
reads have base quality of less than 10), then the higher-quality
base is kept. If both base qualities are above 10, then the corre-
sponding base quality in the primary read is set to zero to reflect the
uncertainty involved. This differs from e.g. Picard MarkDuplicates
(https://broadinstitute.github.io/picard/command-line-overview.
html#MarkDuplicates) which ignores read flags and does not mod-
ify primary reads. Single reads are discarded as duplicates if they
have the same starting position as a paired-end read; otherwise, a
primary read is chosen among the single read duplicates.

First position
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Opossum merges overlapping paired-end reads to avoid double-
counting the overlapping part during variant calling. The user
can specify whether overlapping paired-end reads having at least
one base mismatch within the overlap region should be kept
(’KeepMismatches’, default=False). If they are kept and one of
the reads has a very low-quality base at a mismatch position, then
the higher-quality base is kept. Otherwise if both base qualities
are above 10, then the corresponding base quality in the merged
read is set to zero. Reads with intronic regions (denoted by N in the
CIGAR string) are split to only keep the exonic parts, resulting in
new, shorter reads. If the overlapping parts of reads in a pair have
not been aligned to the same exons, the pair is discarded as the
mapping cannot be trusted. The final, merged reads are always
aligned on the forward strand.

Bases located either at the beginning or end of a read are partic-
ularly vulnerable to spurious base changes. The base changes at
the beginning of the reads arise during first-strand cDNA synthe-
sis using random hexamers'*, whereas the base changes at the end
result from the read quality getting worse during sequencing and/or
adapter read-through. To deal with this, base-changes in the first N
and last M bases of the original read are ignored by Opossum by
setting the corresponding base qualities to zero ("MinFlankStart’
and 'MinFlankEnd’ parameters, default=0 for both). The values for
N and M can be determined by evaluating the base mismatch rates
at each position of the reads in the sample as shown in Figure 1.
N and M would correspond to a threshold below which the
mismatch rate falls which is considered acceptable by the user. In
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Figure 1. Percentage of error nucleotides at first four positions (left column) and last four positions (right column) in the first strands.

RNA-seq data from GM12878'!, mapped with TopHat2 v2.0.12.
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the example, the threshold for the error rate was set to 1 percent
and therefore the corresponding "MinFlankStart’ value to 3 as the
error rate has fallen below 1% at the third base position. The same
applies to the last bases, with the error rate falling definitely below
1% at the third to last position, so 'MinFlankEnd’ was set to 3 as
well. Opossum does not currently differentiate between first and
second strands and therefore the parameter values obtained for
the first strand are applied to all reads. Although the second strand
should have less base mismatches'?, it is worth checking that the
chosen parameters are in line with it as well. We have provided
the code for computing base mismatch rates on GitHub.

The behavior of the 'MinFlank’ parameters depend on whether
the user has set the 'SoftClipsExist’ parameter to True. If yes, then
"MinFlankStart’ and 'MinFlankEnd’ are only applied to reads
containing soft clips. This is because having soft clips indicates
that the mapper has had more trouble in aligning the read, and the
read can exhibit a much higher base mismatch rate than a read
without soft clips. Whether or not the BAM file contains reads with
soft clips depends on the mapper used — for instance, by default
settings, Star® is a more aggressive mapper than TopHat’, tolerating
many more base mismatches and marking those occurring at read
ends as soft clips.

Results

RNA-seq data from the pilot genome GM12878 (https://www.
encodeproject.org/experiments//ENCSR0O00COQ/, GEO accession
code: GSM758559)"" was used to validate the performance of
Opossum. The data consisted of 26,978,818 paired-end 76 bp
reads. The data was mapped with two different aligners, TopHat2
(v2.0.12)" and Star 2-pass (v2.4.2)%, which have been shown to
be among the best aligners for RNA-seq data'. The aligned reads
were then processed with Opossum, followed by variant calling
with either Platypus (v0.8.1)° or GATK HaplotypeCaller (v3.4)°.
When using Platypus, also variants flagged as ’badReads’, *SC’,
or *Q20’ were taken into account. The results were compared with
the benchmark variant calls (v2.19) provided by GIAB (Genome
in a Bottle Consortium) for NA12878 (ftp://ftp-trace.ncbi.nlm.nih.
gov/giab/ftp/release/NA12878_HGOO1/NISTv2.19/,'%). The bed
file corresponding to GIAB v2.19 was used to restrict variant calls
to reliable regions only.
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Both precision and sensitivity were computed to evaluate the
performance of each variant calling pipeline: Opossum + Platypus,
Opossum + GATK HaplotypeCaller, and GATK pipeline (following
its Best Practices for RNA-seq guideline, https://software.broadin-
stitute.org/gatk//guide/article?id=3891). Precision is defined as the
fraction of true positives out of all variant calls in RNA-seq data
that are supported by at least two reads (two reads is the minimum
required by Platypus and GATK HaplotypeCaller by default). For
evaluation purposes, those called variants that have been previously
reported as RNA-editing sites'® have been excluded. Sensitivity
is defined as the fraction of true positives out of all variant calls
in reference data (true positives + false negatives) that are sup-
ported by at least two reads in the original (deduped but otherwise
unprocessed) BAM file.

Table 1 shows that pre-processing RNA-seq data with Opossum
maintains high precision and improves sensitivity regardless
of whether variant calling is done with GATK or Platypus. For
RNA-seq data mapped with TopHat2, precision improves slightly if
data is pre-processed with Opossum, while sensitivity increases by
2-3%. For data mapped with Star 2-pass, the Opossum + Platypus
pipeline stands out by improving the sensitivity by more than 4%.
It is also worth noting that pre-processing with Opossum slightly
improves both precision and sensitivity when used in conjunction
with GATK HaplotypeCaller, even though Star is recommended by
GATK Best Practices and should therefore provide optimal input
for the GATK variant caller.

Using Platypus also offers a substantial reduction in runtimes
compared to GATK - the runtimes fell by at least 50%. This is
in line with the processing times reported in the original Platypus
publication”.

Precision and sensitivity are presented as a function of number
of supporting bases in Figure 2 and Figure 3. It can be seen that
sensitivities converge rapidly to their final value: approximately
four supporting reads are enough to detect a variant with a very
high probability. Figure 3 also pinpoints that the superiority of the
Opossum + Platypus pipeline regarding sensitivity originates from
variant calls in very low-coverage areas, with only 2-3 support-
ing reads. According to Figure 2, precision gets to around 90%

Table 1. Precision, sensitivity, and runtimes for the three different variant

calling pipelines.

Mapper Variant calling pipeline Runtime Precision Sensitivity
(%) (%)

TopHat2 GATK Best Practices 11h50 min 97.04 90.08
Opossum + GATK 13h35min 97.88 92.20
HaplotypeCaller
Opossum + Platypus 5h40min  97.33 92.96

Star 2-pass GATK Best Practices 14 h 45 min  96.37 88.47
Opossum + GATK 15h35min 96.92 89.65
HaplotypeCaller
Opossum + Platypus 7 h 0 min 95.23 94.07
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with four supporting reads and then steadily increases with higher
coverage, with no major differences in the performance between
the three pipelines. Both precision and sensitivity require at least
two supporting reads in order to be considered in the first place.
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In conclusion, the combination of Opossum + Platypus would
be recommended especially in cases when the user aims for high
sensitivity for SNPs, regardless of the mapper used. Moreover,
Opossum + Platypus provide the best results with fastest runtimes
so it is ideal when there are only limited time or computational
resources available.

Having validated the capability of Opossum to process RNA-seq
data for SNP detection, the next logical step would be to extend
its use to detecting indels in future releases. This not only poses
stricter demands on the variant caller, but also specifically on the
aligner used'’, and has not yet been explored very much in the
literature. Further compatibility will also be tested with other
RNA-seq aligners (e.g. HiSat2") and future developments of
variant callers.
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Open Peer Review

Current Referee Status: v ¢

Referee Report 21 March 2017

doi:10.21956/wellcomeopenres.12053.r21161

v

Georg W. Otto
University College London, London, UK

My concerns have been addressed appropriately in version 2 and | approve indexing of the article without
further reservations.

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Competing Interests: No competing interests were disclosed.

Referee Report 17 February 2017

doi:10.21956/wellcomeopenres.11317.r20032

v

Baohong Zhang
Early Clinical Development, Pfizer Worldwide Research and Development, Cambridge, MA, USA

The authors had applied some clever techniques to remove potential false mutations introduced by
splicing or RNA editing and developed a pipeline which is even better than the "gold standard" GATK best
practice for RNAseq according to the benchmarking. It is a good addition to the ever-growing RNAseq
tool box.

However, the author should clarify few wrong claims.

First and foremost, "RNA-seq provides a cost-effective alternative to whole genome sequencing (WGS)
for detecting genomic variants" is a wrong claim since RNAseq only cover partial of the genome where
gene are expressed. The genomics coverage provided by RNAseq is different in different tissues or under
various biological conditions. RNAseq only covers about 20-40% of exome. This sentence needs to be
re-written or removed.

Based on this page (
https://sequencing.qcfail.com/articles/mapg-values-are-really-useful-but-their-implementation-is-a-mess/
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), both TopHat and Star are using quite discrete mapping quality scores. The default cutoff of 40 doesn't
make too much sense here. A cutoff of from 4 to 49 will create the same result. The author should point
out this pitfall and propose a better scoring method for removing bad quality reads.

| have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Competing Interests: No competing interests were disclosed.

Laura Oikkonen,

We would like to thank the referees for the very thorough evaluation of our work and insightful
comments. We have uploaded a revised version of our manuscript which contains modifications
based on the points raised by the referees. Please find below detailed response to each comment.

Comment 1: First and foremost, "RNA-seq provides a cost-effective alternative to whole genome
sequencing (WGS) for detecting genomic variants" is a wrong claim since RNAseq only cover
partial of the genome where gene are expressed. The genomics coverage provided by RNAseq is
different in different tissues or under various biological conditions. RNAseq only covers about
20-40% of exome. This sentence needs to be re-written or removed.

Response: We have re-written the first sentence of the Abstract and the first paragraph of the
Introduction in accordance with the suggestions and comments from the referee.

Comment 2: Based on this page (
https://sequencing.qcfail.com/articles/mapg-values-are-really-useful-but-their-implementation-is-a-mes
), both TopHat and Star are using quite discrete mapping quality scores. The default cutoff of 40
doesn't make too much sense here. A cutoff of from 4 to 49 will create the same result. The author
should point out this pitfall and propose a better scoring method for removing bad quality reads.

Response: As the referee correctly points out, when using Star and TopHat for alignment, any
cutoff value for the mapping quality between 4 and 49 will produce the same outcome. However,
this is not the case for other mappers such as HiSat2. Indeed a cutoff value of around 40 is
recommended for Hisat2 by the website cited by the referee in order to get only very good, unique
alignments. As we plan to test Opossum on data produced by mappers other than Star and
TopHat, we have decided to leave the default cutoff to 40.

We have now clarified this in the Operation section, second paragraph: “Note that in TopHat and
Star, mapping qualities can only take a restricted set of values: from 0 to 3 if a read maps to
multiple locations, 50 (TopHat) or 255 (Star) if a read is uniquely mapped. The precise ‘MapCutoff'
value is therefore not important for these mappers as long as it is between 4 and 49. However, it
could become relevant if Opossum is used in conjunction with other mappers e.g. HiSat2 as quality
scores can then take up a wider range of values.”

Competing Interests: No competing interests were disclosed.
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Referee Report 09 February 2017

doi:10.21956/wellcomeopenres.11317.r19437

v

Raffaele Adolfo Calogero
Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy

OPOSSUM prepares RNAseq data for variant calling and addresses a very important issue in the use of
RNAseq for variant calling: preprocessing.

Opossum seems to be faster than GATK and provides some improvement in sensitivity.

In GATK RNAseq best practice, after RNAseq data preprocessing, there is Indels realignment and base
recalibration (
http://gatkforums.broadinstitute.org/gatk/discussion/3892/the-gatk-best-practices-for-variant-calling-on-rn:
). Is this part not required for variant calling after OPOSSUM preprocessing?

Minor comment:
This link is broken: https://github.com/luntergroup/octopu

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Competing Interests: No competing interests were disclosed.

Reader Comment 13 Mar 2017
Laura Oikkonen,

We would like to thank the referees for the very thorough evaluation of our work and insightful
comments. We have uploaded a revised version of our manuscript which contains modifications
based on the points raised by the referees. Please find below detailed response to each comment.

Comment 1: In GATK RNAseq best practice, after RNAseq data preprocessing, there is Indels
realignment and base recalibration (http://gatkforums.broadinstitute.org/gatk/discussion/3892/the-
gatk-best-practices-for-variant-calling-on-rnaseq-in-full-detail). Is this part not required for variant
calling after OPOSSUM preprocessing?

Response: We have not done any indels realignment and base recalibration prior to variant
calling. Platypus does not require it, and on the GATK website
(https://software.broadinstitute.org/gatk/guide/article?id=3891), it is stated that the effects of these
steps are marginal for good-quality data.

To make this point more clear, we have modified the second sentence from the fourth paragraph of
Introduction and it now reads: “No additional processing step (e.g. base quality recalibration) or
filtering is required.”
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Comment 2: This link is broken: https://github.com/luntergroup/octopus

Response: Unfortunately it turns out that after we submitted our manuscript, the authors of
Octopus have decided to remove their code from Github. We have therefore deleted the link from
the manuscript and changed the last sentence into: “Further compatibility will also be tested with
other RNA-seq aligners (e.g. HiSat2) and future developments of variant callers.”

Competing Interests: No competing interests were disclosed.

Referee Report 31 January 2017

doi:10.21956/wellcomeopenres.11317.r19439

?

Georg W. Otto
University College London, London, UK

Data from RNA-Seq, usually used for expression analysis, can be coopted to find DNA variants in
expressed regions and sites of RNA-editing. A caveat lies in the fact that the two sources of variation can
not necessarily be distinguished in a straight-forward manner, and that analyses of allele specific
expression might be hampered by biases in mapping and variant calling. mRNA-levels vary by many
orders of magnitude, so in order to detect variants in lowly expressed genes, the detection method has to
be precise and sensitive in regions covered by only a few reads.

Taking this into account and with the focus being restricted to expressed regions of the genome,
RNA-Seq is a cost-effective alternative to whole genome sequencing. A tool that helps improving the
process, by increasing precision, sensitivity and processing speed would be useful and, indeed, would
make the most out of RNA-Seq. The authors show that Opossum meets these demands.

Rather than being a variant caller itself, Opossum is basically a preprocessing pipeline to make RNA-seq
reads better suited for variant calling than the original raw data. The process executed by Opossum
includes:

1. Quality control and removal of spuriously mapped read-pairs.

2. Duplicate removal and solving of variant calling conflicts between read duplicates.

3. Merging of overlapping reads.

4. Splitting of intron-spanning reads.

5. Flagging of first N and last M bases to be ignored.
This is described in the manuscript in a clear and comprehensive manner.

The authors show that there is a marked increase in sensitivity using the combination of Opossum and
Platypus, compared to the GATK Best Practices Pipeline. Likewise, computation time is significantly
reduced. This supports the claim that Opossum is a useful tool for variant calling of RNA-Seq data.

There are a couple of points that remain to be addressed, though:
1. Opossum is a python script, so installation is not a problem. However, it uses samtools sort, and
there is an incompatibility with samtools versions. The samtools version used to test the software
(1.2) requires a file prefix for temporary files to be stated, which the Opossum code fails to do,
causing an error. This should be fixed or at least the dependencies should be stated clearly.
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2. It remains unexplained how much of the described improvement of sensitivity is due to Opossum
processing or to Platypus variant calling (compared to GATK). We are only presented results with
Opossum and Platypus in combination. Is it possible to use Platypus on RNA-seq data at all
without the Opossum step? This is not discussed in the manuscript. The authors should make that
point clearer.

3. As a minor remark, the sentence in the last paragraph "Having validated the capability of Opossum
to detect SNPs" is not entirely accurate, since Opossum itself does not do the variant calling.

In conclusion, Opossum is a tool that is useful for a specific task in the variant calling process of RNA-Seq
data. The Opossum/Platypus combination results in an increased sensitivity and reduced computation
time compared to the GATK Best Practices pipeline. This is of potential benefit for researchers interested
in genomic variation in expressed regions, especially in allele-specific expression, and in RNA editing.
Therefore, this manuscript deserves to be indexed once the above mentioned points have been
addressed.

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however | have significant reservations, as outlined
above.

Competing Interests: No competing interests were disclosed.

Laura Oikkonen,

We would like to thank the referee for the very thorough evaluation of our work and insightful
comments. We have uploaded a revised version of our manuscript which contains modifications
based on the points raised by the referee. Please find below detailed response to each comment.

Comment 1: Opossum is a python script, so installation is not a problem. However, it uses
samtools sort, and there is an incompatibility with samtools versions. The samtools version used to
test the software (1.2) requires a file prefix for temporary files to be stated, which the Opossum
code fails to do, causing an error. This should be fixed or at least the dependencies should be
stated clearly.

Response: Thank you for pointing this out. The dependency of Opossum has now been upgraded
to Pysam v0.10.0, which wraps htslib-1.3, samtools-1.3 and bcftools-1.3. We also added a citation
of Pysam to the manuscript.

Comment 2: It remains unexplained how much of the described improvement of sensitivity is due
to Opossum processing or to Platypus variant calling (compared to GATK). We are only presented
results with Opossum and Platypus in combination. Is it possible to use Platypus on RNA-seq data
at all without the Opossum step? This is not discussed in the manuscript. The authors should make
that point clearer.

Response: Platypus should not be applied directly to RNA-seq without a pre-processing step - this
was indeed the original motivation for developing Opossum. We agree that this was was not clearly
explained in the first version of the manuscript and we have now added a paragraph that clarifies
this.
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We added the following paragraph to the Introduction Section (after second paragraph): “Current
state-of-the-art variant calling algorithms employ a haplotype-driven strategy to achieve higher
accuracy. For example Platypus performs a local de novo read assembly to generate candidate
variants and reconstruct haplotypes. Variants are then called based on the estimated haplotypes.
The approach works well on length scales of up to a few kilobases (typically up to 1.5-2 kb) but
longer reads (e.g. reads mapping across large introns) would disrupt it. For this reason Platypus
should not be run directly on RNA-seq data.”

Comment 3: As a minor remark, the sentence in the last paragraph "Having validated the
capability of Opossum to detect SNPs" is not entirely accurate, since Opossum itself does not do
the variant calling.

Response: We have modified the sentence and it now reads: “Having validated the capability of
Opossum to process RNA-seq data for SNP detection, [...]".

Competing Interests: No competing interests were disclosed.
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