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Abstract

Background: Multicellular organisms are characterized by a remarkable diversity of morphologically distinct and
functionally specialized cell types. Transgenic techniques for the manipulation of gene expression in specific cellular
populations are highly useful for elucidating the development and function of these cellular populations. Given
notable similarities in developmental gene expression between pancreatic b-cells and serotonergic neurons, we
examined the pattern of Cre-mediated recombination in the nervous system of a widely used mouse line, Pdx1-cre
(formal designation, Tg(Ipf1-cre)89.1Dam), in which the expression of Cre recombinase is driven by regulatory
elements upstream of the pdx1 (pancreatic-duodenal homeobox 1) gene.

Methods: Single (hemizygous) transgenic mice of the pdx1-creCre/0 genotype were bred to single (hemizygous)
transgenic reporter mice (Z/EG and rosa26R lines). Recombination pattern was examined in offspring using whole-
mount and sectioned histological preparations at e9.5, e10.5, e11.5, e16.5 and adult developmental stages.

Results: In addition to the previously reported pancreatic recombination, recombination in the developing nervous
system and inner ear formation was observed. In the central nervous system, we observed a highly specific pattern
of recombination in neuronal progenitors in the ventral brainstem and diencephalon. In the rostral brainstem (r1-
r2), recombination occurred in newborn serotonergic neurons. In the caudal brainstem, recombination occurred in
non-serotonergic cells. In the adult, this resulted in reporter expression in the vast majority of forebrain-projecting
serotonergic neurons (located in the dorsal and median raphe nuclei) but in none of the spinal cord-projecting
serotonergic neurons of the caudal raphe nuclei. In the adult caudal brainstem, reporter expression was
widespread in the inferior olive nucleus. In the adult hypothalamus, recombination was observed in the arcuate
nucleus and dorsomedial hypothalamus. Recombination was not observed in any other region of the central
nervous system. Neuronal expression of endogenous pdx1 was not observed.

Conclusions: The Pdx1-cre mouse line, and the regulatory elements contained in the corresponding transgene,
could be a valuable tool for targeted genetic manipulation of developing forebrain-projecting serotonergic
neurons and several other unique neuronal sub-populations. These results suggest that investigators employing
this mouse line for studies of pancreatic function should consider the possible contributions of central nervous
system effects towards resulting phenotypes.

Background
The development of methods for the experimental
manipulation of gene expression in vivo has revolutio-
nized the study of biology. Transgenes which drive
expression of recombinases within specific cell types

and/or at specific developmental time points are
valuable tools for understanding the development and
physiology of organ systems in vivo [1]. One such sys-
tem, the mammalian brain, is a remarkably complex and
heterogeneous structure comprised of many highly spe-
cialized and often rare cell types. Serotonergic neurons,
which comprise a tiny fraction of all neurons in the
mammalian brain, play an important and unique role in
many physiological functions, including the regulation
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of affect in humans [2]. These neurons are themselves
anatomically and functionally diverse, although the
molecular, developmental and physiological basis for
this diversity is not completely understood [2,3].
Recently, the advent of transgenic methods to express
recombinases in all or subsets of serotonergic neurons
has provided new insights into the diverse origins and
functions of these neurons [4-6].
Serotonergic neurons and pancreatic insulin-produ-

cing b-cells exhibit a remarkably similar and specific
cascade of transcription factor expression during devel-
opment, involving the expression of nkx2.2, lmx1b, and
nkx6.1 [7,8]. In the pancreas, pdx1, a homeodomain
transcription factor, plays a critical role in specifying the
fate of the early pancreatic primordium and, later in
development, is required for successful b-cell develop-
ment [9]. We hypothesized that regulatory elements
which control pdx1 expression might be active in the
developing brain and might be applied to genetically tar-
get serotonergic neurons and/or other neuronal cell
types. We therefore examined the developmental pattern
of Cre-mediated recombination in the nervous system
using a widely used mouse line, Pdx1-cre (formal desig-
nation, Tg(Ipf1-cre)89.1Dam) [10-12]. This mouse line
has been employed in at least 30 published studies, as it
exhibits robust recombination in the developing endo-
crine pancreas [13-19,10,20-41]. Using two Cre reporter
lines, Z/EG (Tg(CAG-Bgeo/GFP)21Lbe) and rosa26R
(Gt(ROSA)26Sortm1Sor) [42,43,12], we found that that
Pdx1-cre also exhibits developmental recombination in
the inner ear; in rostral serotonergic neurons; in the
hypothalamus; and in non-serotonergic neurons of the
caudal hindbrain.

Materials and methods
Mice
Strain information is summarized in Table 1. Pdx1-cre
and Z/EG mouse lines were maintained as independent
colonies of hemizygous transgenic mice; the rosa26R
mouse line was maintained as homozygous mutant
mice. Strain background was mixed for all lines. Pdx1-
cre mice were kindly provided by D. Melton; Z/EG and
rosa26R mice were obtained from Jackson Labs. To gen-
erate experimental animals, transgenic hemizygous mice
from the Pdx1-cre line (genotype pdx1-creCre/0) were
bred with hemizygous transgenic mice from the Z/EG
line (ZegGFP/0) or homozygous transgenic mice from the
rosa26R line (rosa26LacZ/LacZ). Offspring genotypes were
obtained in accord with expected Mendelian ratios. Off-
spring of the following genotypes were used for analysis:
pdx1-creCre/0; ZegGFP/0 (experimental), pdx1-cre0/0;
ZegGFP/0 (control); pdx1-creCre/0; rosa26LacZ/+ (experi-
mental) and pdx1-cre0/0; rosa26LacZ/+ (control). Mice
were housed on a 12-hr light-dark cycle in a controlled

climate and were fed ad lib with Purina LabDiet 5053
mouse chow. All studies involving mice were approved
by the UCSF Institutional Animal Care and Use
Committee.

Genotyping
Ear punches or embryonic tails were digested in strip
tubes with 0.05 U proteinase K (03115887001, Roche) in
50 μL of DirectPCR Lysis Reagent (402-E, Viagen Bio-
tech) diluted with 50 μL water. 5 μL PCRs were per-
formed using SYBR GreenER PCR mix (Invitrogen),
primers (concentration depends on the assay, generally
200 nM) and 0.15 μL of heat-inactivated genomic DNA
solution. Thermal cycling was performed on an ABI
7300 instrument with SYBR detection as follows: 95°C
for 10 min; 95°C for 15 s followed by 60°C for 1 min
(40 cycles); 95°C for 15 s; 60°C for 15 s; followed by a
melting curve step with a 2% ramp rate from 60°C to
95°C. Allele-specific PCR products were identified using
melting curve analysis as described in Results and Figure
1. Primer sequences and concentrations for assays are
provided in Table 2.

Dissection and histology
4 mice or embryos were analyzed for each genotype and
developmental stage. Timed matings were carried out
with embryonic day 0.5 considered to be midday of the
day of discovery of a vaginal plug. For whole-mount
preparations, e10.5 embryos were dissected and briefly
fixed in 4% para-formaldehyde in phosphate-buffered
saline (PBS), then incubated overnight at 37°C in
b-galactosidase (LacZ) staining media (10 mM Tris-HCl
pH 7.4, 5 mM K4FeCN6, 5 mM K3FeCN6, 2 mM MgCl2
and 0.8 mg/ml X-gal (Invitrogen)). For embryonic sam-
ples, embryos were dissected at the appropriate stage
and immediately embedded and frozen without fixation
in Optimal Cutting Temperature media (Tissue-Tek).
Embedded embryos were sectioned (transverse, 20 μm)
on a cryostat. For adult samples, mice were deeply
anesthetized and then perfused with phosphate-buffered
saline (PBS) followed by 4% para-formaldehyde in PBS;
brains were removed, cryoprotected in 30% sucrose in
PBS and sectioned (50 μm, saggital) on a freezing
microtome. Immunostaining was performed on-slide for
embryonic samples and free-floating for adult tissues.
Sections were incubated in blocking solution (4% goat
serum, 2% BSA and 0.1% Triton-X-100 in PBS) for 1 h;
incubated with primary antibody diluted in blocking
solution for 18 h at 4°C; washed in PBS; incubated for 2
h with appropriate secondary anti-IgG antibodies conju-
gated to Alexa 488 or Alexa 594 dyes; and washed and
mounted in Vectashield media (Vector Laboratories).
Tyramide signal amplification (TSA) reagents (Invitro-
gen) were used as per manufacturer’s instructions. For
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b-galactosidase staining of sections, sections were incu-
bated overnight in staining media as described above.
Slides were imaged using a confocal, upright epifluores-
cence or brightfield dissection microscope. Red and
green fluorescence spectra were captured separately and
appropriate control experiments were performed to con-
firm specificity and lack of cross-reactivity in labeling.

Antibodies
The following primary antibodies and dilutions were
used: chicken a-GFP, 1:1000 (Aves Labs); rabbit a-sero-
tonin, 1:6000 (Immunostar); mouse a-TPH (tryptophan
hydroxylase), 1:200 (Sigma); mouse a-Nkx2.2 (Develop-
mental Studies Hybridoma Bank, clone 74.5A5); mouse
a-Mash1, 1:100 (BD Transduction); rabbit a-Pdx1 (gen-
erated in lab??), 1:1000; and mouse a-Isl1, 1:50 (Devel-
opmental Studies Hybridoma Bank, clone 40.206).

Results and discussion
As the efficiency of Cre-mediated recombination is not
necessarily identical across different target loci, we
intercrossed Pdx1-cre transgenic mice with mice from
two distinct Cre reporter lines. The transgenes and gen-
otypes analyzed are summarized in Table 1 and in the
Methods. In brief, the reporter lines function as follows:
the Z/EG line carries a single-copy transgene containing
a strong and ubiquitous recombinant promoter, fol-
lowed by a b-galactosidase and transcriptional stop cas-
sette flanked by loxP sites, followed by a GFP cassette
[42]. In Cre-negative cells, b-galactosidase only is
expressed; in Cre-expressing lineages, the b-galactosi-
dase cassette is excised, permitting expression of GFP.
The Rosa26R mouse line harbors a transgene inserted
by targeted mutagenesis into the ubiquitously expressed
rosa26 locus; this transgene consists of a loxP-flanked

stop cassette followed by a b-galactosidase cassette [43].
In Cre-negative cells, no reporter b-galactosidase trans-
gene is expressed; in Cre-expressing lineages, the
stop cassette is excised, permitting expression of
b-galactosidase.
Standard polymerase chain reaction (PCR) genotyping

protocols for the mouse lines used have been described
previously [10,42,43]. We adapted previously published
methods for single nucleotide polymorphism detection
[44-50] to develop a gel-free genotyping method based
on multiplex PCR and discrimination of allele-specific
products using SYBR-Green-detected melting curve ana-
lysis. Small-product multiplex PCR reactions are per-
formed using an optical cycler with the inclusion of
SYBR Green dye, which fluoresces in the presence of
double-stranded DNA. At the end of the amplification
reaction, PCR products corresponding to specific alleles
are detected by progressively heating the reaction and
plotting the derivative of SYBR fluorescence; annealing
and melting of a specific product generates a peak at a
specific melting temperature. The PCR reaction well is
never opened and no gels are required. Melting curve
peaks (position and shape) can be manipulated using
simple, inexpensive primer modification [45], such that
this approach can readily address most PCR based, mul-
tiplex genotyping applications. This method confers sig-
nificant advantages over existing methods, including
higher throughput, uniform and robust PCR conditions,
low cost and reduction of post-PCR contamination.
Representative data, from an assay used to genotype
mice of the Pdx1-cre line, is provided in Figure 1.
Detailed instructions for assay design and implementa-
tion are available upon request (also see [45,44,46-50]).
Primer sequences and reaction conditions are provided
in Table 2.

Table 1 Transgenic mouse lines and relevant genotypes employed

Formal
designation

Common
designation

Transgene design Trans-gene
insertion

Purpose WT
allele

Trans-
genic
allele

Geno-
types
analyzed

Initial
reference

MGI ID

Tg(Ipf1-cre)
89.1Dam

Pdx1-cre 5.5-kb portion of the
mouse pdx1 promoter
fused to cre cassette

Random insertion
(pro-nuclear
injection

Expression of Cre is
driven by regulatory
elements which regulate
pdx1 expression

0 Cre Cre/0
(hemi-
zygote);
0/0 (wild-
type
control)

Develop-
ment
2002, 129
(10):2447-
2457

2684317

Tg(CAG-
Bgeo/GFP)
21Lbe

Z/EG Ubiquitous
recombinant promoter,
followed by LoxP-
flanked LacZ cassette,
followed by GFP
cassette

Random insertion
with screening for
high expression in
ES cells (ES cell
electro-poration)

When cre is expressed in
a cell, LacZ cassette is
excised, leading to GFP
expression in that cell
and all daughter cells

0 GFP GFP/0
(hemi-
zygote)

Genesis
2000, 28
(3-4):147-
155

3046177

Gt(ROSA)26
Sortm1Sor

Rosa26R LoxP-flanked stop
cassette followed by
LacZ cassette

Targeted to the
ubiquitously
expressing Gt
(ROSA)26Sor locus

When cre is expressed in
a cell, stop cassette is
excised, leading to LacZ
expression in that cell
and all daughter cells

+ LacZ LacZ/+
(hetero-
zygote)

Nature
Genetics
1999, 21
(1):70-71

1861932
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Under our experimental conditions, reporter expres-
sion of GFP (Z/EG line) or LacZ (rosa26R line) provided
a specific marker of Cre-mediated recombination. No
reporter expression was evident in pdx1-cre0/0; ZegGFP/0

and pdx1-cre0/0; rosa26LacZ/+ littermate control tissues
(Figures 2C; 3A; 4A; C; E; G). GFP and LacZ expression
patterns described below were observed in pdx1-creCre/0;
ZegGFP/0 and pdx1-creCre/0; rosa26LacZ/+ mice or
embryos. For each genotype and time point, comparable
patterns of GFP or LacZ expression were observed in all
analyzed animals (n = 4).
Recombination was first detected at e10.5 in the pan-

creas (Figure 2A), as reported [10], and in the inner ear
formation (patchy expression in the developing anterior

and posterior semicircular canal region with enriched
expression in two anterior and posterior medial domains)
(Figures 2A &2B). The earliest recombination in the cen-
tral nervous system was observed at e11.5, in the hind-
brain (Figure 3) and in the diencephalon (Figure 5).
In the e11.5 hindbrain, GFP expression was observed

to spatiotemporally coincide with serotonergic neuro-
genesis. In rhombomeres 1 (r1) and 2 (r2), GFP was
observed exclusively within a ventral zone where seroto-
nin neurons are first observed in the developing brain
[8] (Figures 3B, C, D). In r1 and r2, most GFP+ cells
were newborn serotonergic neurons, as identified by ser-
otonin (5-HT) immunoreactivity, although a small min-
ority of GFP-labeled cells appeared to be 5-HT- and

Figure 1 Transgenic mouse genotyping using multiplex allele-specific PCR and melting curve analysis. PCR was performed in an optical
cycler (ABI 7300) using 1-10 ng genomic DNA from mice of the indicated genotypes and a reagent mix containing SYBR GreenER. Amplification
plots (A, C) and melting curves (B, D) are shown. Primers were designed to amplify 2 specific products: a genomic control product, generated
from any genomic mouse template; and a transgene-specific product, generated only from genomic templates containing a cre transgene.
Normalized fluorescence (y-axis, A &C) is the baseline-subtracted ratio of SYBR signal to ROX (passive reference dye) signal during amplification
cycling (A, C). Normalized fluorescence derivative (y-axis, B & D) is the 2nd derivative of normalized fluorescence during the melting curve step.
Dotted lines (A, C) indicate cycle threshold. A & B. Genomic DNA from a wild-type mouse; note robust amplification of the genomic control
product with a single melting peak (allowing the distinction of a negative result from a failed PCR). C & D. Genomic DNA from a pdx1-creCre/0

mouse; note robust amplification with 2 distinct melting peaks corresponding to the control and cre-specific products. Arrows indicate presence
of the genomic control product (Control) and the transgene-specific product (Cre).
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Table 2 Primer sequences and reaction conditions for gel-free genotyping assays

Assay
name

Target locus Primer
1

Conc.
(nM)

Primer
2

Conc.
(nM)

Primer
3

Conc.
(nM)

Primer
4

Conc.
(nM)

Expected results

Z/EG Any transgene
generated using the
pCAGG construct (e.g.,
Z/EG line)

TCGA
TGCA
GGAT
AACTT
CGT

400 GGT
ACC
GTC
GACT
GCA
GAAT

400 AGC
AGC
AGG
CAG
GGC
TTT

50 GTCT
GGA
CAC
GGG
AGC
ACTT

50 Primers 3 & 4 generate a single peak in all
samples (control product, gdf); primers 1 &
2 generate an additional, lower Tm peak
(transgene-specific product) in ZegGFP/0 or
ZegGFP/GFP samples.

Cre Any transgene
containing cre (e.g.,
Pdx1-cre line)

ACATT
TGGG
CCAG
CTAAA
CAT

200 CGG
CATC
AAC
GTTT
TCTT
TT

200 GGC
GAG
AGC
AGA
GTGT
GGA
T

200 AAGT
CGG
CAG
GCA
CAG
GAG

200 Primers 3 & 4 generate a single peak in all
samples (control product, k17); primers 1 &
2 generate an additional, higher Tm peak
(transgene-specific product) in any sample
with a cre transgene.

PdxCre cre fused to 5’
regulatory region of
pdx1 gene (Pdx1-cre
line)

TAAG
GCCT
GGCT
TGTA
GCTC

200 ACC
GGT
AATG
CAG
GCA
AAT

200 AGC
AGC
AGG
CAG
GGC
TTT

30 GTCT
GGA
CAC
GGG
AGC
ACTT

30 Primers 3 & 4 generate a single peak in all
samples (control product); primers 1 & 2
generate an additional, lower Tm peak
(transgene-specific product) in pdx1-creCre/
0 or pdx1-creCre/Cre samples.

Rosa26 Any rosa26 allele
targeted using a
standard targeting
allele (e.g., Rosa26R
line)

GCGC
GCGC
GCGT
GATC
TGCA
ACTC
CAGT
CTTTC

200 GCG
CGC
GCG
CGC
GCG
CGC
GCC
ACAC
CAG
GTTA
GCC
TTTA
AGC

200 GAC
AGG
ATAA
GTAT
GAC
ATCA
TCAA
GG

200 Primers 1 & 2 generate a single peak in
samples containing the wild-type rosa26
allele; primers 2 & 3 generate a lower Tm
peak (transgene-specific product) in
samples containing a targeted allele; both
peaks are observed in heterozygote
samples.

Figure 2 Cre-mediated recombination in the pancreatic primordium and inner ear in the e10.5 embryo. Whole-mount images of a pdx1-
creCre/0; rosa26LacZ/+ embryo (A & B) and a pdx1-cre0/0; rosa26LacZ/+ embryo (C) processed for b-galactosidase activity. b-galactosidase activity was
observed in the pancreatic primordium (bottom arrow, left panel) and inner ear formation (top arrow, A; region in higher magnification in B).
b-galactosidase activity was not evident in pdx1-cre0/0; rosa26LacZ/+ control embryos (C). Scale bars, 1 mm (A and C) and 150 μm (B).
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some 5-HT+ cells were GFP-, suggesting that recombi-
nation in this cell lineage was mosaic at this time point
(Figures 3B, C, E). GFP expression was observed adja-
cent to but not in the Nkx2.2+ progenitor zone (Figure
3D), suggesting that Cre is first expressed as serotoner-
gic cells differentiate and migrate out of this progenitor
zone. In rhombomere 4 (r4), serotonergic neurons are
not generated[8], although 5-HT+ fibers can be detected

(distinguished from cell bodies by morphology, anatomi-
cal location and lack of DAPI staining); in r4, GFP
expression was observed in most 5-HT+ fibers and rare
5-HT- cell bodies (Figure 3E). In the caudal hindbrain,
serotonin and reporter immunoreactivity was always
observed in the same sections, but rarely within the
same cells; cellular GFP immunoreactivity was observed
immediately dorsal to most 5-HT+ neurons (Figure 3F).

Figure 3 Cre-mediated recombination coincides with serotonergic neurogenesis in the e11.5 embryo. Epifluorescence images of the e11.5
developing hindbrain of embryos, transversely sectioned, immunostained for GFP (green) and 5-HT or Nkx2.2 (red). In pdx1-creCre/0; ZegGFP/0

embryos, GFP was always expressed in or adjacent to newborn serotonergic neurons. Both serotonergic and non-serotonergic neurons expressed
GFP in the rostral hindbrain (B, C, D) (rhombomere 1, r1; rhombomere 2, r2) and caudal hindbrain (ch) (F). The degree of co-expression of GFP and
the serotonergic phenotype was greatest in the rostral hindbrain, with little overlap in the caudal hindbrain and sparse GFP expression in
rhombomere 4 (r4) (E). GFP was not expressed in the Nkx2.2+ progenitor zone (D). GFP expression was not evident in sections from a pdx1-cre0/0;
ZegGFP/0 embryo (A). Scale bars, 100 μm.
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Figure 4 Cre-mediated recombination in the hindbrain and diencephalon in the e16.5 embryo. Epifluorescence images from pdx1-creCre/0;
ZegGFP/0 (B, D, F, H) and pdx1-cre0/0; ZegGFP/0 (A, C, E, G) e16.5 embryos, transversely sectioned, immunostained for GFP (green) and 5-HT (red).
GFP was expressed in the dorsal raphe nucleus (dr) (B), caudal linear raphe (clr) (D), caudal hindbrain (ch) (F) and hypothalamus (hp) (H). In the
rostral hindbrain, GFP expression occurred in the serotonergic dorsal raphe and caudal linear nuclei (B, D). In the caudal hindbrain, GFP
expression was observed in the non-serotonergic inferior olive nucleus, adjacent to serotonergic raphe nuclei (F). GFP expression was not
evident in sections from pdx1-cre0/0; ZegGFP/0 control embryos (A, C, E, G). Scale bars, 100 μm.
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In general, we observed a rostral-caudal gradient of
overlap between GFP expression and the serotonergic
phenotype in the hindbrain.
The recombination pattern observed in the e11.5

hindbrain predicted the pattern we observed at later
stages of development. At e16.5, reporter expression in
the rostral hindbrain was restricted to the rostral raphe
nuclei, particularly the dorsal raphe nucleus (Figure 4B)
and caudal linear raphe nucleus (Figure 4D). In the cau-
dal hindbrain, reporter expression was observed in the
non-serotonergic inferior olive nucleus but not in adja-
cent serotonergic neurons (Figure 4F). In adult tissues,
confocal microscopy was employed for analysis of hind-
brain sections in order to more rigorously analyze the
co-expression of GFP and the serotonergic phenotype.
In the dorsal raphe nucleus, which is generated in r1,
the most rostral portion of the developing hindbrain
[4], the large majority of serotonergic neurons (identi-
fied by immunoreactivity for tryptophan hydroxylase, or
TPH) expressed GFP, and all GFP-positive cells were
serotonergic (Figures 6B, B’, B’’). In the median raphe
nucleus, which is generated in r1, r2 and r3 [4], there
was partial overlap between GFP and 5-HT expression
(Figures 6C, C’, C’’). In the caudal hindbrain, 5-HT and
GFP expression were completely non-overlapping,
although occurring in the same sections; recombination

was restricted to the inferior olive nucleus (Figures 6D,
D’, D’’, E). Interestingly, the inferior olive can be simi-
larly labeled using a Cre line in which the cre was intro-
duced into the locus for ptf1a, a transcription factor
which interacts with pdx1 during early pancreatic devel-
opment [51,52]. Given the anatomical localization of
GFP+ 5-HT+ cells in the adult, it is likely that a vast
majority of forebrain-projecting serotonergic neurons,
and virtually no spinal-cord-projecting serotonergic neu-
rons, exhibit Cre-mediated recombination in the Pdx1-
cre line[2]. These data provide further evidence that
caudal and rostral serotonergic neurons, though gener-
ated through highly similar developmental processes [8],
exhibit distinct patterns of gene expression regulation
[3]. This Pdx1-cre mouse line may be a useful resource
for investigators interested in manipulating gene expres-
sion in serotonergic neurons projecting to the forebrain
but not to the brainstem and spinal cord.
In the e11.5 diencephalon, recombination occurred, as

in the hindbrain, in a restricted ventral zone of the
neural tube, adjacent to neurogenic zones (here identi-
fied by Isl1 and Mash1 expression) (Figure 5). This
developmental pattern resulted in GFP and LacZ expres-
sion in specific, anatomically defined nuclei of the
hypothalamus, as could be observed at e16.5
(Figure 4H) and especially in adult sections. In the adult

Figure 5 Cre-mediated recombination in the ventral diencephalon in the e11.5 embryo. Epifluorescence images of the e11.5 diencephalon
of pdx1-creCre/0; ZegGFP/0 embryos, transversely sectioned, immunostained for GFP (green) and Isl1 (A) or Mash1 (B) (red). GFP was not expressed
at the ventral surface near the floor plate adjacent to the Isl1+ Mash1+ neurogenic zone. Scale bars, 100 μm.
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Figure 6 Cre-mediated recombination in forebrain-projecting serotonergic neurons, inferior olive neurons and hypothalamic neurons
in the adult brain. A-D: Individual optical sections obtained using confocal imaging of saggital sections from adult pdx1-creCre/0; ZegGFP/0 mice.
A: Wide-field image of the serotonergic dorsal raphe nucleus (dr) demonstrating extensive and anatomically restricted expression of TPH and
GFP in this structure. B: Higher-magnification image of the dorsal raphe nucleus: a large majority of TPH+ neurons express GFP and that all GFP+

cells in this region are serotonergic neurons. C: In the median raphe nucleus (mr), there was partial overlap between GFP and TPH expression.
D: In the caudal hindbrain, GFP expression was observed in the inferior olive nucleus (io), adjacent to but not overlapping with serotonergic
raphe nuclei. E-F: Brightfield images of saggital sections obtained from adult pdx1-creCre/0; rosa26LacZ/+ mice, processed for LacZ activity. E: The
inferior olive nucleus was labeled with LacZ. F: Multiple nuclei of the hypothalamus, notably the dorsomedial, lateral and arcuate nuclei, were
labeled with LacZ. Scale bars: 80 μm (A); 60 μm (B, C, D); 200 μm (E); 150 μm (F).

Honig et al. Journal of Biomedical Science 2010, 17:82
http://www.jbiomedsci.com/content/17/1/82

Page 9 of 13



hypothalamus, reporter expression occurred in the arcu-
ate nucleus, dorsomedial nucleus and lateral hypothala-
mus (Figure 6F). These regions of the hypothalamus are
all critically involved in the in vivo regulation of meta-
bolic functions such as glucose homeostasis [53]. The
dorsomedial hypothalamic nucleus is relatively poorly
characterized at the molecular level, and to our knowl-
edge no transgenic mouse line has been reported which
exhibits specific transgene expression in this sub-region
of the hypothalamus. The possible existence of specific
pdx1 regulatory sequences directing expression in the
dorsomedial hypothalamic nucleus could be used to
generate such transgenic mouse lines for the study of
this important hypothalamic cell population. Interest-
ingly, many hypothalamic neurons share specialized
physiological attributes with b-cells, such as glucose sen-
sing[54], and Cre transgenes generated using the insulin
and ptf1a promoters produce recombination in the
hypothalamus [51,55].
Widespread expression of endogenous pdx1 in the rat

brain has been reported [56,57]. Our results suggested a
more restricted pattern of endogenous pdx1 expression
might occur in the mouse central nervous system. We
therefore attempted to detect expression in the mouse
brain of pdx1 at various developmental stages using
immunofluorescence. We were unable to detect endo-
genous pdx1 expression at any time point, including the
earliest time point at which Cre-mediated recombination
was observed: tyramide signal amplification of Pdx1
immunoreactivity was attempted in pdx1-creCre/0;
ZegGFP/0 e11.5 r1 tissue. No detectable signal was
observed (Figure 7B), despite robust expression of GFP
(Figure 7A) and reliable detection of Pdx1 in the adult
pancreas under these conditions.
While this work was under review, two publications

reported neuronal transgene expression in a variety of
mouse lines used for the study of pancreatic develop-
ment and function [58,59]. These results are consistent
with and complementary to our results. Using the Pdx1-

cre mouse line employed in our study, Wicksteed et al
and Song et al report a similar pattern of Cre-mediated
recombination in the developing and adult hypothala-
mus and brainstem. Furthermore, Wicksteed et al
observed a similar pattern of recombination in an inde-
pendently generated mouse line in which Cre expression
is driven by a similar construct incorporating regulatory
sequences upstream of the pdx1 gene, suggesting that
the expression patterns we observe cannot be due solely
to insertion site effects. They also report a lack of galac-
tosidase activity in mice bearing a heterozygous LacZ
insertion at the pdx1 locus and a lack of amplification
of endogenous pdx1 transcript from the brain (both
consistent with our observations, herein and unpub-
lished). Taken together, their results indicate that pdx1
regulatory elements can drive highly specific neuronal
expression, but that endogenous pdx1 is not expressed
in the mouse brain, likely due to the activity of a repres-
sor element not contained in the Pdx1-cre transgene
constructs currently employed. The reported widespread
expression of endogenous pdx1 reported in the rat brain
may reflect a difference between gene regulation
between rat and mouse or methodological differences
between the rat and mouse studies [56,57].

Conclusions
We report here, using the widely used Pdx1-cre line, a
highly specific pattern of Cre-mediated recombination
in the central nervous system and inner ear. This Cre
line, and the regulatory sequences that direct Cre
expression, may be a valuable resource for investigators
seeking to manipulate gene expression in specific sub-
sets of neurons, such as forebrain-projecting serotoner-
gic neurons and neurons of the dorsomedial
hypothalamus. To our knowledge, no other Cre mouse
lines have been described to exhibit a pattern of
hypothalamic recombination comparable to that we
observed in the Pdx1-Cre line. However, the fact that
recombination was observed in several hypothalamic

Figure 7 Lack of detectable expression of endogenous pdx1 in the mouse hindbrain. Section from the r1 region of a pdx1-creCre/0; ZegGFP/0

embryo, immunostained for GFP (A) and Pdx1 (B) using TSA amplification. No detectable expression of Pdx1 was observed, despite robust
expression of GFP. Scale bars, 100 μm.
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nuclei which may have very different physiological func-
tions (such as the arcuate and dorsomedial nuclei), as
well as in the pancreas, may require further characteri-
zation of pdx1 regulatory elements in order to maximize
the utility of pdx1 regulatory elements for this purpose.
At present, several transgenic methods have been

developed which generate specific Cre-mediated recom-
bination in serotonergic neurons [4,5,60]. Two of these
methods involve the use of bacterial artificial chromo-
somes containing regulatory elements or genes
expressed in serotonergic neurons, and unlike the Pdx1-
cre line, result in recombination in the vast majority of
serotonergic neurons [60,5]. However, like the Pdx1-cre
line, these Cre transgenes may also result in recombina-
tion in other cell types, such as thalamocortical neurons
[60] and pancreatic b-cells (Ohta, German et al, in sub-
mission). A technically sophisticated method has been
described which allows for highly specific targeted
recombination in subsets of serotonergic neurons; how-
ever, this method may be impractical for some investiga-
tors due to the complexity of genetic manipulations
required [4].
It is important to note that the brain regions which

exhibit recombination in the Pdx1-cre mouse line are
well known to have important roles in in vivo metabolic
function, including glucose homeostasis [61,53]. Investi-
gators employing this line to express Cre in the develop-
ing pancreas should consider the possibility that
concomitant Cre expression in the central nervous sys-
tem may play a significant role in resulting in vivo phe-
notypes. Conversely, investigators who plan to use this
mouse line to manipulate neuronal gene expression
should consider the possible effects on pancreatic gene
expression and function. These considerations are parti-
cularly salient when analyzing behavior and physiology
in adult mice.
In conclusion, these data are consistent with the idea

that common patterns of gene expression in pancreatic
b-cells, serotonergic neurons and hypothalamic neurons
contribute to their highly specialized and, in many cases,
similar physiology.
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