
diagnostics

Article

Development and Validation of a Radiomics Nomogram
for Differentiating Mycoplasma Pneumonia and
Bacterial Pneumonia

Honglin Li 1,†, Ting Li 2,†, Qinxin Cai 1, Xiaozhuan Wang 1, Yuting Liao 3, Yuanxiong Cheng 2,* and Quan Zhou 1,*

����������
�������

Citation: Li, H.; Li, T.; Cai, Q.; Wang,

X.; Liao, Y.; Cheng, Y.; Zhou, Q.

Development and Validation of a

Radiomics Nomogram for

Differentiating Mycoplasma

Pneumonia and Bacterial Pneumonia.

Diagnostics 2021, 11, 1330. https://

doi.org/10.3390/diagnostics11081330

Academic Editor: Andor

W.J.M. Glaudemans

Received: 28 June 2021

Accepted: 20 July 2021

Published: 24 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Radiology, The Third Affiliated Hospital of Southern Medical University,
Guangzhou 510000, China; lihonglin163@163.com (H.L.); Teddymiao0211@163.com (Q.C.);
WXZ24568@163.com (X.W.)

2 Department of Respiratory Medicine, The Third Affiliated Hospital of Southern Medical University,
Guangzhou 510000, China; liting_0514@163.com

3 GE Healthcare, Guangzhou 510000, China; lytting@outlook.com
* Correspondence: drchengyx@163.com (Y.C.); zhouquan3777@smu.edu.cn (Q.Z.)
† These authors contributed equally to this work as first author.

Abstract: Objectives: To develop and validate a radiological nomogram combining radiological and
clinical characteristics for differentiating mycoplasma pneumonia and bacterial pneumonia with
similar CT findings. Methods: A total of 100 cases of pneumonia patients receiving chest CT scan
were retrospectively analyzed, including 60 patients with mycoplasma pneumonia and 40 patients
with bacterial pneumonia. The patients were divided into the train set (n = 70) and the test set
(n = 30). The features were extracted from chest CT images of each patient by AK analysis software,
then univarite analysis, spearman correlation analysis, and least absolute shrinkage and selection
operator (LASSO) were utilized for dimension reduction in training set. A radiomics model was
built by multivariable logistic regression based on the selected features, and a radiomics-clinical
multivariable logistic regression model was built by combining imaging radiomics and clinical risk
factors (age and temperature). ROC, AUC, sensitivity, specificity, and accuracy were calculated
to validate the two models. The nomogram of the radiomics-clinical was built and evaluated by
calibration curve. The clinical benefit of the two models was measured by using decision curve.
Results: A total of 396 texture features were extracted from each chest CT image, and 10 valuable
features were screened out. In the radiomics model, the AUC, sensitivity, specificity, and accuracy
for the train set is 0.877, 0.762, 0.821, 78.6%, and for the test set it is 0.810, 0.667, 0.750 and 70.0%,
respectively. In the radiomics-clinical model, the AUC, sensitivity, specificity, and accuracy for the
train set is 0.905, 0.976, 0.714, 87.1%, and for the test set is is 0.847, 0.889, 0.667 and 80.0%, respectively.
Decision curve analysis shows that both the two models increase the clinical benefits of the patients,
and the radiomics-clinical model gains higher clinical benefits, compared to the radiomics model.
Conclusion: The radiomics-clinical nomogram had good performance in identifying mycoplasma
pneumonia and bacterial pneumonias, which would be helpful in clinical decision-making.

Keywords: mycoplasma pneumonia; bacterial pneumonia; nomogram; multidetector computed tomography

1. Background

Mycoplasma pneumonia is a major cause of community-acquired pneumonia (CAP)
in adults and children, with an epidemic occurring every 3 to 7 years [1]. During epidemics,
this microorganism can cause up to 20–40% of CAP in the general population, and up to
70% in closed populations [2]. Pneumonia remains one of the most common causes of
death [3], despite significant advances in the worldwide search for anti-bacterial agents to
prevent infection in recent years.
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The gold standard of mycoplasma pneumoniae diagnosis is the culture method, specif-
ically for pharyngeal throat or tracheal aspiration of pharyngeal swab, pleural puncture
fluid or alveolar lavage fluid, mycoplasma pneumoniae culture and separation. Due to
the harsh culture conditions of mycoplasma pneumoniae and its slow growth, it lacks the
value of early diagnosis. Mycoplasma pneumoniae-DNA testing has certain limitations,
as specimen collection may have a higher false negative cost and require certain instru-
ments to complete manual work, heavy workload, and a long time duration [4]. Imaging
examination is a commonly used examination method for pneumonia, including X-ray and
CT examination. High-resolution computed tomography (HRCT) has unique advantages
and is the best imaging examination method for pneumonia patients, but the imaging
manifestations of mycoplasma pneumoniae infection have no obvious specificity. Due
to the lack of specificity in the imaging manifestations of mycoplasma pneumonia, the
differential diagnosis of mycoplasma pneumonia and bacterial pneumonia lacks rapid,
accurate, and effective detection methods, so the clinical diagnosis is difficult.

In recent years, the term radiomics has attracted increasing attention. It refers to the
process of extracting quantitative features through high throughput and then conducting
data analysis to support decisions to transform medical images into high-dimensional and
mineable data [5,6]. Advances in pattern recognition tools and in the size of data sets have
facilitated the development of radiology, which may improve the predictive accuracy of
pathology [7,8]. Radiomics can study multiple imaging features simultaneously and can
provide combinations of features that include extracting image features and combining
them with other available patient data to enhance decision support models. Radiomics has
been successfully applied to the identification, staging, and evaluation of lung cancer [9,10].
Yanling W [11] applied a radiomics nomogram to differentiate pneumonia from acute
paraquat lung injury, so it may have the potential to identify pulmonary inflammation.

Thus, our goal was to establish and validate a radiological nomogram that combines
radiological characteristics with clinical risk factors to identify mycoplasma pneumonia and
bacterial pneumonia, and to provide evidence for early and precise treatment in the clinic.

2. Materials and Methods
2.1. Patients

This retrospective study was conducted at a single academic medical center and ap-
proved by the institutional review board, and the informed consent requirement was waved.
This study analyzed the clinical and imaging data of patients diagnosed with mycoplasma
pneumonia or bacterial pneumonia in our hospital from January 2018 to December 2019.
The inclusion criteria were as follows: (1) patients with mycoplasma pneumonia or bacterial
pneumonia; (2) patients had undergone pharyngeal swab or bronchofibroscope alveolar
lavage nucleic acid test; (3) chest CT scans are available. The exclusion criteria were as
follows: (1) poor image quality; and (2) patients with previous bronchial asthma, chronic
obstructive pulmonary disease, kidney or liver disease, recurrent respiratory infections, a
history of severe pneumonia but not cured, congenital or secondary immunosuppression
or deficiency, connective tissue disease.

According to the inclusion and exclusion criteria of patients, a total of 100 patients
were finally included in this study, including 60 patients with mycoplasma pneumonia and
40 patients with bacterial pneumonia. All 100 patients were randomly divided into a train
set (n = 70) and a test set (n = 30) at a ratio of 7:3 [11]. There were 42 cases of mycoplasma
pneumonia in the train set and 28 cases of bacterial pneumonia. In the test set, there were
18 cases of mycoplasma pneumonia and 12 cases of bacterial pneumonia. Clinical data
were recorded, including gender, age, body temperature, c-reactive protein, white blood
cell count, and neutrophils count.
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2.2. CT Examinations

A 64-slice spiral CT scanner was used. Scanning parameters: 130 kV, 120 mA, layer
thickness 1.0 mm, layer spacing 10 mm, scanning time 2 s, matrix 512 × 512. Hold breath
and scan from the apex of the lung to the diaphragm in turn. A high resolution (bone)
reconstruction algorithm was used to post-process the image. Region of interest (ROI)
was delineated under lung window (Window Width: 1000~2000 Hu, Window Level:
−500~−700 Hu).

2.3. ROI Delineation

All CT images are manually segmented by ITK-SNAP software (Version 2.8; www.
itksnap.org, accessed on 15 September 2019). Two radiologists, who had been engaged in
chest imaging diagnosis for 5 years and 10 years, respectively, manually delineated ROI
on the maximum layer of lesions without knowing the pathological results. The region of
interest avoids pleural and pleural effusions. The main, lobe vessels, and bronchi are not
included in the ROI. Segment and subsegment bronchus, vessels connected to the lesion
are drawn into the ROI, and those who are not connected, are not drawn into the ROI [11].
Figure 1 shows the Chest CT images of patients with mycoplasma pneumonia or bacterial
pneumonia and related ROIs.
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Figure 1. Chest CT images and related ROIs. (A): Chest CT of mycoplasma pneumonia. Male, 27 years old, fever for 6 days,
maximum temperature 39.8 ◦C, CRP 73 mg/L, WBC 4.9 × 109/L, neutrophil 67.7%. (C): Chest CT of bacterial pneumonia
(pseudomonas aeruginosa). Female, 39 years old, fever for 5 days, maximum temperature 37.5 ◦C, CRP 12 mg/L, WBC
9.8 × 109/L, neutrophil 65.1%. (B,D): ROI delineated with ITK-SNAP.

2.4. Features Extraction

CT images and corresponding ROI images were loaded into the AK (Artificial In-
telligent Kit, GE Healthcare, Life Science, Guangzhou, China) for feature extraction. A
total of 396 features was extracted for each patients, including histogram features (42 fea-
tures), shape factor features (9 features), gray level co-occurrence matrix (GLCM) features
(154 features), grey level run-length matrix (GLRLM) features (180 features), and gray level
size zone matrix (GLZSM) features (11 features).

www.itksnap.org
www.itksnap.org
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2.5. Feature Selection and Model Construction

Univarite analysis, spearman correlation analysis and least absolute shrinkage and
selection operator (LASSO) is used for dimension reduction of radiomics features. In
univariate analysis, the features with p < 0.05 were selected. The thresholds for spearman
correlation analysis were 0.9. LASSO is the final step of dimension reduction, selecting the
most useful predictive features in training set. The radiomics model was constructed by
multivariable logistic regression with the selected features. The radscore was obtained by
coefficients and intercept item in the radiomics model. The radiomics-clinical model was
constructed by radscore and clinical risk factors (p value < 0.05 in Table 1).

Table 1. Clinical Statistics of patients between MP and BP.

Characteristic MP BP p

Age, mean ± years 29.68 ± 9.22 43.08 ± 15.94 <0.001 *
Gender, No 0.165

Male 34 (56.67%) 17 (42.50%)
Female 26 (43.33%) 23 (57.50%)

Temperature <0.001 *
Grade 1 7 (11.67%) 17 (42.50%)
Grade 2 20 (33.33%) 16 (40.00%)
Grade 3 33 (55.00%) 7 (17.50%)

C-RP (mg/L) 64.38 ± 49.54 46.89 ± 37.51 0.061
WBC (109/L) 7.69 ± 2.49 8.56 ± 3.10 0.126

Neutrophil (%) 83.06 ± 84.10 65.02 ± 18.62 0.186
Abbreviations: MP, Mycoplasma pneumonia; BP, Bacterial pneumonia; C-RP, C-reactive protein; WBC, White
blood cell count; Grade 1, Low thermal (37.1–38.0 ◦C); Grade 2, Moderate heat (38.1–39.0 ◦C); Grade 3, High fever
(39.1–41.0 ◦C). * p value < 0.05.

2.6. Model Evaluation

We evaluated the ability of the radiomics feature for differentiation of mycoplasma
pneumonia and bacterial pneumonia in the train and test set by the receiver operating
characteristic curve (ROC), the area under the curve (AUC) of ROC, sensitivity, specificity,
and accuracy.

2.7. Nomogram and Decision Curve

A nomogram was constructed based on the radiomics-clinical model. Calibration
curves were drawn to evaluate the calibration of the radiomics nomogram. Decision curve
analysis was performed to determine the clinical benefit at different threshold probabilities
in the validation dataset.

2.8. Statistical Analysis

All statistical analyses for the present study were performed with R (version 3.5.1;
www.rproject.org, accessed on 13 February 2020) and Python (version 3.5.6; www.python.
org, accessed on 13 February 2020). Chi-square test or Fisher’s exact test was used for the
nominal variable. Kruskal-Wallis H-test was used for ordinal variable, and t-test was used
for continuous variable. The LASSO algorithm is performed using the “glmmet” package
in R software. The “rms” package was used to construct the nomogram and corresponding
calibration curve. The “rmda” package was used to construct decision curve. ROC analysis
was performed using the “pROC” package. A two-tailed p-value < 0.05 indicated statistical
significance.

www.rproject.org
www.rproject.org
www.python.org
www.python.org
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3. Results
3.1. Clinical Characteristic

In the study of 100 patients, clinical data were statistically examined. The results are
shown in Table 1, which shows that there were significant differences in age and body
temperature between mycoplasma pneumonia and bacterial pneumonia, but no significant
differences in gender, c-reactive protein, white blood cell count, and neutrophils count.

3.2. Feature Selection and Radiomics Signature Building

A total of 396 radiomics features were extracted from the images, and 10 features
were selected by univarite analysis, spearman correlation analysis, and LASSO (Figure 2).
Figure 3 shows the image score of each patient in the test set.
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Figure 2. (A): Texture feature selection in the LASSO model, displaying the different super parameters (lambda value) that
correspond to the diagnostic biases of the different models. The vertical dashed line on the left represents the minimum
deviation of log (lambda) at the optimal lambda value, and the dashed line on the right represents the optimal logarithmic
value of lambda. The number at the top of the picture is the feature number. (B): The variation of LASSO coefficients for
different texture parameters as the super parameter (lambda value) changes.

Radscore is the sum of the features constructed by the model multiplied by the cor-
responding coefficients, and the formula is “Radscore = intercept +∑βi × Xi”. In this
study, Radscore = 0.487 − 1.17 × stdDeviation + 0.74 × Correlation_angle90_offset1 +
2.26 × GLCMEntropy_angle90_offset4 − 1.54 × Inertia_angle0_offset1 − 1.20 × InverseD-
ifferenceMoment_angle45_offset7 + 1.14 × sumEntropy - 1.29 × sumVariance + 1.87 ×
ShortRunEmphasis_AllDirection_offset7 − 2.70 × ShortRunEmphasis_angle45_offset7 +
2.16 × ShortRunHighGreylevelEmphsaia_angle90_offset7 (Table 2).

3.3. Model Evaluation

The ROC curves of the radiomics model and radiomics-clinical model, the diagnostic
efficiency of the radiomics model and radiomics-clinical model in train and test set are
shown in Table 3.
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Figure 3. Radscores for each patient are displayed. The horizontal axis represents the serial number
of the test set data. Color: pink bar on behalf of bacterial pneumonia; blue bar represents mycoplasma
pneumonia. The vertical axis is the radscore value after calibration, namely the original radscore
+0.819. Radscore = −0.819 was the generalized cutoff point, if the radscore is higher than the cut-
off value, the model would be classified one case into bacterial pneumonia set, otherwise, into
mycoplasma pneumonia set.

Table 2. Ten valuable features selected after LASSO.

Radiomics Features Estimate Value

stdDeviation −0.758 −1.17
Correlation_angle90_offset1 0.701 0.74

GLCMEntropy_angle90_offset4 1.154 2.26
Inertia_angle0_offset1 −0.951 −1.54

InverseDifferenceMoment_angle45_offset7 −1.074 −1.20
sumEntropy 1.408 1.14
sumVariance −1.049 −1.29

ShortRunEmphasis_AllDirection_offset7 2.619 1.87
ShortRunEmphasis_angle45_offset7 −3.371 −2.70

ShortRunHighGreylevelEmphsaia_angle90_offset7 1.219 2.16

Table 3. Diagnostic efficiency of the radiomics model and radiomics-clinical model in the train and
test set.

Information
Radiomics Model Radiomics-Clinical Model

Train Test Train Test

AUC 0.877 0.810 0.905 0.847
Sensitivity 0.762 0.667 0.976 0.889
Specificity 0.821 0.750 0.714 0.667
Accuracy 78.6% 70.0% 87.1% 80.0%
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3.4. Nomogram and Decision Curve

A nomogram was established based on the radiomics-clinical (Figure 4), and the
corresponding calibration curve is displayed in Figure 5, which showed the consistency
between the predicted classification and actual classification.
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3.5. Clinical Application

The decision curve analysis for the radiomics and radiomics-clinical model is shown
in Figure 6. The decision curve shows that radiomics-clinical model gains more clinical
benefit over the most threshold range compared to the radiomics model.
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4. Discussion

In this study, we used chest CT based radiomics to distinguish mycoplasma pneu-
monia from bacterial pneumonia. To develop radiological features, univarite analysis,
spearman correlation analysis, and LASSO logistic regression model was used to reduce
the 396 candidate features to 10 potentially highly correlated features. This method is not
only superior to the selection method of univariate correlation intensity predictors and
results, but can also incorporate selected features into radiological features [12]. More
importantly, we found radiomics to be a good differentiator. The sensitivity and specificity
of the train set and the test set were 0.762, 0.667, and 0.821, 0.750, AUC was 0.877, and 0.810,
and the accuracy rates was 78.6% and 70.0%, respectively. The results of the train set and
test set of the comprehensive radiomics model were also relatively satisfactory. Therefore,
the radiomics model has the ability to distinguish mycoplasma pneumonia from bacterial
pneumonia based on selected features.

Chest CT findings were similar when mycoplasma pneumonia involved alveoli and
bacterial pneumonia involved interstitium [13]. The mycoplasma pneumonia lesions
generally start from the bronchial mucosal epithelium and appear as edema and thickening
of the bronchial wall, with further accumulation of inflammatory cells, which can further
develop to the surrounding bronchovascular area and turn into bronchitis and peripheral
interstitial inflammation [14,15]. On the HRCT, the central interstitium and bronchial
tube wall thickened, and blurred edges and ground glass density foci were observed [16].
The inflammatory lesions continue to develop distally and can continue to be bronchitis,
which will lead to narrow bronchial cavity, the formation of intramucosal mucus plugs, the
involvement of distal alveoli, and the exudation of alveolar walls and neutrophil plasma
cells. On the HRCT, there are tree buds and acinar nodules [16,17]. If the lesion continues to
spread toward the surrounding stroma, the affected interstitial lesion appears as a ground-
glass density lesion that surrounds and penetrates between the parenchymal lesion and
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the blood vessels [14,15,18], similar to the fog around the tree, and appears as a tree fog
sign on HRCT. As far as bacterial pneumonia is concerned, the direct damage caused by
bacteria to the host and the disorder of the body’s immune response are the main factors
causing its disease [19]. Some studies have shown that bacteria activate lung epithelial
cells and produce inflammatory mediators, causing damage to lung tissue structure and
epithelial cells, causing epithelial cell vacuole degeneration and mitochondrial swelling [20].
Intracellular vacuoles collect cytoplasm distortion and cell damage, which further leads
to pulmonary endothelial cell apoptosis and alveolar exudation, which is manifested as
alveolar consolidation on HRCT [20,21]. When the lesion involves the lung interstitial, it
appears as interstitial changes on HRCT, forming peripheral interstitial inflammation.

The damage modes of the inner texture or cells of the two lesions are different, which
cannot be distinguished by the naked eye. Radiomics can extract a large amount of
information from the images with high throughput, reflecting the heterogeneity within
the lesions [22]. This study used 10 radiomics extracted features, where 1 feature belongs
to FirstOrderStatistics, 6 features belong to GrayLevelCooccurenceMatrix, and 3 features
belong to GrayLevelRunLengthMatrix. StdDeviation is a first-order statistical eigenvalue of
voxel strength, which is independent of the distribution of gray intensity in ROI. The other
9 features are higher-order radiomics features that display spatial distribution of pixels.
GrayLevelCooccurenceMatrix shows a two-dimensional histogram of pixel grayscale,
including Entropy value and the Correlation value. Entropy reflects the intensity of spatial
distribution, and the Correlation value reflects the similarity of gray level in adjacent pixels.
The higher the entropy value, the higher the lesion heterogeneity [23], indicating that the
heterogeneity of inflammatory lesions is greater. This makes it possible for radiomics
to distinguish between mycoplasma pneumonia manifesting as peripheral interstitial
inflammation and bacterial pneumonia manifesting as alveolar consolidation. In addition,
the other features all belong to the GrayLevelRunLengthMatrix texture, which mainly
reflects the roughness of texture and directivity. Directional textures will have a longer
run at a certain angle, in which the value of short run emphasis on the rougher image
is greater, the value of long run emphasis on the smoother image is greater [24], and the
lung inflammatory lesions are mainly shown as short run emphasis. The length of the
run is related to the distribution of image gray scale, and the heterogeneity of the lesions
often reflects the change of image gray scale, so the run matrix is sensitive to the change
of pulmonary inflammatory texture. Due to the different mycoplasma pneumonia and
bacterial pneumonia pathological changes, although they are visually indistinguishable
lesions, different radiomics features can be extracted, which may be the fundamental reason
why radiomics can distinguish mycoplasma pneumonia from bacterial pneumonia.

In this study, we collected demographic clinical symptoms, laboratory tests and
other relevant factors that may be related to the identification. Statistical analysis was
performed for each indicator to select the valuable indicator. The results showed that
there was a significant difference in age (p < 0.001) and body temperature (p < 0.001)
between mycoplasma pneumonia and bacterial pneumonia, and no significant difference
in gender (p = 0.165), c-reactive protein (p = 0.061), white blood cell count (p = 0.126), and
neutrophils count (p = 0.186). Related studies show that adult mycoplasma pneumonia is
more common in young adults, and the results of this study are consistent with the main
mycoplasma pneumonia for high fever, bacterial pneumonia for low and moderate heat.
Age, temperature index and image score were included in logistic regression analysis to
construct a comprehensive model of radiomics and clinical characteristics risk factors to
increase the ability of the decision support model [6]. We integrated the radscores and
clinical predictive factors to obtain a better comprehensive radiomics model. The sensitivity
and specificity of the train set and the test set were 0.976, 0.714 and 0.889, 0.667, the AUC
was 0.905, 0.847, and the accuracy was 87.1% and 80.0%. It can be seen that the performance
of the integrated radiomics prediction model is significantly better than that of the simple
radiomics label, and has some improvements in AUC and sensitivity.
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This study has some limitations. First, the nomogram is based on a retrospective
analysis, and a prospective study needs to be designed for evaluation and validation.
Second, there is also a lack of external validation of the model, and multi-center validation
with a larger sample size is needed to obtain high-level evidence for clinical application.
We did not classify bacterial pneumonia and further research on the impact of different
pneumonia subtypes is necessary. Third, two-dimensional manual segmentation method is
adopted to delineate ROI. This method has high accuracy but large individual differences,
high time consumption, and low efficiency. Last, radiomics is a discipline that has emerged
in recent years. Its research on lung inflammation is still in its infancy. The biological
interpretation of the characteristics of radiomics feature need to be explored further in
subsequent studies.

In conclusion, this study proposes a radiomics nomogram that combines the character-
istics of radiology and clinical risk factors, which can be easily used to identify mycoplasma
pneumonia and bacterial pneumonia, so as to provide a basis for early clinical and accurate
treatment.
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Abbreviation

CAP Community-acquired pneumonia
HRCT High-resolution computed tomography
ROI Region of interest
LASSO Least absolute shrinkage and selection operator
AUC Area under the curve
GLCM Gray level co-occurrence matrix
GLRLM Gray level run-length matrix
GLZSM Gray level size zone matrix
MP Mycoplasma pneumonia
BP Bacterial pneumonia
C-RP C-reactive protein
WBC White blood cell count
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