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Abstract: Type 2 diabetes mellitus (T2D) has a complex genetic and environmental architecture that
underlies its development and clinical presentation. Despite the identification of well over a hundred
genetic variants and CpG sites that associate with T2D, a robust biosignature that could be used to
prevent or forestall clinical disease has not been developed. Based on the premise that underlying
genetic variation influences DNA methylation (DNAm) independently of or in combination with
environmental exposures, we assessed the ability of local and distal gene x methylation (GxMeth)
interactive effects to improve cg19693031 models for predicting T2D status in an African American
cohort. Using genome-wide genetic data from 506 subjects, we identified a total of 1476 GxMeth
terms associated with HbA1c values. The GxMeth SNPs map to biological pathways associated with
the development and complications of T2D, with genetically contextual differences in methylation
observed only in diabetic subjects for two GxMeth SNPs (rs2390998 AG vs. GG, p = 4.63 × 10−11,
∆β = 13%, effect size = 0.16 [95% CI = 0.05, 0.32]; rs1074390 AA vs. GG, p = 3.93 × 10−4, ∆β = 9%,
effect size = 0.38 [95% CI = 0.12, 0.56]. Using a repeated stratified k-fold cross-validation approach, a
series of balanced random forest classifiers with random under-sampling were built to evaluate the
addition of GxMeth terms to cg19693031 models to discriminate between normoglycemic controls
versus T2D subjects. The results were compared to those obtained from models incorporating only
the covariates (age, sex and BMI) and the addition of cg19693031. We found a post-pruned classifier
incorporating 10 GxMeth SNPs and cg19693031 adjusted for covariates predicted the T2D status, with
the AUC, sensitivity, specificity and precision of the positive target class being 0.76, 0.81, 0.70 and 0.63,
respectively. Comparatively, the AUC, sensitivity, specificity and precision using the covariates and
cg19693031 were only 0.71, 0.74, 0.67 and 0.59, respectively. Collectively, we demonstrate correcting
for genetic confounding of cg19693031 improves its ability to detect type 2 diabetes. We conclude
that an integrated genetic–epigenetic approach could inform personalized medicine programming
for more effective prevention and treatment of T2D.

Keywords: epigenetics; DNA methylation; type 2 diabetes

1. Introduction

Type 2 diabetes mellitus (T2D) is the seventh leading cause of morbidity and mortality
in the US and is responsible for $327 billion annually in economic damage [1]. T2D is
diagnosed in the presence of sustained hyperglycemia that is above the threshold that
predisposes to microvascular complications [2]. However, hyperglycemia is the end product
of several pathophysiological processes that eventually converge on the inability of the
pancreatic β cells to produce enough insulin to meet the demands of target tissues. Our
inability to identify and adequately understand this etiological heterogeneity underpins
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the diagnostic and prognostic challenges faced in clinical practice. Thus, novel precision
diagnostic methods that refine the characterization of diabetes to optimize prognostication
and therapies are highly desired to improve clinical decisions and patient outcomes.

T2D has a complex genetic and environmental architecture that underlies its devel-
opment and clinical presentation [3]. Genome-wide association studies (GWAS) have
identified more than 500 common genetic variants associated with the disease. However,
in aggregate, these explain less than 20% of the heritability [4]. Other attempts to elucidate
the disease etiology include identifying epigenetic alterations that mediate environmental
influences on aberrant gene expression. DNA methylation (DNAm) is the most widely
studied and characterized epigenetic modification due to its scalability and its potential
for clinical translation. Several investigators have demonstrated that the DNAm status at
cg19693031 is highly correlated with both HbA1c values and T2D [5–7]. However, these
prior studies failed to account for potential confounding genetic influences. Given the
dynamic cross-talk between genetic variation, DNA methylation and environmental expo-
sures, these factors should not be considered as self-standing layers of pathophysiological
regulation but should only be interpreted in light of each other [8]. For example, several
genetic variants for common complex diseases are not detected in GWAS analyses when
the environmental influences are not included. Thus, this partially informed approach of
traditional GWAS/EWAS analyses fails to adequately explain the interconnected network
that underlies the development and progression of diabetes, which limits our ability to
prevent and treat the disease.

In this communication, we use an omni-genic approach in an attempt to explain how
the interactions between cg19693031 methylation and common variants in the cellular
context of hyperglycemia can increase disease susceptibility. We then implement functional
analyses to investigate possible mechanisms explaining the association between the methy-
lation status of TXNIP’s 3′UTR and prevalent T2D. Finally, we examine if correcting for
genetic confounding improves the ability of cg19693031 to detect T2D.

2. Materials and Methods
2.1. Subjects and Recruitment

This study uses genomic and biological data from Wave 5 of primary caregivers (PC)
of the Family and Community Health Study (FACHS). The overall design and methods
used in the FACHS study have been described previously [9]. Each of these procedures
was approved by the University of Iowa Institutional Review Board (IRB 200802719). The
data from a total of 506 subjects were retained for further analyses.

DNA was prepared using standard cold protein precipitation [10]. Glycosylated
hemoglobin A1c (HbA1c) levels were determined by the University of Iowa Diagnostic
Laboratories (https://medicine.uiowa.edu/uidl/, accessed on 4 February 2018) using
turbidimetric immune inhibition [11] in compliance with standard Clinical Laboratory
Improvement Amendments (CLIA) procedures [12].

2.2. Genome-Wide DNA Methylation

Genome-wide methylation was determined by the University of Minnesota Genome
Center (http://genomics.umn.edu/, accessed on 10 March 2018) using the Infinium Methy-
lationEpic Beadchip (Illumina, San Diego, CA, USA) according to the manufacturer’s
protocol. Standard sample and probe level quality control of the resulting data were
conducted as previously described [13].

2.3. Genome-Wide Genotypes

Genome-wide genotype information also was determined by the University of Min-
nesota Genome Center using the Multi-Ethnic Global-8 Beadchip (Illumina, San Diego, CA,
USA) according to the manufacturer’s suggested protocol. Quality control was performed
at both the sample and single nucleotide polymorphism (SNP) probe levels in PLINK [14].
SNP probes with a minor allele frequency >5% were retained. Linkage disequilibrium-
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based SNP pruning was performed with a window size of 50 SNPs, window shift of 5 SNPs
and a pairwise SNP-SNP LD threshold of 0.5. A total of 516908 variants for 506 subjects
passed filters and QC. For the purposes of these analyses, genotypes were recoded as 0, 1
or 2 in PLINK.

Genotypes at rs7211, rs7212 and rs9245 were determined by our standard primer
probe genotyping procedures using fluorescent hydrolysable probe assays and reagents
from ThermoFisher (Waltham, MA, USA) according to manufacturer’s instructions [15].

2.4. Phenotypes

Phenotypes that were considered in the analyses include age, gender, body mass index
(BMI) and type 2 diabetes mellitus (T2D) status. The age used was the age of the subject
at the time of the Wave 5 interview. Gender was coded as a binary variable representing
self-reported biological sex. BMI was calculated using the measured height and weight of
the subject (kg/m2) and used as a continuous variable.

T2D status was determined for each subject by binning the HbA1c value at the time
of the W5 interview. The binning criteria were adapted from the clinical diagnostic guide-
lines set by the American Diabetes Association; i.e., those with an HbA1c ≤ 5.7 were
binned as normoglycemic controls, HbA1c between 5.7–6.5 were binned as pre-diabetic and
HbA1c ≥ 6.5 as diabetic [2]. Normoglycemic control subjects self-reporting a T2D diagnosis
and any non-diabetic subject self-reporting the use of anti-diabetic pharmacotherapy were
removed from the final dataset.

2.5. Identification of HbA1c-Associated DNAm Loci

The identification of DNAm loci associated with HbA1c values was determined by
fitting a linear regression model in R v.3.1.2 using the following equation:

HbA1c ∼ Methi + Age + Sex + BMI

A total of 861,916 independent analyses were conducted. The DNAm loci with a
genome-wide significance after FDR correction (α = 0.05) were retained for further analyses.

2.6. Identification of Stochastic Epimutations

The distribution and variability of methylation values were evaluated using boxplots
for each of the identified HbA1c associated DNAm loci. Stochastic epimutations (SEMs)
were defined as methylation outliers exceeding three times the interquartile range (IQR),
consistent with the definition of Gentilini and colleagues [16]. SEMs were further classified
based on the methylation value compared to the average of the population, as previously
described by Wang and associates [17]. High methylation outliers (HMO) were defined
using the following equation:

HMO = Q3 + (3× IQR)

Similarly, low methylation outliers (LMO) were defined using the following equation:

LMO = Q1− (3× IQR)

HbA1c-associated DNAm probes containing SEMs were removed from further analyses.

2.7. Identification of HbA1c-Associated Polymorphic CpGs

DNAm probes potentially affected by polymorphisms at the target site were identified
using methods previously described. In brief, the Infinium MethylationEPIC BeadChip
manifest file was used to identify SNPs found at the target site for both Infinium Type I and
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Type II probes. To identify those associated with HbA1c values, a linear regression model
was fit in R using the following equation:

HbA1c ∼ Methi + Age + Sex + BMI

A total of 302,943 independent analyses were conducted. The DNAm loci with a
genome-wide significance after FDR correction (α = 0.05) were retained for further analyses.

2.8. Identification of meQTL Effects of cg19693031 Methylation

To understand the genetically contextual effects on cg19693031 methylation, meQTL
analyses in both cis and trans were conducted. Linear regression models were fit in R using
the following equation:

Meth ∼ SNPi + Age

A total of 117 independent cis analyses of potential interaction effects with cg19693031
were conducted. Further, meQTLs acting in cis were defined as SNPs located on chro-
mosome 1 and within 1Mb of cg19693031. A total of 38750 independent long-range cis
analyses were conducted, defined as SNPs located on chromosome 1 and located > 1 Mb
of cg19693031. A total of 459464 independent trans analyses were conducted, defined as
SNPs not residing on chromosome 1. SNPs with nominally significant effects were retained
for further analyses (α = 0.05).

2.9. Genetic + Environmental (G + E) Analyses

The additive genetic and environmental effects on cg19693031 methylation were
assessed using the following equation in R:

Meth ∼ SNPi + SNPj + HbA1c + Age

SNPs with nominally significant effects were retained for further analyses (α = 0.05).

2.10. Genetic x Environment (GxE) Analyses

The genetically contextual effects of HbA1c on cg19693031 methylation were assessed
using the following equation in R:

Meth ∼ SNPi × HbA1c + SNPi + HbA1c + Age

In particular, the interaction term p-value was used for the selection and ranking of
SNPs with nominally significant GxE effects. A total of 117, 38,750 and 459,464 independent
cis, long-range cis and trans analyses were conducted, respectively.

2.11. Local TXNIP GxMeth Logistic Regression Classifiers for T2D Status

Training and test datasets were prepared to develop and evaluate each classifier for
T2D status in Python v.3.8.10 [18]. A total of 137, 260 and 90 normoglycemic controls,
prediabetic and diabetic subjects were retained for logistic modeling. These subjects were
used to generate the training (70%) and testing (30%) datasets. T2D status was coded
as binary variable, with the more severe dysglycemic status reflecting the positive target
class. The target class was stratified between the training and testing datasets to reflect
the original class ratio. The performance of each model was evaluated using the receiver
operating characteristic (ROC) area under the curve (AUC), sensitivity, specificity and
precision of the more severe dysglycemic target class.

2.12. Identification of Distal GxMeth Interactions

The identification of HbA1c-associated distal significant Genetic x Methylation (GxMeth)
interactions was determined by fitting a linear regression using the following equation in R:

HbA1C ∼ cg19693031× SNPi + SNPi + cg19693031 + Age + Sex + BMI
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Additive and interactive GxMeth terms were evaluated for each SNP that survived
data cleaning and filtering, with a total of 614,729 independent analyses conducted. The
SNPs of each GxMeth interactive term with genome-wide significance after Bonferroni
correction (α = 0.05) were retained for further analyses. The R package CMplot was used to
construct the Manhattan plot [19].

2.13. Distal GxMeth Functional SNP Mapping

Each SNP with a significant GxMeth interaction term was annotated using the Multi-
Ethnic Global-8 Annotation File. The 560 mapped genes were used to generate a protein–
protein interaction (PPI) network using the STRING database [20]. To investigate the
functions of the GxMeth genes, functional enrichment analysis was performed using gene
ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) [21].

2.14. Integrated Genetic–Epigenetic Balanced Random Forest Classifier for T2D Status

A series of balanced random forest classifiers (BRF) were built using scikit-learn in
Python v.3.8.10 to evaluate the predictive ability of integrated GxMeth models for discrim-
inating normoglycemic controls versus diabetic subjects. Each BRF classifier was built
using a repeated stratified cross-validation (10 splits and 3 repeats) approach. The dimen-
sionality of the dataset was reduced by taking advantage of the implicit feature selection
of the random forest using the SelectFromModel function in sklearn. A BRF classifier was
built as previously described to evaluate the selected features for predicting T2D status
(normoglycemic controls versus diabetic subjects). The selected features were then ranked
according to their Gini importance, with the top 13 features retained.

3. Results
3.1. Clinical and Demographic Characteristics

The key demographic and clinical characteristics of the 506 subjects are given in Table 1.
The subjects in each group were almost exclusively African American, and predominantly
female. Congruent with the clinical observations, the diabetic subjects were significantly
older and more obese than the normoglycemic and prediabetic subjects (p = 1.29 × 10−9

and p = 1.12× 10−6, respectively). While the systolic and diastolic blood pressures were not
significantly different between the groups, there was a higher prevalence of self-reported
hypertension and anti-hypertensive therapy in the diabetic subjects. A total of 73 subjects
self-reported a history of diabetes, with 70% of these subjects having an HbA1c ≥ 6.5%
despite only 4% reporting anti-diabetic pharmacological treatment.

3.2. Identification of HbA1c-Associated DNA Methylation Loci

A total of 514,292 methylation probes survived the data cleaning and quality control
measures. To identify HbA1c-associated DNAm loci, each probe was regressed against
HbA1c values, controlling for age, sex and BMI. A total of 23 DNAm probes were associated
with HbA1c at a false-discovery rate (FDR) of <5% (Table 2). Consistent with prior studies,
cg19693031 was the most highly associated probe (R2 = 0.1976, p = 4.43 × 10−12). As
illustrated in Figure 1, cg19693031 was significantly demethylated in diabetic subjects
compared to both normoglycemic controls (62% vs. 66%; t = 5.089, p = 1.06 × 10−6) and
prediabetic subjects (62% vs. 66%; t = −4.4165, p = 2.12 × 10−5).

The distribution and variability of the methylation values were evaluated for each
of the identified HbA1c-associated DNAm loci. With the exception of cg19693031 and
cg26823705 (Figure 2), the associations to HbA1c were driven by outliers. Consistent with
the definition by Gentilini and colleagues, a total of 49 stochastic epimutations (SEMs) were
identified in 27 subjects across the 23 DNAm loci. With the exception of cg1963031, SEMs
were observed in each probe. The SEMs were significantly enriched in diabetic subjects
(OR = 0.135, 95% CI = 0.072–0.248, p-value = 1.40 × 10−11, two-tailed Fischer’s exact test),
with 30 of the 49 total number of SEMs found in diabetic subjects. Further, six subjects had
more than one SEM across the twenty-three probes, four of whom were diabetic.
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Table 1. Clinical and demographic characteristics of subjects.

Control Pre-Diabetic Diabetic
N = 142 N = 274 N = 90

Age 45.3 ± 8.4 46.7 ± 7.3 52.1 ± 9.7
Gender
Male 36 (25) 69 (25) 20 (22)
Female 106 (75) 205 (75) 70 (78)
Ethnicity
African American 140 (99) 273 (99) 90 (100)
White 2 (1) - -
Hispanic - 1 (1) -
HbA1c (%) 5.34 ± 0.26 5.96 ± 0.21 8.02 ± 1.84
BMI 31.91 ± 8.45 33.73 ± 7.91 37.85 ± 9.53
Systolic BP † 133.98 ± 21.92 134.15 ± 19.59 139.67 ± 23.65
Diastolic BP † 83.46 ± 13.24 83.59 ± 13.25 84.06 ± 15.46
Self-Report Dx ‡

Diabetes - 22 (8) 51 (57)
Hypertension 12 (8) 43 (16) 17 (19)
Cardiac Event 1 (1) 2 (1) 1 (1)
Self-Report Rx *
Diabetes - - 3 (3)
Blood Pressure 12 (8) 39 (14) 17 (19)
Cholesterol - 2 (1) 1(1)

Mean ± standard deviation for continuous variables. N (%) for categorical variables. † BP represents blood-
pressure (mm Hg). ‡ Dx represents diagnosis. * Represents treatment.

Table 2. Top 21 ranked HbA1c-associated DNAm loci.

Rank CpG Gene Position Island Status SEM p-Value

1 cg19693031 TXNIP 3′UTR Open Sea - 4.43 × 10−12

2 cg02458882 OPTN 5′UTR Island HMO 3.78 × 10−7

3 cg21804949 Open Sea LMO 5.28 × 10−7

4 cg14955495 CASKIN TSS1500 Island HMO 2.16 × 10−6

5 cg18890830 GPX6 Body Open Sea LMO 2.86 × 10−6

6 cg22544867 NELFCD TSS1500 N Shore LMO 4.35 × 10−6

7 cg03577153 ZNF350 TS200 Open Sea HMO 4.95 × 10−6

8 cg14277924 ATP10D Body Open Sea LMO 8.16 × 10−6

9 cg02184744 ANKRD11 Body Open Sea LMO 3.35 × 10−4

10 cg14471895 FAM120AOS Body Island HMO 5.30 × 10−4

11 cg06655623 RASGEF1A TSS1500 Open Sea HMO 8.09 × 10−4

12 cg14691530 S Shelf LMO 9.90 × 10−4

13 cg13990141 FAMQ20A0S Body Island HMO 8.62 × 10−3

14 cg22942097 Island HMO 0.012
15 cg01105172 Open Sea LMO 0.018
16 cg26823705 NBPF20 Body Open Sea HMO 0.020
17 cg24623376 IL2RA Body Open Sea LMO 0.020
18 cg10536901 SLC25A24 5′UTR Island LMO 0.020
19 cg05922331 Open Sea LMO 0.030
20 cg03916864 UNG TSS1500 Island HMO 0.037
21 cg12936627 PTTG1IP TSS200 Island HMO 0.037
22 cg25962218 LRGUK Body Open Sea HMO 0.039
23 cg05055927 Open Sea LMO 0.043

Top 23 significant DNAm loci associated with HbA1c after FDR correction for multiple comparisons.
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The SEMs were further classified into two groups based on the methylation value
compared to the population. A total of 26 SEMs were hypermethylated and classified
as high methylation outliers (HMO), and a total of 23 SEMs were hypomethylated and
classified as low methylation outliers (LMO). Each of the 22 probes contained either HMOs
(n = 11) or LMOs (n = 11); however, none contained both. Notably, 14 (54%) and 23 (70%)
of the identified HMOs and LMOs were observed in diabetic subjects.

To further characterize the HMOs and LMOs, we examined their locations in relation
to CpG island regions. The majority of DNAm loci with HMOs resided in CpG islands
(n = 7), with the remainder in open seas (n = 3). Notably, the Hidden Markov Model
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predicts an additional three of these loci are located within an island. Comparatively, the
majority of DNAm loci with LMOs resided in the open sea (n = 8), with the remainder in
subsequent shores (n = 1), shelves (n = 1) and islands (n = 1). These findings are consistent
with those previously reported by Wang et al. [17]. All the DNAm loci with SEMs were
excluded from further analyses.

A total of 37009 SEMs were detected in 64% (n = 13,528) of the 21269 HbA1c-associated
DNAm probes with nominal significance. The total number of SEMs per probe ranged
from 0 (n = 7740) to 102 across the 506 subjects. Of the 13,528 probes with SEMs detected, a
majority (84%) contained less than five SEMs across the cohort. Additionally, a majority of
the SEMs detected were HMOs (n = 25,620). The total number of SEMs per subject ranged
from 3 to 7271 across the 21,269 probes, with a median of 20 ± 410 SEMs per subject. No
relationship was observed in the number of SEMs with T2D status, age, gender or BMI.
With the exception of cg19693031 and cg26823705, the association of each probe to HbA1c
diminished after the removal of SEM observations.

3.3. Identification of HbA1c-Associated Polymorphic DNAm Loci

A total of 302,943 polymorphic probes were identified using the EPIC manifest file.
Each probe was regressed against HbA1c values adjusted for age, sex and BMI. A total of
54 polymorphic probes were associated with HbA1c at an FDR < 5%. The top 30 ranked
HbA1c-associated polymorphic probes are described in Table 3.

Table 3. Top 30 polymorphic CpGs associated with HbA1c values.

Rank CpG Gene SNP p-Value
1 cg03422185 BCKDHA rs145173140 0.0003
2 cg18909131 KIAA0427 rs77389586 0.0003
3 cg04608829 CYP4F12 rs73926867 0.0003
4 cg22228131 BCAR3 rs527794238 0.0004
5 cg27350255 rs541533080 0.0009
6 cg04291024 TRAPPC9 rs114893201 0.0009

7 cg00539624 rs534060211,
rs116003679 0.0009

8 cg04272044 RAD50 rs73257757 0.0013
9 cg21808468 MCC rs1822487 0.0014

10 cg08491197 rs76497600 0.0020
11 cg07873290 rs114434159 0.0020

12 cg26502489 SCN2B rs78096838,
rs569992626 0.0020

13 cg00888992 BRF1 rs116101636 0.0022
14 cg09208162 NDUFA10 rs138899326 0.0024

15 cg20494686 rs148229470,
rs141139268 0.0025

16 cg22098375 GABBR1 rs556388914,
rs564227738 0.0025

17 cg05614028 rs559329156 0.0033
18 cg19804132 CCL8 rs181302524 0.0045
19 cg15166058 ACTG2 rs150940664 0.0047
20 cg23511885 rs62219339 0.0051
21 cg14264512 AKAP9 rs540981223 0.0054
22 cg18049287 ZBP1 rs532936093 0.0062
23 cg16018596 rs78999282 0.0068

24 cg23879504 PRLR rs538603339,
rs79823771 0.0077

25 cg01704651 C1ORF167 rs189737870 0.0083
26 cg25921170 ABL2 rs553415841 0.0097
27 cg23576118 RGS6 rs36322 0.0137

28 cg21442599 SMIM8 rs181909564,
rs187248940 0.0137

29 cg19532212 TEX14 rs185842772 0.0142
30 cg21606577 RSPRY1 rs141350118 0.0142

Top 30 ranked significant polymorphic CpG loci associated with HbA1c after FDR correction for multiple
comparisons.



Genes 2022, 13, 683 9 of 27

Of the 54 polymorphic DNAm probes, the island status of 11 were identified. The
majority resided in shores (n = 7), with the remainder in subsequent islands (n = 3) and
shelves (n = 1). The 54 probes mapped to 37 unique genes, with functional enrichment
using UniProt for alternative splicing (FDR p-value = 0.0016). These genes also mapped
to several relevant KEGG pathways, including type 1 diabetes mellitus, insulin secretion,
PI3K-Akt signaling and diabetic cardiomyopathy.

3.4. Genome-Wide cg19693031 meQTL Analyses

Methylation quantitative trait loci (meQTL) analyses were conducted in both cis and
trans to identify genetic factors that confound the methylation status of cg19693031. As
underlying genomic mechanisms may differ according to proximity, our analyses were
separated into: (1) cis meQTL (SNP-CpG distance < 1 Mb, n = 117), (2) long-range cis
meQTL (>1 Mb intra-chromosomal, n = 38,750) and (3) trans meQTL (inter-chromosomal,
n = 459,464). A total of 7 and 2052 meQTLs acting in cis and long-range cis were detected
with nominal significance, with the degree of explained methylation variance ranging
from 0.45% to 1.35% and 0.41% to 4.16%, respectively. While the cis long-range meQTLs
explained more variance than those acting in cis, the magnitude of explained variance
did not correlate with the SNP’s proximity to cg19693031. The meQTLs acting in cis are
described in Table 4, while the top 30 long-range cis-meQTLs are described in Table 5. A
total of 23,734 meQTLs acting in trans were also detected with nominal significance, with
the degree of explained methylation variance ranging from 0.39% to 4.35%. Similar to those
acting in cis, there were no observable differences between the chromosomes. The top
30 trans meQTLs are described in Table 6.

Table 4. Cis-meQTLs nominally associated with cg19693031.

Rank SNP Gene Distance Adj R2 p-Value

1 rs587743199 NOTCH2NLA 2.26 × 105 0.01353 0.003
2 rs16827006 ITGA10 9.83 × 104 0.01028 0.008
3 rs16827043 4.61 × 104 0.009199 0.011
4 rs61741868 ITGA10 9.99 × 104 0.005841 0.030
5 rs10910843 RNF115 2.50 × 105 0.005217 0.036
6 rs112006139 PDE4DIP 4.87 × 105 0.004855 0.037
7 rs5617144 ANKRD35 1.14 × 104 0.004491 0.045

Table 5. Top 30 long-range cis-meQTLs nominally associated with cg19693031.

Rank SNP Gene Distance Adj R2 p-Value

1 rs17023177 PTPN14 6.93 × 107 0.0416 1.52 × 10−6

2 rs12718444 SLC2A1 1.02 × 108 0.0324 1.86 × 10−5

3 rs2086856 SLC2A1 1.02 × 108 0.0309 2.80 × 10−5

4 rs6702764 9.92 × 107 0.0308 2.87 × 10−5

5 JHU_1.230641162 8.52 × 107 0.03 3.57 × 10−5

6 rs34247575 PTGER3 7.41 × 107 0.0268 8.58 × 10−5

7 JHU_1.19366997 1.26 × 108 0.0267 8.80 × 10−5

8 rs74121148 1.19 × 107 0.0266 9.06 × 10−5

9 rs2792599 1.02 × 108 0.0253 1.30 × 10−4

10 rs9326132 1.02 × 108 0.0253 1.31 × 10−4

11 JHU_1.78608038 6.68 × 107 0.025 1.43 × 10−4

12 rs57013566 9.97 × 107 0.0253 1.61 × 10−4

13 rs12091692 5.29 × 107 0.0234 2.22 × 10−4

14 rs72895742 TTC22 9.02 × 107 0.0229 2.52 × 10−4

15 rs6699702 PRDX1 9.95 × 107 0.0229 2.52 × 10−4
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Table 5. Cont.

Rank SNP Gene Distance Adj R2 p-Value

16 rs2422139 C1orf105 2.69 × 107 0.0227 2.63 × 10−4

17 rs10911734 3.40 × 107 0.0227 2.67 × 10−4

18 JHU_1.45997600 9.94 × 107 0.0225 2.85 × 10−4

19 JHU_1.992041 1.40 × 108 0.0227 3.47 × 10−4

20 JHU_1.46359270 MAST2 9.91 × 107 0.0209 4.35 × 10−4

21 rs2280511 GLIS1 9.15 × 107 0.0208 4.50 × 10−4

22 JHU_1.90440644 5.50 × 107 0.0203 5.04 × 10−4

23 JHU_1.49307071 AGBL4 9.61 × 107 0.0203 5.04 × 10−4

24 JHU_1.26626016 UBXN11 1.19 × 108 0.0203 5.16 × 10−4

25 rs78580993 3.99 × 107 0.0202 5.18 × 10−4

26 exm111496 FCRL5 1.21 × 107 0.0202 5.29 × 10−4

27 rs10864087 6.89 × 107 0.0201 5.39 × 10−4

28 rs12033260 LOC101927244 7.42 × 107 0.0201 5.43 × 10−4

29 rs3935008 PTPRVP 5.67 × 107 0.02 5.47 × 10−4

30 rs11265240 1.41 × 107 0.0199 5.69 × 10−4

Table 6. Top 30 distal meQTLs nominally associated with cg19693031.

Rank SNP Gene Chromosome Adj R2 p-Value

1 rs181228225 15 0.0425 1.30 × 10−6

2 rs74470648 3 0.0418 1.44 × 10−6

3 rs296200 5 0.0376 4.46 × 10−6

4 rs2390998 13 0.0366 5.86 × 10−6

5 rs744439 14 0.0364 6.33 × 10−6

6 JHU_5.106093036 5 0.0358 8.38 × 10−6

7 rs1054013 MEG3 14 0.0346 1.02 × 10−5

8 exm-rs11177669 12 0.0344 1.09 × 10−5

9 rs7330858 13 0.0338 1.30 × 10−5

10 rs1451452 2 0.0337 1.30 × 10−5

11 JHU_18.63134356 18 0.0336 1.38 × 10−5

12 JHU_16.9476218 16 0.0328 1.69 × 10−5

13 rs117580705 11 0.0326 1.74 × 10−5

14 exm-rs11221332 ETS1 11 0.032 2.09 × 10−5

15 rs1380989 FGF12 3 0.0315 2.43 × 10−5

16 rs331581 5 0.0304 3.24 × 10−5

17 rs3794207 CAMKK2 12 0.0302 3.38 × 10−5

18 rs568941 16 0.0297 3.93 × 10−5

19 rs7142470 LINC00520 14 0.0296 3.97 × 10−5

20 exm-rs2523608 HLA-B 6 0.0296 4.01 × 10−5

21 rs266273 2 0.0294 4.24 × 10−5

22 JHU_15.87493750 AGBL1 15 0.0295 4.28 × 10−5

23 rs73392704 14 0.0292 4.50 × 10−5

24 exm523653 POM121L2 6 0.0291 4.57 × 10−5

25 rs6887332 CDX1 5 0.029 4.75 × 10−5

26 JHU_14.23027963 14 0.0289 4.85 × 10−5

27 JHU_3.16412493 3 0.0312 4.98 × 10−5

28 rs11793972 FAM155A 9 0.0288 5.94 × 10−5

29 rs4442648 13 0.0285 5.43 × 10−5

30 rs73986979 FIBCD1 17 0.0282 5.89 × 10−5

To determine the magnitude of meQTL effects on cg19693031 methylation, a multi-
variate linear regression model was built using meQTLs that demonstrated an R2 ≥ 0.03
(long-range cis (n = 5) and trans (n = 18)). Using an additive step-wise approach, genetic
factors were ranked and fed into the model based on their adj R2. The associations between
two meQTLs and cg19693031 methylation were no longer observed when incorporated
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into the model and were dropped from further analyses. The final meQTL model captured
43.23% of the variance of cg19693031 methylation (p < 2.2 × 10−16).

It has been previously suggested that some of the meQTL effects may in fact be occur-
rences of genetic and environmental interactions (GxE). To better understand the genetic
and environmental confounding architecture influencing the methylation of cg19693031,
we assessed whether additive or interactive effects explain the variability of cg19693031
methylation better than genetic factors alone. As a means of comparison, HbA1c was first
regressed against cg19693031 methylation adjusted for age (R2 = 0.1314, p < 2.2 × 10−16).
With the incorporation of HbA1c values to the final meQTL model (G + E), the amount of
variance captured increased by 6% (R2 = 0.4968, p < 2.2 × 10−16). Using ANOVA, the addi-
tive G + E model significantly outperformed the genetic factors alone (p = 2.62 × 10−14).

Next, GxE analyses were conducted and compared to the G + E effects for each of
the 21 retained meQTLs. Only one meQTL, rs74439, demonstrated a significant GxE term
(p = 0.0146). The GxE effect explained ~ 1% more variance than the G + E model (R2 = 0.1712
vs. R2 = 0.1630) and demonstrated a significantly better fit (ANOVA: p = 0.0156). Incor-
porating the rs74439 GxE term to the final G + E meQTL model captured an additional
1% of the variance (Table 7: R2 = 0.5077, p < 2.2 × 10−16), and explained the variability
of cg19693031 methylation better than genetic or additive G + E factors alone (ANOVA:
p = 8.896 × 10−16 and p = 7.49 × 10−4, respectively).

Table 7. Association estimates for features in final multivariate G + E meQTL regression model with
one GxE term for cg19693031.

Feature β p-Value

A1C −0.021 ***
rs181228225 0.024 ***
rs11221332 −0.021 ***
JHU_18.63134356 0.017 ***
rs17023177 0.012 ***
rs2390998 0.013 ***
rs744439:A1C 0.008 ***
rs6702764 −0.014 ***
rs74470648 0.011 **
rs3794207 −0.012 **
rs331581 −0.012 **
JHU_1.230641162 −0.009 **
rs1451452 −0.011 **
rs7330858 0.018 **
rs117580705 0.018 **
JHU_5.106093036 −0.010 **
rs744439 −0.044 **
rs1380989 0.009 **
rs296200 0.009 **
rs12718444 −0.012 **
JHU_16.9476218 0.012 *
rs11177669 −0.007 *
rs1054013 −0.013 *

p-value significant codes: <0 (***), <0.001 (**), <0.01 (*). Overall model performance: adj R2 = 0.5077 and
p-value < 2.2 × 10−16.

3.5. Functional Mapping of meQTL SNPs

Next, we performed secondary analyses to better characterize the functional effects
of genetic variation on cg19693031 methylation. The leading hypothesis to explain cis-
meQTL effects is that, if a meQTL is located in a TFBS and hinders the TF from binding, the
methylation of surrounding CpGs can be altered directly (recruitment of DNMT or TET
enzymes) or indirectly.
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Of the 25,792 meQTLs, a total of 21 had confirmed associations with T2D via genome-
wide association studies. Additionally, a total of 986 are located within exons and 335
are missense mutations. The meQTL SNPs mapped to 4687 genes, with enrichment of
two or more SNPs found within 2075 genes. These genes functionally map to several pro-
cesses, including: alternative splicing (p = 2.09 × 10−25), ABC transporters (p = 1.7 × 10−4),
insulin secretion (p = 8.1 × 10−4), lymphocyte mediated immunity (p = 2.61 × 10−4), im-
munoglobulin production (p = 1.19 × 10−4), complement activation (p = 2.50 × 10−6),
immune system process (p = 2.32 × 10−7) and calcium ion transmembrane transporter
activity (p = 6.23 × 10−4).

To gain insights into the molecular networks involved in nuclear regulation underly-
ing the relationship between genetic variation and cg19693031 methylation, we assessed
whether the proximal candidate gene at a trans-acting locus showed covariation with
cg19693031 methylation. Using data from the eQTLGen Consortium (n = 31,684 samples), a
total of 14,826 cis-eQTL associations with 5955 unique trans-meQTLs were identified with
Bonferroni-corrected significance, with 3249 meQTL SNPs influencing the expression of 2+
genes. The identified cis-eQTLs mapped to 6861 unique genes, with enrichment of two or
more cis-eQTLs influencing 3542 genes.

While the biological mechanisms underlying cis-meQTLs are easily understood and
experimentally demonstrated, few clear examples for trans have been uncovered. The
simplest hypothesis is that SNPs that act as eQTLs of global methylation regulators have
downstream effects as trans-acting meQTLs. A similar potential mechanism is that an
SNP residing in the coding region of methyl-specific-binding-proteins could alter their
specificity and function and, therefore, modify the DNAm of their binding sites. To that
end, several of the identified eQTL genes are known methylomic regulators, including:
DNAm writers (DNMT1 and DNMT3a), readers (MBD2, MBD5, UHRF1, UHRF2 and
BAZ2B) and erasers (TDF and SMUG1). Further, several of the eQTL genes are known
regulators of TXNIP, including: transcription factors (FOXO1, HSF2, RXRA and KLF6),
chromatin modifications (HDACs and NF-YA) and factors regulating mRNA turnover
(mir-17, ZFP36, NEDD1, NEDD4, NEDD9, WWP1, SMURF2 and HECW2). Provided that
distal residues can be brought into physical proximity by 3D structures, an SNP could
affect DNAm levels at CpG sites in trans by acting either through cis-meQTL mechanisms
or by disrupting the formation of structural loops. To that end, two of the three cohesion
subunits were identified as an eQTL gene (SMC3 and RAD21).

To gain insights into the potential role of trans meQTL effects on cg19693031 in the
pleiotropic functions of TXNIP, functional gene mapping was conducted utilizing KEGG
and GO. The eQTL genes mapped to key pathways that are associated with TXNIP’s
pathophysiological role in diabetes and coronary heart disease, including: metabolic path-
ways (n = 504), PI3K-Akt signaling (n = 95), MAPK signaling (n = 81), cytokine-cytokine
receptor interaction (n = 72), Rap1 signaling (n = 66), lipid and atherosclerosis (n = 65),
ras signaling (n = 59), calcium signaling (n = 56), mTOR (n = 55), cAMP signaling (n = 52),
diabetic cardiomyopathy (n = 49), insulin signaling pathway (n = 48), apoptosis (n = 46),
Wnt signaling (n = 45), insulin resistance (n = 45), AMPK signaling (n = 45), FoxO signaling
(n = 44), natural killer cell mediated cytotoxicity (n = 44), non-alcoholic fatty liver disease
(n = 43), TNF signaling (n = 39), leukocyte transendothelial migration (n = 37), NK-kappa
B signaling (n = 35), AGE-RAGE signaling pathway in diabetic complications (n = 34),
TGF-β signaling (n = 33), b cell receptor signaling (n = 33), glucagon signaling (n = 27),
type 1 diabetes (n = 23), PPAR signaling (n = 21), hypertrophic cardiomyopathy (n = 21),
regulation of lipolysis in adipocytes (n = 18), glycolysis and gluconeogenesis (n = 18),
insulin secretion (n = 18), ABC transporters (n = 17) and type 2 diabetes (n = 12). The
eQTLs identified in type I diabetes and AGE-RAGE signaling in diabetic complications
are illustrated in Figures 3 and 4, respectively. TXNIP exerts its effects, in part, through
the negative regulation of thioredoxin, which both TXN and TXN2 were identified as
eQTL genes. Further, the eQTL genes also mapped to pathways associated with TXNIP’s
pathophysiological role in cancer and neurodegenerative diseases, including: pathways in
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cancer (n = 159), pathways in neurodegeneration (n = 135), Alzheimer’s disease (n = 105),
Huntington disease (n = 81), Parkinson’s disease (n = 68), microRNAs in cancer (n = 66),
proteoglycans in cancer (n = 65), chemical carcinogenesis—ROS (n = 60), transcriptional
regulation in cancer (n = 59), hepatocellular carcinoma (n = 52), Hippo signaling pathway
(n = 50), cellular senescence (n = 49), breast cancer (n = 34) and p53 pathway (n = 29).
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Figure 3. Cis e-QTL genes with trans-meQTL effects on cg19693031 identified in type 1 diabetes
pathology. Cis e-QTL genes with meQTL effects on cg19693031 methylation are highlighted in red
(n = 23).

3.6. Genome-Wide cg19693031 GxE Analysis

To gain a better understanding of the genetically contextual effect of HbA1c levels on
cg19693031 methylation, genome-wide GxE analyses were conducted. A total of seven and
1355 GxE terms acting in cis and long-range cis were detected with nominal significance,
with the degree of explained methylation variance ranging from 13.31% to 14.05% and
12.32% to 16.67%, respectively. A total of 16,760 GxE terms acting in trans were detected
with nominal significance, with the degree of explained variance ranging from 10.98% to
17.80%. Of the 18,797 GxE terms, a total of 964 were identified in our meQTL analyses
(long-range cis: n = 81; trans: n = 883).

To determine the magnitude of GxE effects on cg19693031 methylation, an additive
step-wise linear regression was fit using GxE terms that demonstrated an adj R2 ≥ 0.1550
and did not contain missing values (n = 44). Notably, a majority of the retained GxE terms
were previously identified as meQTLs (n = 32). The features were ranked and fed into
the model based on their adj R2, with retainment dependent on each feature remaining
significant and a significant increase in the captured variance. A total of six GxE terms
were retained for the final GxE model. The final model explained 27.78% of the variance
of cg19693031 methylation (Table 8: p < 2.2 × 10−16), and significantly improved the fit
compared to HbA1c alone (ANOVA: p < 2.2 × 10−16).
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Table 8. Association estimates for features in final multivariate GxE regression model for cg19693031
methylation.

Feature β p-Value

rs2235338 0.059 **
rs72914579 −0.091 **
A1C:rs2235338 −0.008 **
JHU_1.52062655 0.082 **
rs11265240 0.058 **
A1C:rs72914579 0.011 *
JHU_2.234824901 0.054 *
A1C:JHU_1.52062655 −0.011 *
rs744439:A1C 0.007 *
A1C:JHU_2.234824901 −0.008 *
A1C:rs11265240 −0.007 *
rs744439 −0.027
A1C 0.007

p-value significiant codes: < 0.001 (**), < 0.01 (*). Overall model performance: adj R2 = 0.2778 and
p-value < 2.2 × 10−16.

Next, we performed secondary analyses to better characterize the functional effects
of the genetic variation of the GxE loci on cg19693031 methylation. Of the 18,797 SNPs,
a total of nine had confirmed associations with T2D via genome-wide association stud-
ies. Additionally, a total of 681 are located within exons and 261 are missense muta-
tions. The 18,797 GxE SNPs mapped to 3808 genes, with enrichment of two or more
SNPs found within 1533 genes. Interestingly, these genes functionally mapped to alterna-
tive splicing (p = 1.183 × 10−36, the same as the HbA1c-associated polymorphic DNAm
probes and meQTLs. Similar to the meQTLs, the GxE network mapped to several key
TXNIP mechanistic pathways, including the cell adhesion (p = 1.74 × 10−11), glutamatergic
synapse (p = 1.89 × 10−5), calcium signaling pathway (p = 1.7 × 10−4), insulin secretion
(p = 1.6 × 10−3) and PI3K-Akt signaling pathway (p = 1.6 × 10−3).

3.7. Integrated Model of Genetic and Environmental Effects for cg19693031

Next, we assessed whether an integrated genetic and environmental model accounting
for additive and interactive effects explains cg19693031 methylation variability better than
either alone. Using a similar step-wise approach, a total of 20 G + E and 6 GxE terms were
used to build the integrated model. The final integrated model captured 55.15% of the
methylation variance (Table 9: p < 2.2 × 10−16) and performed significantly better than the
genetic factors alone (ANOVA: 3.79 × 10−8).

Table 9. Association estimates for features in final multivariate integrated additive and interactive
genetic and HbA1c regression model for cg19693031 methylation.

Feature β p-Value

rs181228225 0.023 ***
rs11221332 −0.019 ***
JHU_18.63134356 0.017 ***
rs744439:A1C 0.009 ***
rs74470648 0.010 **
rs744439 −0.050 **
rs11177669 −0.009 **
rs1451452 −0.011 **
JHU_1.230641162 −0.008 **
rs11265240 0.052 **
rs17023177 0.011 **
rs117580705 0.018 **
rs6702764 −0.012 **
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Table 9. Cont.

Feature β p-Value

JHU_1.52062655 0.072 **
rs1054013 −0.014 **
rs7021911 0.138 **
A1C:rs7021911 −0.023 **
rs12718444 −0.012 **
rs3794207 −0.010 **
rs296200 0.009 **
rs7330858 0.015 *
rs331581 −0.009 *
rs1380989 0.008 *
A1C:rs11265240 −0.007 *
A1C:JHU_1.52062655 −0.010 *
rs62437200 −0.063 *
rs2390998 0.009 *
JHU_5.106093036 −0.008 *
rs7789476 −0.007 *
A1C:rs62437200 0.009 *
JHU_16.9476218 0.009 *
A1C 0.036

p-value significant codes: <0 (***), <0.001 (**), <0.01 (*). Overall model performance: adj R2 = 0.5515 and
p-value < 2.2 × 10−22.

3.8. cg19693031 Methylation Classifier for Predicting T2D Status

To determine the ability of cg19693031 to predict T2D status, a series of logistic regres-
sion classifiers were built, adjusting for age, sex and BMI. The covariate and cg19693031
models performed equally well in distinguishing diabetic from normoglycemic subjects
(Table 10A: AUC = 0.72 and AUC = 0.73, respectively), and prediabetic from normoglycemic
subjects (Table 10B: AUC = 0.52 and AUC = 0.53, respectively). However, the model in-
corporating cg1963031 performed better than the covariate model alone in distinguishing
diabetic from prediabetic subjects (Table 10C: AUC = 0.68 and AUC = 0.72, respectively).

Table 10. Performance metrics of logistic regression models for predicting normoglycemic vs. diabetic
subjects (A), normoglycemic vs. prediabetic subjects (B) and prediabetic vs. diabetic subjects (C).

Model † Predictors Precision Sensitivity Specificity AUC

1 Age + Sex + BMI 0.63 70% 74% 0.72
2 Model 1 + cg19693031 0.66 70% 76% 0.73
3 Model 2 + rs7211 0.65 74% 74% 0.74
4 Model 2 + rs7212 0.66 70% 76% 0.73
5 Model 2 + rs9245 0.61 63% 74% 0.68
6 Model 2 + rs7211 + rs7212 + rs9245 0.66 70% 76% 0.73

† Missing values for predictors result in analysis sample size of 227 subjects for all models.

(A)

Model † Predictors Precision Sensitivity Specificity AUC

1 Age + Sex + BMI 0.68 58% 46% 0.52
2 Model 1 + cg19693031 0.68 59% 46% 0.53
3 Model 2 + rs7211 0.7 57% 54% 0.55
4 Model 2 + rs7212 0.68 59% 46% 0.53
5 Model 2 + rs9245 0.68 61% 44% 0.52
6 Model 2 + rs7211 + rs7212 + rs9245 0.68 61% 44% 0.52

† Missing values for predictors result in analysis sample size of 397 subjects for all models.

(B)
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Table 10. Cont.

Model † Predictors Precision Sensitivity Specificity AUC

1 Age + Sex + BMI 0.43 67% 69% 0.68
2 Model 1 + cg19693031 0.51 67% 78% 0.72
3 Model 2 + rs7211 0.51 67% 78% 0.72
4 Model 2 + rs7212 0.5 63% 78% 0.71
5 Model 2 + rs9245 0.53 67% 79% 0.73
6 Model 2 + rs7211 + rs7212 + rs9245 0.46 59% 76% 0.67

† Missing values for predictors result in analysis sample size of 350 subjects for all models.

(C)

To determine if correcting for confounding local TXNIP genetic variation improves
the predictive ability of the cg19693031 models for T2D status, a series of logistic regression
classifiers were built, adjusting for age, sex and BMI. Three SNPS located within TXNIP that
were previously identified as being associated with diabetes and cardiovascular disease
were assessed. Of these, two were located near cg19693031 in the 3′UTR (rs7211 and rs7212),
and one SNP was located in the 5′UTR. The incorporation of any local SNP or the addition
of all three did not significantly improve the cg19693031 models for T2D status (Table 10).

3.9. Genome-Wide cg19693031 GxMeth Analyses for HbA1c

Based on the understanding that trans genetic variation can confound DNA methyla-
tion status, we conducted a genome-wide analysis of SNP interactions with cg19693031
using the Multi-Ethnic Beadchip. The HbA1c values were regressed against additive and
interactive GxMeth terms for each SNP, controlling for age, sex and BMI, with a total of
614,729 independent analyses conducted. After correcting for multiple comparisons, a total
of 1476 and 1987 SNPs had significant GxMeth and additive effects, respectively (Figure 5).
The top-25-ranked GxMeth SNPs are provided in Table 11.
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4 rs11244376 9  0.025 6.64 × 10−11 2.57 × 10−12 
5 rs4369634 15  0.316 7.32 × 10−11 1.19 × 10−11 
6 rs28904 17 SPACA3 0.084 2.56 × 10−10 6.76 × 10−11 
7 rs2816490 8  0.158 2.65 × 10−10 1.17 × 10−11 
8 rs78845567 1 XPR1 0.015 4.78 × 10−10 6.70 × 10−11 
9 rs77998701 14  0.036 6.45 × 10−10 5.23 × 10−11 

10 rs1764995 20  0.477 7.13 × 10−10 7.68 × 10−11 
11 rs62068262 17  0.059 8.54 × 10−10 1.43 × 10−10 
12 rs117219196 11  0.027 1.20 × 10−9 3.79 × 10−11 
13 rs12204978 6  0.059 1.24 × 10−9 1.28 × 10−10 
14 rs74635854 1  0.012 1.86 × 10−9 1.53 × 10−10 
15 rs72711488 4  0.15 2.02 × 10−9 6.88 × 10−10 
16 rs138418725 19 MAP3K10 0.014 2.18 × 10−9 1.98 × 10−11 
17 rs16840887 1  0.023 3.85 × 10−9 1.46 × 10−9 
18 rs62290693 3  0.269 4.84 × 10−9 1.65 × 10−9 
19 rs1296720 16 CREBBP 0.032 6.70 × 10−9 5.26 × 10−10 
20 rs17703186 2  0.095 9.96 × 10−9 1.72 × 10−9 
21 rs66462704 3  0.079 1.60 × 10−8 7.75 × 10−10 
22 rs142518718 13  0.013 1.61 × 10−8 3.10 × 10−9 
23 rs116519465 4  0.013 2.00 × 10−8 9.16 × 10−10 
24 rs16859517 2 NHEJ1 0.013 2.02 × 10−8 1.59 × 10−9 
25 rs12676638 8   0.015 2.45 × 10−8 4.84 × 10−10 

Abbreviations: Chr, chromosome; MAF, minor allele frequency. Top 25 SNPs based on the Bonfer-
roni corrected p-value of the Gxmeth term in regression analyses against HbA1c values adjusted for 
age, sex and BMI. 

Figure 5. Manhattan plot illustrating the association of GxMeth and SNP terms with HbA1c. Re-
sults were adjusted for age, sex and BMI, and corrected for multiple comparisons. Associations at
p < 1.33 × 10−7 are above the horizontal black line. The chromosome density, number of significant
SNPs residing within a 1 Mb window, is located at the bottom of the plot and the color-coded legend
is to the right.
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Table 11. Top 25 ranked SNPs with GxMeth effects after Bonferroni correction.

Rank SNP Chr Gene MAF GxMeth p-Value SNP p-Value

1 rs1932189 6 0.027 8.85 × 10−17 1.98 × 10−18

2 rs10797745 1 DNM3 0.034 1.04 × 10−11 8.91 × 10−14

3 rs6110333 20 MACROD2 0.062 3.44 × 10−11 8.52 × 10−12

4 rs11244376 9 0.025 6.64 × 10−11 2.57 × 10−12

5 rs4369634 15 0.316 7.32 × 10−11 1.19 × 10−11

6 rs28904 17 SPACA3 0.084 2.56 × 10−10 6.76 × 10−11

7 rs2816490 8 0.158 2.65 × 10−10 1.17 × 10−11

8 rs78845567 1 XPR1 0.015 4.78 × 10−10 6.70 × 10−11

9 rs77998701 14 0.036 6.45 × 10−10 5.23 × 10−11

10 rs1764995 20 0.477 7.13 × 10−10 7.68 × 10−11

11 rs62068262 17 0.059 8.54 × 10−10 1.43 × 10−10

12 rs117219196 11 0.027 1.20 × 10−9 3.79 × 10−11

13 rs12204978 6 0.059 1.24 × 10−9 1.28 × 10−10

14 rs74635854 1 0.012 1.86 × 10−9 1.53 × 10−10

15 rs72711488 4 0.15 2.02 × 10−9 6.88 × 10−10

16 rs138418725 19 MAP3K10 0.014 2.18 × 10−9 1.98 × 10−11

17 rs16840887 1 0.023 3.85 × 10−9 1.46 × 10−9

18 rs62290693 3 0.269 4.84 × 10−9 1.65 × 10−9

19 rs1296720 16 CREBBP 0.032 6.70 × 10−9 5.26 × 10−10

20 rs17703186 2 0.095 9.96 × 10−9 1.72 × 10−9

21 rs66462704 3 0.079 1.60 × 10−8 7.75 × 10−10

22 rs142518718 13 0.013 1.61 × 10−8 3.10 × 10−9

23 rs116519465 4 0.013 2.00 × 10−8 9.16 × 10−10

24 rs16859517 2 NHEJ1 0.013 2.02 × 10−8 1.59 × 10−9

25 rs12676638 8 0.015 2.45 × 10−8 4.84 × 10−10

Abbreviations: Chr, chromosome; MAF, minor allele frequency. Top 25 SNPs based on the Bonferroni corrected
p-value of the Gxmeth term in regression analyses against HbA1c values adjusted for age, sex and BMI.

Next, we performed secondary analyses to better characterize the functional effects
of genetic variation in the GxMeth loci on cg19693031 methylation. First, we conducted
methylation quantitative trait loci (meQTL) analysis to determine the extent to which
genetic variation in the GxMeth loci influences cg19693031 methylation. After Bonferroni
correction, rs2390998 was identified as a meQTL (p = 0.045) with a small effect size (0.04,
95% CI = [0.01, 0.08]). As illustrated in Figure 6A, the average methylation across the
506 subjects was significantly lower in rs2390998 heterozygotes (AG) than major allele
homozygotes (GG) (pHolm-corrected = 0.005, ∆β = 2%). Notably, the genetic influence of
rs2390998 on methylation was only prominent in diabetic subjects, with the most sig-
nificant difference in methylation seen between the homozygote genotypes (Figure 6B;
pHolm-corrected = 4.63 × 10−11, ∆β = 13%; effect size = 0.16, 95% CI = [0.05, 0.32]). Next, we
conducted a genetic x environment analysis (GxE) to determine the genetically contextual
effect of HbA1c levels on cg19693031 methylation. After Bonferroni correction, rs1074390
had a significant GxE effect (p = 0.048; effect size = 0.165, 95% CI [0.11, 0.22]. While the
average cg19693031 methylation did not significantly differ as a function of rs1074390
genotype across the cohort (∆β = 1%), a significant difference was seen when stratified by
T2D status (Figure 7). Similar to rs2390998, differences in methylation across the rs1074390
genotype were observed only in diabetic subjects, with the most significant difference in
methylation observed between the homozygote genotypes (pHolm-corrected = 3.92 × 10−4;
∆β = 9%; effect size = 0.38, 95% CI [0.12, 0.56].
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The significant GxMeth SNPs mapped to 560 unique genes, with enrichment of two
or more SNPs found within 103 genes. Of those 560 genes, 167, 144 and 22 genes had con-
firmed associations to metabolic and cardiovascular disorders and type 2 diabetes, respec-
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tively [4,22]. To gain functional insights into these significant GxMeth interactions, a protein–
protein interaction network (PPI) was generated using data from the STRING database. A
total of 487 genes were correctly matched to the database. Figure 8 illustrates this network,
with nodes only shown if they have an edge with a minimum interaction score of 0.9. This
network consisted of 477 nodes with 158 edges (PPI enrichment p = 4.1 × 10−9), with an
average node degree of 0.662. This network mapped to several biological process GO path-
ways that are highly associated with the development and complications of T2D, including
regulation of voltage-gated sodium channel activity (p = 1.33 × 10−2), protein kinase C-
activating G protein-coupled receptor signaling pathway (p = 1.26 × 10−2), cell communi-
cation involved in cardiac conduction (p = 1.41 × 10−2), cardiac muscle cell action potential
involved in contraction (p = 3.65 × 10−2), regulation of heart rate (p = 6.63 × 10−3), calcium-
mediated signaling (p = 2.30 × 10−2) and angiogenesis (p = 1.13 × 10−2). This network also
mapped to several KEGG pathways, including glutamatergic synapse (p = 3.8 × 10−3),
dilated cardiomyopathy (p = 7.5 × 10−3), Rap1 signaling pathway (p = 8.1 × 10−3),
PI3K-Akt signaling pathway (p = 1.56 × 10−2), phospholipase D signaling pathway
(p = 2.2 × 10−2), hypertrophic cardiomyopathy (p = 2.27 × 10−2) and Wnt signaling path-
way (p = 2.42 × 10−2).
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3.10. Integrated Genetic–Epigenetic Classifier for Predicting T2D Status

To determine if correcting for genetic factors with significant GxMeth effects improves
the predictive ability of cg19693031 for T2D status, a series of balanced random forest
(BRF) classifiers were built, adjusting for age, sex and BMI (Table 12). Using a repeated
stratified k-fold cross-validation approach, each BRF classifier with random under-sampling
was built to evaluate the features’ ability to discriminate between control and diabetic
subjects. Similar to the logistic regression modeling, two base classifiers were built using
the covariate variables solely and another incorporating cg19693031 (AUC = 0.68 and
AUC = 0.71, respectively). Next, the 1476 GxMeth genetic factors were incorporated into
the model, with a decrease in performance observed in comparison to the base models
(AUC = 0.67). This decrease in performance is reflective of the random forest’s known
vulnerability to overfitting due to correlated features with little discriminatory value.

Table 12. Balanced random forest models performance metrics for predicting normoglycemic vs.
diabetic subjects.

Model Predictors Precision Sensitivity Specificity AUC

1 Age + Sex + BMI 0.56 74% 63% 0.68
2 Model 1 + cg19693031 0.59 74% 67% 0.71
3 Model 2 + 1476 GxMeth SNPs 0.54 70% 63% 0.67
4 Model 2 + 551 selected GxMeth SNPs 0.69 67% 81% 0.74
5 Model 2 + Top 10 GxMeth SNPs 0.63 81% 70% 0.76

To resolve this, we performed multivariate ensemble feature selection using random
forest with a subsequent BRF classifier to reduce the dimensionality of the dataset. Multi-
variate approaches consider conditional higher-order interactions between several or all
features simultaneously when measuring each feature’s relevance to the overall classifi-
cation task. A total of 554 features were selected by the random forest learner, including
the covariates, cg19693031 and 550 non-local GxMeth SNPs. Using a repeated stratified
k-fold cross-validation approach with random under-samplings of the minority class to
counteract class imbalance, a BRF model was built to evaluate the selected features for
predicting control versus diabetic subjects. The performance of the model improved, with
an AUC of 0.74. To further reduce the dimensionality of the dataset, we used the Gini
importance to select the top-ranked relevant features. The selected features were ranked
according to their Gini Importance, and the top 13 features were retained (Table 13). Using
these features, a final BRF classifier was built. The classifier performed better than the
previous models, with an AUC of 0.76 (81% sensitivity, 70% specificity). The confusion
matrix and ROC curve are illustrated in Figure 9.

Table 13. Top ranked important features selected by a BRF for predicting normoglycemic vs. dia-
betic subjects.

Rank Feature

1 Age
2 cg19693031
3 BMI
4 rs78125109
5 rs9311874
6 rs79244502
7 rs10496366
8 rs10496731
9 rs10032200
10 rs77173725
11 rs2227818
12 rs440617
13 rs3218194
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4. Discussion

Using data from a group of African American adults, we confirm and extend the prior
findings, showing that the methylation of cg19693031 has a significant dose-dependent
relationship with HbA1c. We identify confounding genetic variations influencing the
methylation status of cg19693031 both independent of and in combination with HbA1c.
The pathway analyses identified the regulatory mechanisms related to the 3D genomic
structure and TXNIP’s role in disease susceptibility. Finally, we demonstrate that correcting
for genetic confounding improves the ability of cg19693031 to detect type 2 diabetes. Col-
lectively, our analyses suggest that the demethylation response of cg19693031 to sustained
hyperglycemia in white blood cells may play a pivotal role in the regulatory network effects
that underlie several clinical phenotypes, with insights into TXNIP’s pleiotropic functions
for disease onset and progression.

To the best of our knowledge, our study is the first full integration of genetic and
hyperglycemia effects on cg19693031 methylation, laying the groundwork for a more
comprehensive understanding of the molecular mechanisms linking the methylation status
of TXNIP’s 3′UTR to disease. Collectively, we identify 11,240 genes that participated in
significant interactions. The enrichment and functional genomic analyses suggest the
crosstalk between genetic variants and the demethylation response of cg19693031 may
contribute to the dysregulation of gene expression seen in diabetes. For example, TXNIP
has been shown to be induced by glucose and overexpressed in diabetic patients [23]. In
addition, the TXNIP locus is complexly regulated by multilayered mechanisms, including
transcriptional regulation, microRNA, mRNA stabilization and protein degradation [24].
Our analyses identified several of these regulators, including transcription factors (FOX01,
HSF2, RXRA and KLF6) and modulators of mRNA stability (mir-17, ZFP36, NEDD1,
NEDD4, NEDD9 and WWP1). In addition, several factors known to influence genome and
epigenome plasticity were identified, including methylome regulators, histone modifiers
and subunits of the cohesion complex. While our analyses suggest that the interplay
between cg1963031 methylation and genetic variation may influence the transcriptional
program of leukocytes in the context of hyperglycemia, external validation with expression
data is needed.

Prior studies have suggested the utility of TXNIP as a biomarker for diabetes due to
its hyperglycemia-induced overexpression and the strong association of cg19693031 with
HbA1c [7]. While the demethylation of cg19693031 correlates to an increase in TXNIP
transcription [5], this upregulation cannot be adequately explained by the demethylation
of a 3′UTR CpG site as others have suggested. Whereas methylation within the CpG
islands and shores near promoter regions correlates to transcriptional repression [25], the
literature to support the same conclusion within gene bodies is lacking. Indeed, the recent
work by Albao and colleagues suggests that the demethylation of cg19693031 promotes
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spurious transcription of the 3′UTR [26]. Prior studies have demonstrated the regulation
of TXNIP via miRNA directed degradation of the mRNA, notably miR-17 [27]. Therefore,
the spurious transcription of the 3′UTR intragenic region could potentially sequester the
miRNA degradation by acting as a competitive endogenous RNA, resulting in an increase in
TXNIP mRNA stability. Our findings further support the hypothesis that the demethylation
response of cg19693031 may increase the mRNA stability of TXNIP. Further research is
needed to validate and extend upon the role of the methylome in the regulation of TXNIP.

Our findings will be particularly useful for those seeking to better understand the
pathophysiological function of TXNIP in order to optimize diabetes medicine. For example,
several cg19693031 interacting genes were enriched in both type 1 (n = 27) and type 2
diabetes (n = 26). In addition, biological pathways related to diabetes were identified,
including: insulin section, downstream signaling of insulin and glucagon and sensory
perception of chemical stimulus. TXNIP emerged as a viable therapeutic target for di-
abetes due to its role in pancreatic β-cell apoptosis via activation of the mitochondrial
death pathway [28]. The activation of the NLRP3 inflammasome results in the release
of proinflammatory cytokines and apoptosis [29]. Critical to this report, TXNIP-induced
inflammasome activation and IL-1β production are primarily observed in resident innate
immune cells and not the islet β cells themselves [30–32]. Pathway analyses identified
several mechanisms related to β-cell destruction, such as T-cell signaling and cytotoxic ef-
fects and ROS-induced apoptosis. Remarkably, strong interactions were observed with five
major islet autoantigens (INS, GAD, IA-2, CPE and ICA). A total of 88 and 66 confounding
genetic variants mapped to the NOD-like receptor signaling pathway and apoptosis. In par-
ticular, cg19693031 interacted with key loci for inflammasome activation (TRX, regulators
of NLRP3 expression and NLRP3 itself), proinflammatory effects (IL-1β, IL-18, IL-6 and
TNFα), death receptors (TRAIL-R, Fas and FADD) and other pro-apoptotic genes (BCL-2,
BAD, JNK, BAK, ATM and PUMA). Further, TXNIP has been implicated in the develop-
ment of diabetes-induced complications, including coronary heart disease. In this report,
we identified loci mapping to lipids and atherosclerosis (n = 102), diabetic cardiomyopathy
(n = 73), insulin resistance (n = 66) and AGE-RAGE diabetic complications (n = 59). This
suggests that the pathophysiological role of the demethylation response of cg19693031 may
generalize across the diabetes subtypes. As the diagnosis of diabetes mellitus is based on
clinical presentation rather than specific molecular defects, overlaps in their etiologies have
been documented. Indeed, prior studies have demonstrated the association of cg19693031
methylation and T1D. Further, current clinical trials are investigating the use of Verapamil
for treatment of T1D, which has been shown to decrease the expression of TXNIP.

Altered TXNIP activity has been implicated in the development of several diseases aside
from diabetes, including atherosclerosis, cancer and neurodegenerative diseases [33–36]. Our
functional analyses identified enrichment in several of these diseases, including pathways
in cancer (n = 274), pathways in neurodegeneration (n = 205), Alzheimer’s disease (n = 155),
microRNAs in cancer (n = 106), transcriptional misregulation in cancer (n = 100) and the
Hippo signaling pathway (n = 84). Moreover, prior studies have demonstrated an associa-
tion between cg19693031 methylation and chylomicrons (Class A), triglycerides, hexose,
α-hydrobutyrate, systolic hypertension, waist circumference, gender, metabolic syndrome,
type 1 diabetes, coronary heart disease, breast cancer and colon cancer [7,37–40]. Taken
together, this suggests that the demethylation response of cg19693031 in white blood cells is
not specific to diabetes, let alone T2D. Therefore, the clinical use of cg19693031 methylation
status in its current form as a biomarker for T2D diabetes may lead to inappropriate clinical
decisions and poor patient outcomes. Extensive follow-up studies will be required to
demonstrate the ability of cg19693031 methylation to accurately stratify diabetes risk in
spite of the non-specific demethylation response.

We also note that, among those with HbA1c confirmed diabetes, only 57% had come
to clinical attention, and less than 1% were on diabetic medications. This observation is
reflective of the long asymptomatic phase of the disease, and health disparities seen in
African American communities, resulting in a high rate of undiagnosed T2D. Additionally,
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control and pre-diabetic subjects reported a DM diagnosis, 3% and 9%, respectively, but
they did not report the use of anti-diabetic pharmacological therapy. This discordance may
be reflective of subjects reporting a pre-diabetic diagnosis, or lowered glucose levels due to
lifestyle changes or bariatric surgery.

The findings of this study should be considered in the context of its limitations.
First, it is important to note that the FACHS cohort is almost exclusively mature adult
African American women. Further examinations using a larger number of subjects of
other ethnicities, age groups and equal proportions of biological sexes will be required to
demonstrate generalizability. Second, although the HbA1c test is the clinical gold standard,
it is not sensitive to all pre-diabetes phenotypes [41]. Therefore, replicating our findings
with other glycemic indices is needed. Third, the SNPs identified with having significant
interactions with cg19693031 DNAm may not be the polymorphism driving the interaction;
instead, it may be a tag SNP in full or partial equilibrium with another SNP that is driving
the interaction. Additionally, there are known limitations to the Illumina EPIC arrays, such
as cross-reactive and polymorphic probes, and β-value skewing due to the normalization
process [42,43]. Hence, a more precise method for measuring cg19693031 DNAm, such
as digital PCR, should be used to validate and extend our findings. Finally, cg19693931
methylation is confounded by multiple disease processes and cellular contexts. Therefore,
while cg19693031 methylation may be sensitive to sustained hyperglycemia, it is not specific
to diabetes.

In summary, we confirm and extend the prior findings of the demethylation response
of cg19693031 to increasing HbA1c values in an African American cohort. This study is the
first to extensively examine the genetic and hyperglycemia contextual effects on cg19693031
methylation, laying the groundwork for a better understanding of TXNIP’s pleiotropic
pathophysiological effects in the development of disease. Future studies examining the
extent of non-diabetes cellular-context-confounding cg19693031 methylation are needed to
assess the feasibility for translation and potential clinical utility.
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