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Objective: Children born very preterm are at increased risk of inattention, but it remains unclear whether
the underlying processes are the same as in their term-born peers. Drift diffusion modeling (DDM) may
better characterize the cognitive processes underlying inattention than standard reaction time (RT)
measures. This study used DDM to compare the processes related to inattentive behavior in preterm and
term-born children. Method: Performance on a cued continuous performance task was compared between
33 children born very preterm (VP; �32 weeks’ gestation) and 32 term-born peers (�37 weeks’
gestation), aged 8–11 years. Both groups included children with a wide spectrum of parent-rated
inattention (above average attention to severe inattention). Performance was defined using standard
measures (RT, RT variability and accuracy) and modeled using a DDM. A hierarchical regression
assessed the extent to which standard or DDM measures explained variance in parent-rated inattention
and whether these relationships differed between VP and term-born children. Results: There were no
group differences in performance on standard or DDM measures of task performance. Parent-rated
inattention correlated significantly with hit rate, RT variability, and drift rate (a DDM estimate of
processing efficiency) in one or both groups. Regression analysis revealed that drift rate was the best
predictor of parent-rated inattention. This relationship did not differ significantly between groups.
Conclusions: Findings suggest that less efficient information processing is a common mechanism
underlying inattention in both VP and term-born children. This study demonstrates the benefits of using
DDM to better characterize atypical cognitive processing in clinical samples.

General Scientific Summary
Less efficient information processing during a sustained attention task explained individual differences in
inattentive behavior. This was true both in 8- to 11-year-olds born very preterm and their term-born peers.
Drift diffusion modeling provides a way to help us better characterize the processes that underlie task
performance. This is valuable for understanding processing differences that affect clinical groups.
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One of the most common adverse outcomes from very preterm
(VP; �32�0 weeks’ gestation) birth is attention-deficit/hyperac-
tivity disorder (ADHD; Johnson & Marlow, 2011; Linnet et al.,
2006), a condition characterized by developmentally inappro-
priate and functionally impairing levels of inattention and/or
hyperactivity-impulsivity. Risk for ADHD in the VP population is
two to three times greater than for children born at term (Johnson
& Marlow, 2011). Notably, VP children are at significantly greater
risk for inattentive symptoms than hyperactivity/impulsivity (Ask
et al., 2018; Brogan et al., 2014), and mean symptom scores are
significantly elevated even where children do not meet the thresh-
old for diagnosis (Jaekel, Wolke, & Bartmann, 2013; Johnson et
al., 2016; Johnson & Marlow, 2011). Given evidence showing that
inattentive symptoms predict academic underachievement in both
VP (Jaekel et al., 2013) and general population samples (Sayal,
Washbrook, & Propper, 2015), and that inattention in the VP
population persists into adulthood (Ask et al., 2018; Breeman,
Jaekel, Baumann, Bartmann, & Wolke, 2016), inattention can be
characterized as a core, lifelong impairment following VP birth.
Increasing understanding of the processing deficits underlying
inattentive symptoms may improve the ability to detect impair-
ment and trial the suitability of interventions, to, ultimately, im-
prove long-term outcomes for individuals born VP.

While ADHD in the general population is by and large recog-
nized as the result of a gene-environment interaction (Faraone et
al., 2005), it is thought that the increased risk for inattention in VP
children arises as a result of aberrant neurodevelopment due to
birth at very preterm gestations (Lindström, Lindblad, & Hjern,
2011). Specifically, there is evidence of atypical structural neural
connectivity and white matter development, even in VP children
who do not show major brain injury or impairment (Ment, Hirtz, &
Hüppi, 2009), and associations have been observed between atyp-
ical white matter development and inattention in adolescents born
VP (Skranes et al., 2007). With potentially differing initial causal
factors, the mechanisms underlying inattentive symptoms in chil-
dren born very preterm may be different from those in term-born
children with ADHD. Exploring possible differences in these
underlying mechanisms would inform theories that have postu-
lated a “pure” form of inattention associated with VP birth (Hille
et al., 2001). It would also be of clinical importance, with impli-
cations as to whether interventions currently available to treat
ADHD are suitable in the VP population.

Slower and more variable response times (RTs) in speeded RT
tasks have traditionally been considered as markers of poor atten-
tion, having been shown to differentiate between children with and
without ADHD and to correlate with symptoms of inattention (e.g.,
Castellanos & Tannock, 2002; Hervey et al., 2006; Leth-Steensen,
Elbaz, & Douglas, 2000; Uebel et al., 2010; Vaurio, Simmonds, &
Mostofsky, 2009). Despite vastly increased measurement accuracy
since the introduction of software with millisecond timing, stan-
dard RT measures remain limited in scope. Individual differences
in RT may be attributable to differences in the speed of stimulus
perception, decision-making, or the motor response. As such, the
precise source of variation cannot be determined using standard
RT metrics and the reliance on these measures may fail to identify
specific cognitive processes underlying inattention. Moreover, if
interactions between the different component processes have op-
posing effects on RTs (e.g., if inattentive children process infor-
mation slowly, but make fast and impulsive decisions, while

attentive children process information quickly but make slower
decisions), the resulting RTs may mask the underlying processing
differences.

The drift diffusion model (DDM; see Figure 1 for a graphical
representation) uses intraindividual variability in RT and accuracy
across trials to isolate underlying cognitive processes. The model
assumes that the decision to make a response is a cumulative
process in which noisy sensory information is gathered in favor of
each response option, from a given starting point, until a decision
threshold is reached (Ratcliff & McKoon, 2008). While the “full”
DDM provides estimates of drift rate, boundary separation, non-
decision time, starting point, and trial-to-trial variabilities in drift
rates, nondecision time and starting point, the complexity of this
model, both in terms of the structure of input data required and
parameter fitting, reduces its applicability to many data sets, in-
cluding that in the current study. A simplified version of the model
(the EZ-DDM) has been developed that provides estimation of the
most cognitively relevant of these parameters: drift rate, boundary
separation, and nondecision time (Wagenmakers, van der Maas, &
Grasman, 2007). Drift rate reflects the rate of information process-
ing over time, referred to as information processing efficiency, as
demonstrated by studies reporting lower drift rates in more diffi-
cult tasks compared with simpler tasks (Ratcliff & McKoon,
2008). Boundary separation reflects the speed–accuracy trade-off,
or impulsivity, of the participant (Metin et al., 2013; Wiecki, Sofer,
& Frank, 2013). When this threshold is low, the participant makes
decisions after accumulating only a small amount of information,
meaning decisions will be fast but less accurate, reflecting impul-
sivity, and when this threshold is high, the participant requires
more information before making decisions, meaning they will be
more accurate but slower, reflecting conservatism. Nondecision
time provides a measure of the noncognitive elements of decision
making such as encoding and response processes.

Use of DDM in clinical samples has demonstrated how this
approach can alter the conclusions that would have been drawn
using standard RT and accuracy measures alone (Pirrone, Dickin-

Figure 1. The EZ drift diffusion model of decision making (Wagenmak-
ers, Van Der Maas, & Grasman, 2007) provides estimates of drift rate (v),
boundary separation (a), and nondecision time (Ter). See the online article
for the color version of this figure.
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son, Gomez, Stafford, & Milne, 2017; Zhang, 2012). For example,
Pirrone, Dickinson, Gomez, Stafford, and Milne (2017) used DDM
analysis to show that despite slower responses by patients with
autism spectrum disorder (ASD) on an orientation discrimination
task, perceptual sensitivity was not impaired in this group, though
behavioral data in isolation would have suggested it was.

Given the correspondence between the DDM measures and
processes that have long been implicated in attentional processing,
such as response speed, impulsivity, and response preparation, it
is, perhaps, unsurprising that DDM has been used to assess im-
paired processing in ADHD. Analyses using case-control para-
digms have consistently identified low drift rates as the primary
explanation of group differences in task performance across a
range of RT tasks, indicating that individuals with ADHD show
less efficient processing. For example, Karalunas, Huang-Pollock,
and Nigg (2012) found that group differences in RTs on a stop task
were explained by drift rate, rather than boundary separation
(speed–accuracy trade-offs) or nondecision processes such as re-
sponse preparation. Similarly, Metin et al. (2013) found that those
with ADHD showed lower drift rates and less nondecision time but
no difference in boundary separation in both a simple choice RT
task and a conflict control task, concluding that the RT differences
in ADHD reflect inefficient information accumulation, rather than
impulsive processing. Finally, Weigard and Huang-Pollock (2014)
showed that in a contextual cueing task, individuals with ADHD,
again, showed lower drift rates compared with controls, but also
less flexibility in boundary separation.

To our knowledge, research into inattention using the DDM
approach has been limited to case-control studies of ADHD to
date, without thorough investigation of the extent to which the
cognitive processes isolated by DDM can predict variation in
symptom severity, nor investigation of the relationship of the
parameters to particular symptom domains. Moreover, DDM has
never before been used to investigate processing in individuals
born VP, a population at risk for attentional deficits. Emerging
evidence indicates that although many of the mechanisms under-
lying inattention are the same in term and VP samples, there may
be specific deficits in processing speed that contribute to inatten-
tive symptoms in children born VP (Mulder, Pitchford, & Marlow,
2011; Retzler et al., 2019). The evidence from these analyses is
limited by the response and domain-specificity of the tasks, thus
measures more sensitive to elucidating the underlying cognitive
processes, such as DDM, may be useful to further understand how
processing may relate to inattentive symptoms.

The current study investigates the value of DDM measures to
further elucidate the cognitive mechanisms underlying inattention
in VP and term-born children. A cued continuous performance task
(CPT-AX), in which responses are required to infrequent cue-
target sequences among distractor stimuli, was used to measure
sustained attention. CPTs are known to be sensitive to the behav-
ioral deficits observed in children with ADHD (Huang-Pollock,
Karalunas, Tam, & Moore, 2012; Riccio & Reynolds, 2001), and
studies have shown that task performance measures are best pre-
dicted by inattentive symptoms rather than hyperactive-impulsive
symptoms (Chhabildas, Pennington, & Willcutt, 2001). To date,
studies using CPTs to assess individuals born preterm have dem-
onstrated poorer sustained attention in VP children relative to
term-born controls (Mulder, Pitchford, Hagger, & Marlow, 2009),
and shown that poorer task performance was associated with

higher ADHD symptoms in VP adolescents (Rommel et al., 2017),
but have not focused on associations between task performance
and inattention specifically.

In order to facilitate the detection of correlates of inattention
within both groups of children, and to directly compare these
correlates between groups, term-born children were not recruited
using a typical case-control approach. Instead, both groups were
recruited to include children with a wide range of inattentive
symptoms, as rated by their parents, ranging from above average
attention to severe inattention (see online supplementary material
and Retzler et al., 2019 for details). Accordingly, a dimensional
measure of inattentive symptoms suitable for use in nonclinical
samples and sensitive to the full range of attention scores was
selected to capture the full range of these traits in both groups (the
strengths and weaknesses of ADHD and normal-behavior
[SWAN]; Polderman et al., 2007; Swanson et al., 2012).

Given that inattention is one of the core deficits in ADHD, it
was predicted that, in line with previous studies in ADHD groups,
drift rate would explain significant variance in inattention. As the
first study to isolate cognitive components using DDM within a
VP sample, our second hypothesis was two-tailed; we predicted
that either inattention would be explained by the same DDM
parameters in both groups, or that groups would differ on one or
more parameters.

Method

Ethical Standards

Ethical approval was granted by a United Kingdom NHS Re-
search Ethics Committee (Coventry and Warwickshire; Ref: 13/
WM/0203) and informed parental consent was obtained for all
children.

Participants

Sample recruitment is described in detail in Retzler et al. (2019)
and a full description of all children tested is presented in the
online supplementary material. In brief, following identification
from hospital records and tracing of all babies born VP (�32
weeks’ gestation) and admitted for neonatal intensive care in
Nottingham University Hospitals NHS Trust, 65 children were
recruited (16% of eligible births) to the study. As a comparison
group, 48 term-born children (�37 weeks’ gestation) were then
recruited from the same geographical area, using advertisements
distributed via local schools and in the community, as well as the
University of Nottingham volunteer database. This was a two-
stage process that screened for inattentive symptoms using the
parent-rated SWAN scale (Stage 1), before inviting families to
participate in the full study (Stage 2). This process ensured that the
seven points on the SWAN scoring scale were represented in the
term-born children, reflecting a range of attentional abilities (far
below average, below average, slightly below average, average,
slightly above average, above average, and far above average).

The subsample for the current analysis comprised all children
with available task data suitable for the DDM analysis (see online
supplementary material for full explanation of why data for some
children were unavailable). Ten children in each group achieved a
100% hit rate, which prevents calculation of DDM parameters and
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rendered their data unsuitable for the analysis. This resulted in a
subsample of 32 term-born children and 33 children born very
preterm aged 8–11 years. Comparisons of the children included in
the DDM analysis with those not included, revealed no differences
in gestational age at birth, sex, ethnicity, socioeconomic status (as
measured using the English Indices of Multiple Deprivation;
McLennan et al., 2011), IQ, or scores of parent-rated inattention
and hyperactivity (p � .1 in all cases; see online supplementary
material).

Moreover, the VP children in the subsample for this analysis did
not differ significantly from the wider eligible VP children (n �
374; excluded either due to nonrecruitment to the study, or due to
unsuitable data for the DDM) with respect to gestational age (p �
.34), birth weight (p � .46), sex (p � .41), or socioeconomic
status, (p � .19).

Experimental Task

Children were asked to complete a CPT-AX programmed using
PsychoPy software (Peirce, 2007) while electroencephalography
(EEG) measurements were recorded as the last part of a test battery
(EEG data not reported here). Children were seated at a desk in a
quiet, unlit room facing a computer screen while wearing the EEG
recording cap. An experimenter remained with them in the testing
room at all times.

At the start of the task written instructions appeared on the
screen to familiarize the children with the stimuli that represented
cues and targets. The stimuli consisted of black abstract shapes
(chosen so that they did not have a verbal label) filled with
different patterns presented on a gray background (see Figure 2).
One stimulus was designated as the target stimulus (in CPT-AX
nomenclature, this represents the X stimulus) and one stimulus as
the cue stimulus (in CPT-AX nomenclature, this represents the A
stimulus). The same shapes were designated as cue and target for
all children. The instructions were read out by the experimenter
who told each child that they were required to respond as quickly
as possible when they saw a cue-target sequence. They were
informed that the cue shapes and target shapes might also appear

in isolation and it was reiterated that it was only when they saw a
cue-target sequence in the specified order that they needed to
respond.

A continuous stream of stimuli was presented in the center of
the screen. Each stimulus was presented for 250 ms separated by
an interstimulus interval of 1,400 ms, during which a central
fixation cross was displayed (see Figure 2). A cue-target “go”
(A-X) trial was defined as a trial-pair where the stimuli designated
as the cue and target were presented consecutively. Each time the
child saw the target stimulus sequentially following the cue stim-
ulus, they were required to respond as quickly as possible pressing
the left-most button on a Cedrus RB-730 button box with their
right hand. Children were instructed to keep their finger over the
response button so that they could respond as quickly as they
could. No response was required to other trial types, including
those where the cue and target were presented in isolation from
one another.

The task consisted of four blocks of 100 trials, with the cue
stimulus, target stimulus and 11 different distractor stimuli pre-
sented. Trials were presented in a pseudorandomized order, with
different orders for each block, but identical orders across partic-
ipants. “Go” (A-X) cue-target sequences were presented 10 times
within each block, as were cue-without-target “no-go” trials (A-
not-X), and uncued-target “no-go” (X-not-A) trials. On “go” trials,
participants were required to respond within 1,650 ms of stimulus
onset (prior to the presentation of the subsequent stimulus) to be
considered “correct.”

Standard Task Performance Measures

Hit rate. The total number of correct hits (responses made
within 200–1,650 ms from the onset of a cued target) was summed
as a measure of accuracy. This was reported as a percentage of
correct hits out of the maximum score of 40. Higher scores
represent more accurate performance, and thus better attention.

Commission errors. The total number of responses made on
“no-go” trials (any trial other than a cued target) was summed as
a measure of commission errors. This was reported as a percentage

Figure 2. Schematic showing a cue-target sequence for the CPT-AX task. See the online article for the color
version of this figure.
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of erroneous responses out of the 360 “no-go” trials (error rates
were too low to permit differentiation between type of “no-go”
trial). Higher scores represent less accurate performance and there-
fore greater impulsivity.

Response time. The mean response time on correct hit (A-X)
trials was calculated as a measure of response speed. Higher values
represent slower response speed.

Response time variability. Finally, the standard deviation of
response time on correct hit trials was calculated as a measure of
response speed variability. Higher values represent greater vari-
ability in response speed.

Participant Characteristics and Clinical Symptoms

An age-standardized estimate of full scale IQ (FSIQ-2) was
calculated from the Wechsler Abbreviated Scale for Intelligence
(Wechsler, 1999) using the vocabulary and matrices subtests.
Inattentive and hyperactive-impulsive behaviors were measured
using the raw scores on the SWAN rating scale (Swanson et al.,
2012) a parent-report measure of a child’s ADHD symptoms. This
scale has been considered appropriate for use in community pop-
ulations (Swanson et al., 2012) as it allows measurement of vari-
ation in above average attention in addition to below average
attention (more severe inattention; Arnett et al., 2013). To char-
acterize inattention and hyperactivity in more clinical terms, mea-
sures of symptoms and risk of ADHD were assessed using the
Conners 3-P (Conners, 2008), with higher scores indicating greater
symptoms. Children with scores above the predefined clinical
cut-off were classified as “at risk” of diagnosis.

Diffusion Model Fitting

In light of the infrequent target stimuli in this task and conse-
quent low trial numbers (n � 40), as well as the fact that error rates
on “go” trials were low, the EZ-DDM (Wagenmakers et al., 2007)
was used. The EZ-DDM is a simplified version of the full drift
diffusion model and is ideal for use both with small numbers of
trials, and with low numbers of error rates (Wagenmakers, van der
Maas, Dolan, & Grasman, 2008).

The EZ-DDM (Wagenmakers et al., 2007) was fitted to the “go”
RT and accuracy data from our task using custom R scripts
(Wagenmakers provides customizable scripts for R here: https://
www.ejwagenmakers.com/2007/EZ.R). The EZ-DDM transforms
a participant’s overall accuracy, mean RT, and variance in RT
using three equations derived from the full DDM (see Wagenmak-
ers et al., 2007 for a more detailed description of the procedure).
This simplification allows calculation of the most cognitively
salient DDM measures without complex parameter fitting proce-
dures often requiring large numbers of trials. This comes at the
cost of a more detailed account of behavior provided by the full
DDM which includes measures of cross-trial variability and start-
ing point. For the purposes of EZ-DDM, such parameters are kept
constant.

The EZ-DDM provides estimates of drift rate, boundary sepa-
ration, and nondecision time parameters for each participant. For
drift rate, a higher value indicates that more information is pro-
cessed per unit of time (higher drift rate indicates more efficient
information processing); for boundary separation, a higher value
indicates greater separation between decision boundaries and thus

a more conservative approach to decision making based on greater
evidence accumulation, conversely a lower value suggests an
impulsive decision. Finally, for nondecision time, a higher value
indicates greater time spent encoding the stimuli and preparing and
executing responses.

Prior to fitting, response times below 200 ms were rejected as
these are likely to reflect anticipatory responses from participants
prior to cognitive processing of the current stimuli (Ratcliff &
McKoon, 2008).

To test the goodness of fit of the DDM model, 1,000 trials for
each group were simulated using the “multisimul” function in the
DMAT toolbox for MATLAB. The simulated data were created
using model parameters (drift rate, boundary separate, nondecision
time) averaged across individuals within each group to create
mean parameters. Using these parameters, DMAT was used to
create two simulated supersubjects. The mean RTs and accuracy
from the observed data were then compared with those of our
simulated data.

Statistical Analysis

As children in both groups presented with a range of levels of
parent-rated inattention, group differences in cognitive perfor-
mance were not expected, but were analyzed to provide context.
Group differences in CPT-AX performance were examined using
a MANCOVA with group (term-born or VP) as the between-
subjects factor and age entered as a covariate as this differed
between groups.

To assess the pattern of association between parent-rated inat-
tention and task performance and DDM measures, first partial
correlations controlling for age were performed, both across
groups and split by group. Next, in order to assess the independent
contribution of these variables for explaining the variance in
parent-rated inattention, any task performance or DDM measure
that showed a significant correlation with parent-rated inattention
in either term-born or VP children was entered into a hierarchical
multiple regression, with parent-rated inattention as the dependent
variable. Group and age were entered into the first step, and hit
rate, RT variability, and drift rate were entered in the second step.
Due to high intercorrelations between task performance and DDM
measures (see online supplementary material), when these were
entered in the second step, a data-driven stepwise-entry selection
technique was used so that only those variables that added signif-
icant variance above and beyond that accounted for in the preced-
ing steps were entered. This approach has been used previously
(Aarnoudse-Moens, Weisglas-Kuperus, Duivenvoorden, van Gou-
doever, & Oosterlaan, 2013) to better separate out effects among
variables that are interrelated. In order to investigate any group-
specific effects, group interaction terms were included as predictor
variables in a regression analysis. However, to assess whether the
interaction terms explained additional variance while accounting
for the loss of any task performance or DDM measures in the
second step of the analysis due to the use of stepwise-entry
variable selection, a separate regression analysis was conducted
using forced entry technique at all steps, in which group interaction
terms were added in a final step.
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Results

Sample Characteristics

A full comparison of sample characteristics between VP and
term-born children included in the DDM analysis are provided in
the online supplementary material (Table SA1), with key features
summarized in Table 1 below. Compared with term-born children,
VP children were significantly older (p � .031) and had signifi-
cantly lower IQ (VP: M � 99.2 points, SD � 14.0 points; term:
M � 111.6, SD � 9.7 points; p � .001) but were well-matched on
most other variables (see Table SA1). In spite of both samples
including children with a large range of scores on the SWAN
inattention scale, VP children had significantly more severe
parent-rated inattention, than those in the term-born sample (VP:
M � �0.70, SD � 9.89; term: M � �6.58, SD � 12.23; p �
.038). That noted, while there were high correlations between
Conners 3-P ratings of inattention and hyperactivity and SWAN
ratings of inattention and hyperactivity (inattention r � .78, p �
.001; hyperactivity r � .71, p � .001), there were no differences
between groups in the number of children scoring “at risk” ac-
cording to clinical cut-offs for DSM ADHD diagnoses on the
Conners 3-P.

Model fit

Our simulation showed that the model fit the data well with little
difference between the simulated and observed data for either
group (Figure 3; RT quantiles are presented in Figure SA1 in the
online supplementary material for further detail).

Between-Group Differences in Task Performance

Using Pillai’s Trace, multivariate tests showed that there was no
significant effect of age (V � 0.121), F(7, 56) � 1.104, p � .373,
or group (V � 0.102), F(7, 56) � 0.913, p � .504, on CPT-AX
performance using either standard or DDM measures, therefore no
univariate tests were conducted (see Table 2).

Relationships With Parent-Rated Inattention

Partial correlations between task performance and DDM param-
eters and parent-rated inattention showed that across groups higher
levels of inattention were associated with poorer hit rate, increased
RT variability and a lower drift rate (see Table 3). The same

pattern of findings was observed in both groups, although the
correlation between RT variability and inattention did not reach
significance in the VP group. Fisher’s comparison confirmed that
there were no significant differences in the magnitude of correla-
tions between groups for hit rate (z � 0.22, p � .83), RT vari-
ability (z � �1.35, p � .18) or drift rate (z � 0.32, p � .75). Full
correlations between all task performance and DDM parameters
and inattention are presented in the online supplementary material
(see Table SA3).

The results of the hierarchical stepwise regression are reported
in Table 4. Age and group alone did not explain significant
variance in parent-rated inattention, F(2, 61) � 2.522, p � .089.
The model was significantly improved with the addition of task-
performance measures (�R2 � 0.153, p � .001), though only drift
rate contributed enough unique variance to be entered into Model
2, which explained 22.9% of the variance in inattention (Model 2;
F(3, 60) � 5.956, p � .001). Notably, with the inclusion of
task-performance measures, group also explained significant
unique variance in this model.

Finally, group-specific effects were assessed by conducting a
separate regression analysis which used a forced entry variable
selection technique throughout and added interaction terms in a
third step. Addition of group-interaction terms did not explain
significantly more variance than was explained by task perfor-
mance and DDM measures alone, (�R2 � 0.039, p � .374), and
none of the group interaction terms explained unique variance,
thus no further analyses of group-specific effects were conducted
and Model 2 (see Table 4) was accepted as the final model (see
Figure 4).

Discussion

Findings and Implications

The aim of the current study was to explore the value of DDM
measures for understanding the cognitive mechanisms underlying
inattention in VP and term-born children. Unlike in a typical
case-control study, we did not necessarily expect task performance
differences between groups due to the range of attentional abilities
of the children included in both groups, and the fact that they were
well-matched for number of children with clinically relevant
ADHD symptoms. Indeed, the groups did not differ on standard
task performance metrics, nor on DDM measures. Across groups,
more severe parent-rated inattention was associated with a lower

Table 1
Characteristics of Term-Born and Very Preterm Children

Participant demographics Very preterm Term p

Gestational age at birth (weeks)a; mean (SD) 29.6 (1.9) 40.0 (1.2) —
Birth weight (kg); mean (SD) 1.40 (.47) — —
Age at assessment (years); mean (SD) 9.6 (1.0) 9.1 (1.1) .031�

Sex; % female 45.5 40.6 .694 n.s.
Conner’s 3 scores above clinical cut offs for DSM ADHD/I; n(%) 12 (36.4%) 7 (21.9%) .199 n.s.
Conner’s 3 scores above clinical cut offs for DSM ADHD/C; n(%) 10 (30.3%) 10 (31.3%) .934 n.s.

Note. SD � standard deviation.
a Five children (15.2%) in the VP sample were born at gestations of fewer than 28 weeks, meeting criteria for
extremely preterm birth. n.s. � not significant.
� p � .05.
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hit rate, more variability in response time, and, as hypothesized, a
lower drift rate (less efficient information processing). No signif-
icant differences between the two groups were observed in the
magnitude or direction of correlations between task-performance
or DDM measures and inattention. Across the sample, the best
predictor of parent-rated inattention was drift rate, indicating that
the DDM estimate of processing inefficiency best characterized
the features of CPT task performance that related to inattentive
behavior in our sample. Interestingly, parent-rated inattention was
not predicted by boundary separation or nondecision time in either
group, in line with converging findings from previous research that
emphasizes the role of inefficient processing in ADHD (Karalunas
et al., 2012; Metin et al., 2013; Weigard & Huang-Pollock, 2014).

In DDM, the extent to which the different parameters relate to
standard task performance metrics depends on a combination of
task demands and features of samples, so in some tasks, differ-
ences in RT between conditions or samples may be explained by
differences in boundary separation, while in others, it may result
from changes in nondecision processes. In our data, hit rate and
drift rate were very highly correlated (see Tables SA2 and SA3 in
the online supplementary material), which supports previous evi-

dence showing that drift rates are often substantial drivers of
accuracy (Ratcliff & McKoon, 2008). In fact, running the same
regression analysis without the drift rate parameter resulted in a
model where hit rate was the only task performance measure
retained (see Table SA4 in the online supplementary material), and
a model that explained a similar amount of variance to Model 2
above (which does include drift rate). The benefit, therefore, of
using the DDM parameters is an ability to better understand the
cognitive processes behind the task performance, as opposed to
greater explanatory power. A logical interpretation of hit rate
predicting inattention is that children who have more severe inat-
tentive behavior are less accurate in the CPT-AX, missing more of
the infrequent target stimuli. We do not know what processing
deficits lie behind this inaccuracy. It could be due to response prep-
aration being so slow that targets are missed (this would be captured
by the parameter of nondecision time), or it could be due to poorly
calibrated speed–accuracy trade-off (which would be captured by the
parameter of boundary separation). In this instance, the parameter of
drift rate emerges as key. Accordingly, interpretation of the relation-
ship between drift rate and inattention provides us with a clearer
narrative. Children with more severe inattention are less efficient at

Table 2
Age Adjusted Marginal Means and Standard Errors (SE) for
Performance Measures of Term-Born and Very
Preterm Children

Measure

Very preterm Term

Mean SE Mean SE

Commission errors (%) 2.4 .5 2.5 .5
Hit ratea (%) 88.3 2.2 84.6 2.3
RTa (ms) 478 15 492 15
RT variability (ms) 168 11 169 11
Drift rate .211 .016 .191 .016
Boundary separation .112 .004 .112 .004
Nondecision time .253 .013 .267 .013

Note. SE � standard error of the mean; RT � response time; ms �
milliseconds.
a See Figure SA2 in online supplementary material for a graphical repre-
sentation of RT and accuracy quantiles by group.

Table 3
Partial Correlations Between Parent-Rated Inattention and
Task-Performance

Inattention

Collapsed across
groups (N � 64)a

Very preterm
(N � 33)

Term
(N � 31)a

Commission errors .241 .167 .319
Hit rate �.350�� �.369� �.418�

Response time .152 .126 .210
RT variability .318� .163 .475��

Drift rate �.369�� �.364� �.435�

Boundary separation .021 �.128 .136
Nondecision time �.107 .004 �.159

Note. All correlations have been controlled for the effect of age.
a SWAN Inattention was not measured for one term-born participant.
� p � .05. �� p � .01.

Figure 3. Comparison of simulated (light gray) and observed data. A shows mean percent accuracy for the VP
and term born children. B shows the mean RT for correct responses for each group. Error bars are the standard
error of the mean.
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information processing, which is likely one of the factors that con-
tributes to a reduced hit rate.

Another advantage of exploring DDM measures when charac-
terizing behavioral deficits is that there is accumulating evidence
of neurological areas and processes associated with specific DDM
measures, which can help us to understand more about the causal
pathway from brain to behavior. The drift rate parameter has been
causally linked to the dorsolateral prefrontal cortex (DLPFC), an
area thought to integrate sensory evidence (Philiastides, Auksz-
tulewicz, Heekeren, & Blankenburg, 2011) and implicated previ-
ously in ADHD, both in terms of reduced activation and delayed
maturation of cortical thickness (Bush, 2010). Given this link,
Karalunas et al. (2012) speculate that low drift rates in ADHD
samples may be due to deficits in DLPFC function, resulting in
difficulty in deciding between two response options. Such use of
modeling techniques thus promises to aid in the identification of
risk markers and intervention targets for inattention and other
disorders in which inattention is a key component.

These results have implications for theories of ADHD. For some
time, the focus has been on executive top-down explanations of the
disorder but these findings add to a growing literature suggesting
that ADHD may, at least in part, reflect deficits in the processing
or accumulation of information which underlie the executive def-
icits (Rommelse et al., 2007). As acknowledged by Metin et al.
(2013), these findings do not exclude the possibility that executive
deficits are important, rather they indicate that executive dysfunc-
tion cannot be considered the sole cognitive factor in ADHD
symptoms. Future research into inattentive behavior, both in term
and preterm populations, should focus on using tasks with greater
numbers of trials that would allow the fitting of more sophisticated
DDM models with more parameters, to understand in more depth
those cognitive processes underlying inattentive behavior.

The current analyses can be interpreted to indicate overlapping
etiology of inattention in our two groups (though larger sample
sizes would be required to provide sufficient power to rule out
smaller effect size differences and provide certainty of equiva-
lence1) which may have positive implications for the suitability of
assessment and treatment options used in the general population
for children born VP. Research assessing intervention effective-
ness within the VP population would be required to explore this in
greater detail, not only in light of the narrow scope of the current

analysis, but also in recognition of the possibility that neurocog-
nitive differences unrelated to inattentive behavior may still affect
treatment response.

The analysis did not provide further evidence of differences
between the cognitive processes relating to inattention in term and
VP children, suggesting that the CPT taps into different processes
to those implemented in Mulder, Pitchford, and Marlow (2011)
and Retzler et al. (2019). To some extent, these contrasting find-
ings demonstrate the precise difficulty that computational analysis
of behavioral data aims to resolve. Interpretation of task perfor-
mance in cognitive neuroscience is limited to differing degrees by
the impurity of the measures employed, and is made more difficult
still by the nonspecificity of terminology adopted. Both Retzler et
al. (2019) and Mulder et al. (2011) used very different tasks that
were both purported to measure some element of processing speed,
finding that only VP children showed an association between these
measures and inattention. It may, perhaps, seem contradictory for
no similar finding to be observed in the current analysis with
regard to drift rate, which is often referred to as processing effi-
ciency, particularly given that it involves a subsample of those in
Retzler et al. (2019). Further research that uses designs, tech-
niques, and analytical approaches more sensitive to these under-
pinning cognitive processes is required to address this complexity,
and to understand more fully any processing deficits that are
specific to children born VP.

Limitations

This study is limited by the use of the EZ-DDM in preference to
more complex DDMs that are able to estimate a wider range of
parameters. This decision was taken due to the limited number of
“go” trials in the task, which resulted from a combination of the
CPT-AX design (10% frequency of “go” trials), and consideration
of the total number of trials it would be ethical and pragmatic to
include for one task within an extended test battery for a sample
with attention difficulties. The EZ-DDM is better suited to small
numbers of trials (Wagenmakers et al., 2007). Indeed, previous
research has demonstrated good fits with very few trials (Lerche,
Voss, & Nagler, 2017; Pirrone et al., 2017) and our simulated data
suggested a good fit to our empirical data. However, the EZ-DDM
did not allow us to look at some of the other components of the
DDM such as starting point of evidence accumulation or cross trial
variability of model parameters. While the measures provided by
the EZ-DDM are those considered the most psychologically rele-
vant (Wagenmakers et al., 2007), and also include those identified
by previous literature to underlie inattention, the inflexibility of

1 To further assess equivalence between groups we conducted some
Bayesian analyses in addition to our null-hypothesis significance testing
(NHST) inferential statistics. First we performed a Bayesian regression to
calculate Bayes factors in favor of the alternative hypothesis for the
prediction of inattention in a model with group, age, and drift rate as
predictors. In line with our NHST analysis, we found strong evidence in
favor of accepting the alternative hypothesis (BF10 � 25.95). To examine
group-specific effects of drift rate on inattention, we performed a second
analyses in which group, age, and drift rate were added to the null model
(akin to including these variables in first steps of a hierarchical regression
analysis), before calculating the Bayes factor for the inclusion of the
group�drift rate interaction term. This provided some evidence in support
of the null hypothesis (BF01 � 2.71), indicating that it is unlikely that the
relationship between drift rate and inattention is group-specific.

Table 4
Regression Model for Cognitive Predictors of
Parent-Rated Inattention

Predictor

Inattention

Model 1 Model 2

R2 � .076
R2 � .229���

�R2 � .191���

� �

Group .230 .277�

Age .099 .159
Drift rate �.401���

Hit rate —
RT variability —

Note. — � Did not meet criteria for stepwise entry model selection.
� p � .05. ��� p � .001.
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EZ-DDM may have limited the accuracy of the estimation of our
parameters. Starting point, in particular, may have been biased
toward the more frequent “no-go” response in this task, and
ideally, future studies should aim to collect data from enough trials
to fit a full DDM. Inclusion of the other parameters of the full
DDM may not only improve the accuracy of parameter estimation
all-round, but may also avoid misinterpretation of data as demon-
strated in Ratcliff, Huang-Pollock, and McKoon (2018). Inciden-
tally, the EZ-DDM was created by Wagenmakers, van der Maas,
and Grasman (2007) to provide an easily applied model that could
be used by those without in-depth knowledge of modeling. The
current findings, along with previous research in ASD (Pirrone et
al., 2017), Parkinson’s disease (Zhang, 2012), and ADHD (Karalu-
nas et al., 2012; Metin et al., 2013; Weigard & Huang-Pollock,
2014), highlight the worth of such an approach alongside standard
analyses.

While the EZ-DDM was the best fit for our data as it can be used
even with low trial numbers and error rates, it does still require
some errors. Although Wagenmakers et al. (2007) proposed a
correction method for cases of 100% accuracy, this has been
critiqued by Ratcliff (2008) for unreliable parameter recovery,
particularly with small trial numbers. As such, we opted to exclude
the 10 children from each group who had achieved 100% hit rates,
and had, unsurprisingly, also performed significantly better on
other measures of task performance. Future research may benefit
from manipulating task difficulty, for example, by making target
and distractor stimuli visually similar in order to increase error
rates, so that data for the full sample can be analyzed.

In contrast to the full study sample, SWAN scores in inattention
differed between term and VP children in this subsample (see the
online supplementary material for details), and group was a sig-
nificant unique predictor of inattention when drift rate was mod-
eled. However, given the dimensional approach used in the study
design, matched samples per se were not necessary for achieving

the study aims. As intended from the recruitment process, both
groups in the subsample included children from the full spectrum
of SWAN scores, facilitating detection of relationships between
cognitive processes and inattentive behavior. Although there were
group differences in SWAN inattention overall, there were no
differences in the number of children scoring above clinical cut-
offs on the Conners 3-P, suggesting that the number of children
with clinically relevant symptoms was well-matched. This may
explain why although drift rate was associated with SWAN inat-
tention, which differed between groups, drift rate itself did not
differ between groups.

Finally, in the current study the primary factor underlying inat-
tention was the same for both groups. However, these results only
provide a snapshot of the children’s development (between 8- and
11-years-old), thus it remains unclear whether the developmental
trajectories underlying inattention are the same for those born VP
and at term, or whether similarities observed here have been
reached via distinct pathways. In order to fully understand the
similarities and differences in the causal pathways to inattention
and ADHD in preterm and term-born children more comprehen-
sive studies are required. While these results provide an encour-
aging avenue for future research, it is important to note that the
amount of variance in inattention explained by our model re-
mained modest at 22.9%, suggesting that these differences in
cognition were not the only factors involved in the etiology of
inattention in this sample.

Conclusions

In summary, the cognitive mechanisms underlying inatten-
tion in term-born and VP children seem to be at least partly
overlapping. High levels of inattention were predicted by lower
drift rate, indicating that inattentive behavior is associated with
less efficient processing of information. Use of DDM parame-

Figure 4. Scatter plot showing the association between parent-rated inattention and the drift rate parameter
of the drift diffusion model for term and very preterm groups. Inattention scores of zero reflect an average
level of attentive behavior, positive scores reflect a poorer than average level of inattentive behavior, and
negative scores reflect an above average level of attentive behavior. Higher drift rate scores reflect
processing of a greater amount of information per unit of time in favor of the “go” response (i.e., more
efficient processing).
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ters provided a better characterization of the individual differ-
ences in cognition that related to inattentive behavior in term
and VP children.
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