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BACKGROUND: MicroRNAs (miRNAs) are key regulators of gene expression. In this study, we explored whether altered miRNA
expression has a prominent role in defining the inflammatory breast cancer (IBC) phenotype.
METHODS: We used quantitative PCR technology to evaluate the expression of 384 miRNAs in 20 IBC and 50 non-IBC samples.
To gain understanding on the biological functions deregulated by aberrant miRNA expression, we looked for direct miRNA targets
by performing pair-wise correlation coefficient analysis on expression levels of 10 962 messenger RNAs (mRNAs) and by comparing
these results with predicted miRNA targets from TargetScan5.1.
RESULTS: We identified 13 miRNAs for which expression levels were able to correctly predict the nature of the sample analysed
(IBC vs non-IBC). For these miRNAs, we detected a total of 17 295 correlated miRNA–mRNA pairs, of which 7012 and 10 283 pairs
showed negative and positive correlations, respectively. For four miRNAs (miR-29a, miR-30b, miR-342-3p and miR-520a-5p),
correlated genes were concordant with predicted targets. A gene set enrichment analysis on these genes demonstrated significant
enrichment in biological processes related to cell proliferation and signal transduction.
CONCLUSIONS: This study represents, to the best of our knowledge, the first integrated analysis of miRNA and mRNA expression in
IBC. We identified a set of 13 miRNAs of which expression differed between IBC and non-IBC, making these miRNAs candidate
markers for the IBC subtype.
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MicroRNAs (miRNAs) are a class of non-coding RNAs able to
regulate gene expression at the post-transcriptional level, by
binding to the 30 untranslated region of target messenger RNAs
(mRNAs) through partial sequence homology, and causing a block
of translation and/or mRNA degradation (He and Hannon, 2004).
At the time of writing of this paper, 721 human miRNA genes
had been described (http://microrna.sanger.ac.uk/sequences) and
it has been estimated that each of the miRNAs targets about 100
different mRNA molecules (Brennecke et al, 2005; Lewis et al,
2005; Lim et al, 2005). MiRNAs have important roles in essential
processes, such as differentiation, cell growth, stress response
and cell death (Miska, 2005; Zamore and Haley, 2005). Accord-
ingly, altered miRNA expression is likely to contribute to
human disease, including cancer. In fact, the spectrum of
miRNAs expressed in solid cancers is very different from that of
normal cells and the predicted targets for the differentially
expressed miRNAs are significantly enriched for protein-coding
tumour suppressors and oncogenes (Lu et al, 2005; Volinia et al,
2006).

Focussing on breast cancer, levels of specific miRNAs differ
between malignant and normal breast tissue and are able to
classify tumours according to clinicopathological variables, such as
proliferation index, steroid hormone receptor and Her2/neu status,
nodal status and tumour stage (Iorio et al, 2005; Mattie et al, 2006;
Lowery et al, 2008). Furthermore, miRNAs are differentially
expressed between molecular breast cancer subtypes, including
luminal A, luminal B, basal-like and Her2þ (Blenkiron et al,
2007). This highlights the potential of miRNA signatures as new
prognostic indicators that may contribute to the improved selection
of patients for adjuvant therapy. Indeed, Foekens et al (2008) recently
linked four miRNAs (miR-7, miR-128a, miR-210 and miR-516-3p)
to a shorter time to distant metastasis in oestrogen receptor (ER)-
positive, lymph node-negative breast cancer.

In this study, we explored whether inflammatory breast cancer
(IBC) is associated with a specific miRNA signature. Although this
form of breast cancer has traditionally been understudied, there
are several reasons for focusing on IBC. First, IBC is arguably the
deadliest form of breast cancer, with 5- and 10-year disease-free
survival rates of less than 35 and 20%, respectively (Jaiyesimi et al,
1992), highlighting the need for accurate prognostic and predictive
markers and the development of new molecular targeted therapies.
Second, most patients with IBC have lymph node involvement at
time of diagnosis and one-third of patients present with distant
metastasis (Jaiyesimi et al, 1992), which makes IBC an interesting
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model for identifying the forces driving breast cancer aggressive-
ness in general. Indeed, several studies comparing IBC to non-IBC
have demonstrated a specific mRNA expression signature in IBC
that is significantly enriched for genes involved in cell motility,
inflammation, immune response and stem cell biology (Bertucci
et al, 2004, 2005; Van Laere et al, 2005, 2006, 2007). Furthermore,
we recently reported that the identified IBC gene signature was
associated with dismal tumour characteristics in non-IBC, such as
high tumour grade, absence of ER expression and presence of
Her2/neu expression, and independently predicted relapse-free
survival in non-IBC (Van Laere et al, 2008). Finally, accurate and
rapid diagnosis of IBC remains problematic due to the lack of
uniformity in criteria for IBC diagnosis and new diagnostic
markers are therefore needed.

MATERIALS AND METHODS

Patients’ samples

Tumour samples were retrieved from the tissue bank of the
General Hospital Sint-Augustinus (Antwerp, Belgium). Clinical
and pathological data are stored in a database in accordance with
hospital privacy rules. Specimens were brought to the pathologists
immediately after resection and part of the tissue was placed in
liquid nitrogen and subsequently stored at �1801C. A total of 20
patients with IBC and 50 patients with non-IBC were included in
this study. Inflammatory breast cancer was diagnosed according
to the criteria mentioned in the AJCC (American Joint Committee
on Cancer)-TNM staging system (Singletary et al, 2002). All
patients with IBC showed diffuse enlargement of the involved
breast of sudden onset. There was erythema and oedema of the
skin involving more than one-third of the breast. The presence of
dermal lymphatic invasion as an isolated observation was not
sufficient for the diagnosis of IBC and was not necessary for the
diagnosis either. The non-IBC control group was matched for
histological tumour grade, ER expression and human epidermal
growth factor receptor 2 (HER2) amplification but not for tumour
stage to identify true determinants of IBC. Tumour characteristics
are provided in Table 1.

Total RNA isolation, complementary DNA synthesis and
miRNA quantification

After tissue disruption, total RNA was extracted by using the
mirVana miRNA Isolation Kit (Ambion, Austin, TX, USA) accor-
ding to the manufacturer’s instructions for total RNA isolation.
Purified total RNA was quantified by using a NanoDrop ND1000
(NanoDrop Technologies, Wilmington, DE, USA). Total RNA
(100 ng) was then converted to complementary DNA by priming
with a mixture of stem-looped RT primers (Megaplex RT Primers,
Human Pool A, Applied Biosystems, Foster City, CA, USA) in
combination with the TaqMan MicroRNA Reverse Transcription Kit
(Applied Biosystems), allowing simultaneous transcription of 377
unique miRNAs and six endogenous controls. Briefly, 3ml of total
RNA was supplemented with RT primer mix (10� ), dNTPs with
dTTP (100 mM), Multiscribe Reverse Transcriptase (50 Uml�1), RT
buffer (10� ), MgCl2 (25 mM) and RNase inhibitor (20 Uml�1) in
a total reaction volume of 7.5ml. Thermal-cycling conditions were as
follows: 40 cycles of 161C for 2 min, 421C for 1 min and 501C for 1 s,
followed by a reverse transcriptase inactivation at 851C for 5 min. The
Megaplex RT product (2.5ml) was pre-amplified using the TaqMan
PreAmp Master Mix (Applied Biosystems) and PreAmp Primers,
Human Pool A (Applied Biosystems) in a 25-ml PCR reaction.
Thermal-cycling conditions were as follows: 951C for 10 min, 551C for
2 min and 751C for 2 min, followed by 12 cycles of 951C for 15 s and
601C for 4 min. MiRNA quantification was performed with the
TaqMan Human MicroRNA A Array Set v2.0 (Applied Biosystems),
which contains 384 TaqMan miRNA assays. The PreAmp product
was diluted four-fold. Each of the eight wells was loaded with 100ml of
PCR reaction mix, containing 50ml of TaqMan Universal PCR Master
Mix, no AmpErase uracil N-glycosylase (UNG) (Applied Biosystems),
1ml of diluted PreAmp product and 49ml of nuclease-free water.
Thermal-cycling conditions were as follows: 94.51C for 10 min,
followed by 40 cycles of 971C for 30 s and 59.71C for 1 min. All PCR
reactions were performed on a 7900HT Fast Real-Time PCR System
(Applied Biosystems). The PCR replicates were measured for four
samples.

Statistics and bioinformatics

To reduce technical variation, all miRNAs with a Ct (threshold
cycle) detection cut-off of less than 35 PCR cycles in at least 25% of
samples were filtered, resulting in a list of 322 informative miRNAs.
Next, we performed a between-sample normalisation by median-
centring the distribution of miRNA expression levels for each sample
(Mestdagh et al, 2009). Relative miRNA expression levels were
calculated using the DCt method (Livak and Schmittgen, 2001).

To identify miRNA expression patterns, we performed an
unsupervised hierarchical complete linkage cluster analysis using
Euclidean distance as dissimilarity metric. The number of robust
sample clusters was determined with the silhouette algorithm.
Next, we investigated the association of the sample clustering
result with clinicopathological variables using a Pearson w2 test and
a Goeman global test (Goeman et al, 2004).

To identify individual miRNAs associated with IBC, we first
selected all miRNA that were significantly over- or underexpressed
in IBC when compared with non-IBC using a non-parametric test.
Then, each of these miRNAs was subjected to a multivariate
regression analysis with N status, M status, tumour stage and
HER2 amplification as covariates. In this way, we could indentify
miRNAs that are specifically related to IBC and not to differences
in clinicopathological variables between IBC and non-IBC known
to also influence miRNA expression in breast cancer.

To investigate the biological relevance of the identified miRNAs,
we adopted the strategy recently described by Wang et al (2009).
First, for each of the miRNAs that were independently associated
with IBC, we identified a set of putative target genes by Spearman
correlation analysis, taking into account both positive and negative

Table 1 Tumour characteristics

Clinicopathological
features

IBC
(N¼ 20)

Non-IBC
(N¼50) P-value

Patients’ ages (years)
Mean 60 59

0.692
Range 45–79 30–89

Tumour stage
I 0 (0%) 21 (42%)
II 0 (0%) 15 (30%) o0.001
III 10 (50%) 11 (22%)
IV 10 (50%) 3 (6%)

Histological tumour gradea

Well 0 (0%) 8 (16%)
Moderate 9 (45%) 23 (46%) 0.125
Poor 11 (55%) 19 (38%)

Oestrogen receptor
Positive 16 (80%) 35 (70%)

0.395
Negative 4 (20%) 15 (30%)

HER2 amplification
Positive 8 (40%) 9 (18%)

0.052
Negative 12 (60%) 41 (82%)

Abbreviations: HER2¼ human epidermal growth factor receptor 2; IBC¼ inflamma-
tory breast cancer. aNottingham histological grade (Elston, 1984).
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correlations. This analysis was performed on a subgroup of 44
samples (20 IBC and 24 non-IBC samples) for which Affymetrix
HGU133 plus 2.0 gene expression profiles were available (Van
Laere et al, 2007). Next, to identify the true miRNA targets, we
compared the lists of putative miRNA targets with the lists of
miRNA targets defined by TargetScan5.1 (http://www.targetscan.org)
using a hypergeometric gene set enrichment analysis. Those
miRNAs for which the miRNA targets defined by TargetScan5.1
were significantly enriched for correlation-defined miRNA
targets were subjected to further analysis. In addition, all further
analyses were performed only on the common genes between the
two miRNA targets sets. These genes were analysed for enriched
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) categories through hypergeometric gene set
enrichment analysis.

To test whether the identified miRNAs are prognostically
relevant, we downloaded six publicly available gene expression
data sets from the National Center for Biotechnology Information
website (GSE7390, GSE9195, GSE1456, GSE11121, GSE2034 and
GSE4922; http://www.ncbi.nlm.nih.gov). In addition, the data set
described by van de Vijver et al (2002) was retrieved from the
Rosetta website (http://www.rii.com). In total, we analysed mRNA
expression data from 1504 breast cancer samples. For each sample,
we calculated a score, proportional to the level of expression of a
selected miRNA, by subtracting the average of the negatively
correlated miRNA targets from the average of the positively
correlated miRNA targets. These scores were standardised
(median¼ 0 and s.d.¼ 1) to allow for comparisons across different
data sets and analysed using a Cox proportional hazards model in
both a univariate and a multivariate setting. The outcome variable
was distant metastases-free survival (DMFS, N¼ 1059), overall
survival (OS, N¼ 652) or relapse-free survival (RFS, N¼ 1145)
where possible.

Finally, within the subset of 44 samples for which Affymetrix
HGU133 plus 2.0 gene expression profiles were available, we
compared the expression of miRNA processing genes between IBC
and non-IBC. Furthermore, we analysed the putative regulatory
effect of all miRNAs from the TargetScan5.1 database on the gene
expression profiles from these 44 samples. We adopted the
approach recently published by Cheng et al (2009) to calculate a
regulatory effect (RE) score by subtracting the average rank of the
miRNA targets from the average rank from the non-miRNA
targets, with high RE scores denoting a strong effect of the miRNA
on the expression of the targets and vice versa. However, as this
score only takes into account the negatively regulated miRNA
targets, we adapted the RE score in a manner that both inhibitory
and activating effects were equally weighed. Next, these RE
scores were compared between IBC and non-IBC using a
non-parametrical test.

All data analyses were performed using Bioconductor in
R (http://www.bioconductor.org). Correction for multiple testing
was performed using the Benjamini and Hochberg step-up false
discovery rate controlling procedure and adjusted P-values o0.1
were considered significant.

RESULTS

Hierarchical clustering based on miRNA expression
profiles

We used quantitative RT-PCR technology in combination with a
limited cycle pre-amplification to evaluate the miRNA expression
profiles of 20 IBC and 50 non-IBC samples. The TaqMan Human
MicroRNA A Array v2.0 contains 384 TaqMan miRNA assays
enabling accurate quantification of 377 human miRNAs, six
endogenous controls and one negative control. Four breast cancer
samples were assayed in duplicate. Pearson correlation coefficients

for these duplicates ranged from 0.98 to 0.99, indicating good assay
reproducibility.

The accuracy of quantitative RT-PCR experiments is dependent
on proper data normalisation. For each individual breast cancer
sample, we calculated the mean expression value based on those
miRNAs that were expressed according to a Ct detection cut-off of
less than 35 PCR cycles in at least 25% of samples (N¼ 322). This
value was subsequently used as a normalisation factor to reduce
technical variation. This normalisation strategy has been shown
to be superior to the use of stable small RNA controls (Mestdagh
et al, 2009).

The clustering of miRNA expression profiles derived from 70
breast cancer samples is shown in Figure 1. The dendrogram was
constructed by using the 50 most varying miRNAs among all
breast cancer samples (based on the s.d. value of miRNA levels
across all samples). We identified three sample clusters with an
average silhouette width of 0.08 (Po0.05 after permutation
testing). A Pearson w2 test demonstrated that sample clustering
was associated with ER expression (P¼ 0.011), histological tumour
grade (P¼ 0.004), N status (P¼ 0.014) and tumour stage (P¼ 0.010).
No association with sample clustering was observed for T and M
status, HER2 amplification or tumour subtype (IBC or non-IBC).

A Goeman global test was performed to look for associations
of miRNA expression with various clinicopathological factors
(Table 2), for the reduced data set consisting of the 50 most
varying miRNAs. Significant associations were observed for ER
expression and histological tumour grade, but not for T, N or M
status, tumour stage, HER2 amplification or tumour subtype
(IBC or non-IBC). Thus, the largest variation in miRNA expression
in our set of breast cancer samples was attributable to differences
in steroid hormone receptor expression and histological tumour
grade and not to differences between IBC and non-IBC. In fact,
the overall distributions of miRNA expression values in IBC and
non-IBC look very similar (Figure 2).

Association of individual miRNAs with inflammatory
breast cancer

A logistic regression analysis was performed to identify differences
in individual miRNA expression levels between IBC and non-IBC
samples (Table 3). Few miRNAs were observed to be indepen-
dently associated with the difference between IBC and non-IBC.
Increased expression of miR-335, miR-337-5p, miR-451, miR-486-
3p, miR-520a-5p and miR-548d-5p was observed in the IBC
subtype, whereas miR-15a, miR-24, miR-29a, miR-30b, miR-320,
miR-342-5p and miR-432-3p were significantly downregulated in
comparison with non-IBC.

A similar analysis was performed to identify differences in
miRNA expression between samples according to T status (low vs
high), N status (positive vs negative), M status, tumour stage (low
vs high), tumour grade (high vs low), ER expression and HER2
amplification. The associations of miRNAs with these clinico-
pathological factors are also shown in Table 3.

Prediction of miRNA targets and their involvement in
biological processes

Next, we investigated the involvement of miRNA target genes in
various biological processes, which may indicate the function of
the miRNA, by adopting the strategy recently described by Wang
et al (2009). First, we performed a correlation coefficient analysis
to evaluate potential correlations between expression levels of the
13 miRNAs associated with IBC (miR-335, miR-337-5p, miR-451,
miR-486-3p, miR-520a-5p, miR-548d-5p, miR-15a, miR-24,
miR-29a, miR-30b, miR-320, miR-342-5p and miR-342-3p) and
mRNA expression levels of 10 961 known genes in a reduced set of
44 breast cancer samples, of which 20 were IBC and 24 were non-
IBC. Using a false discovery rate of o0.1, we detected significant
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correlations in 17 295 miRNA–mRNA pairs (Table 4). Of the
17 295 pairs, 7012 pairs and 10 283 pairs showed negative
and positive correlations, respectively. For all miRNAs, with
the exception of miR-520a-5p and miR-337-5p, we observed
more frequently positively correlated miRNA–mRNA pairs than
negatively correlated miRNA–mRNA pairs. Subsequently, we
performed a gene set enrichment analysis to investigate whether
these sets of miRNA-correlated genes are indeed differentially
expressed in IBC and non-IBC (Table 4). Significant results
were observed for all but one miRNA-correlated gene set.
Expression levels of the miR-335/miR-548d-5p/miR-451-correlated
gene sets were increased in IBC, whereas expression levels of
the miR-15a/miR-24/miR-29a/miR-30b/miR-320/miR-342-5p/miR-
342-3p/miR-337-5p/miR-520a-5p-correlated gene sets were decreased
in IBC.

hsa-miR-184-4373113
hsa-miR-449a-4373207
hsa-miR-449b-4381011
hsa-miR-139-3p-4395424
hsa-miR-187-4373307
hsa-miR-492-4373217
hsa-miR-211-4373088
hsa-miR-522-4395524
hsa-miR-518e-4395506
hsa-miR-521-4373259
hsa-miR-512-5p-4373238
hsa-miR-520a-5p-4378085
hsa-miR-208b-4395401
hsa-miR-672-4395438
hsa-miR-302a-4378070
hsa-miR-506-4373231
hsa-miR-367-4373034
hsa-miR-876-3p-4395336
hsa-miR-873-4395467
hsa-miR-129-3p-4373297
hsa-miR-499-5p-4381047
hsa-miR-582-3p-4395510
hsa-miR-653-4395403
hsa-miR-33b-4395196
hsa-miR-615-3p-4386777
hsa-miR-548d-3p-4381008
hsa-miR-153-4373305
hsa-miR-147b-4395373
hsa-miR-124-4373295
hsa-miR-147-4373131
hsa-miR-548a-3p-4380948
hsa-miR-371-3p-4395235
hsa-miR-302b-4378071
hsa-miR-127-5p-4395340
hsa-miR-544-4395376
hsa-miR-496-4386771
hsa-miR-654-5p-4381014
hsa-miR-296-3p-4395212
hsa-miR-891a-4395302
hsa-miR-216b-4395437
hsa-miR-216a-4395331
hsa-miR-519c-3p-4373251
hsa-miR-520f-4373256
hsa-miR-519e-4395481
hsa-miR-520g-4373257
hsa-miR-518a-3p-4395508
hsa-miR-525-3p-4395496
hsa-miR-516b-4395172
hsa-miR-515-3p-4395480
hsa-miR-515-5p-4373242

Figure 1 Hierarchical clustering of 20 IBC and 50 non-IBC samples according to the expression pattern of the 50 most varying miRNAs. Expression values
for these 50 miRNAs are represented in a matrix format, with rows indicating miRNAs and columns indicating samples. High expression values are colour-
coded red and low expression values are colour-coded blue. Three robust sample clusters were identified, which were significantly associated with ER
expression and histological grade. In particular, the combined first two (blue and yellow) sample clusters were enriched for ERþ breast tumours (80% of
samples) when compared with the third (red) sample cluster (50% of samples) (P w2¼ 0.028). Notably, in the first (blue) sample cluster, 20% of samples
were poorly differentiated compared with 60% of samples in the second (yellow) sample cluster (P w2¼ 0.004), suggestive of a subdivision of ERþ breast
tumours according to the luminal A and luminal B subtype. No association of sample clustering with the difference between IBC and non-IBC was observed:
30, 25 and 45% of IBC samples grouped together in the first (blue), second (yellow) and third (red) sample cluster, respectively (P w2¼ 0.082). (The colour
reproduction of this figure is available on the html full text version of the manuscript.)

Table 2 Association of global miRNA expression with clinicopatho-
logical factors

Factor 50 miRNAs with greatest standard variation

T status P¼ 0.646
N status P¼ 0.092
M status P¼ 0.141
Stage P¼ 0.332
Histological grade P¼ 0.002
ER expression P¼ 0.001
HER2 amplification P¼ 0.274
Tumour subtype (IBC or
non-IBC)

P¼ 0.219

Abbreviations: ER¼ oestrogen receptor; HER2¼ human epidermal growth factor
receptor 2; IBC¼ inflammatory breast cancer; miRNA¼microRNA.
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To test whether the identified miRNA-correlated genes are direct
miRNA targets and not downstream genes of the miRNA targets,
we downloaded the predicted miRNA targets from TargetScan5.1
and compared them with the miRNA-correlated genes. The
percentages of overlapping genes between the two lists ranged

from 0 to 10%. We observed four miRNAs (miR-29a, miR-30b,
miR-342-3p and miR-520a-5p) of which targets were significantly
enriched among their correlated genes using a false discovery rate
of o0.1 (Table 4). The number of overlapping genes was 121 for
miR-29a, 140 for miR-30b, 19 for miR-342-3p and 13 for
miR-520a-5p (see Table 5 for all target gene symbols).

To functionally classify the direct target genes of miR-29a,
miR-30b, miR-342-3p and miR-520a-5p, we performed a gene set
enrichment analysis through hypergeometric testing. We focussed
on the GO and KEGG gene set collections. For each of the gene
sets, we observed various degrees of GO and KEGG term
enrichments. The top 10 terms for GO categories or KEGG
pathways are listed in Table 6 for each of the four miRNA target
gene sets. For miR-29a target genes, the most marked GO terms
related to DNA methyltransferase activity. MiR-30b target genes
mostly associated with GO terms related to the insulin receptor-
signalling pathway. In the miR-342-3p target gene set, cell
proliferation-related GO terms were overrepresented. For miR-
520a-5p target genes, the most marked GO term was regulation of
cell growth by extracellular stimulus.

Association of miRNA targets with prognosis in breast
cancer

To investigate the potential prognostic relevance of miR-29a,
miR-30b, miR-342-3p and miR-520a-5p in breast cancer, we
performed a Cox regression analysis for seven publicly available
gene expression data sets for which information regarding DMFS,
RFS or OS was available using an indirect approach. First, we
calculated for each sample an miRNA target gene expression score
by subtracting the average relative gene expression value of the
negatively correlated miRNA target genes from the average relative
gene expression value of the positively correlated miRNA target
genes (Figure 3). The resulting score was standardised (median¼ 0,
s.d.¼ 1) to allow for comparison across different data sets. The
miRNA target gene expression scores calculated as such were all
strongly correlated with the miRNA expression values, thereby
validating the score (range Spearman correlation coefficients:
0.70– 0.76; Po0.0001). The association between outcome and
the miRNA target gene expression score was evaluated using
Kaplan–Meier and Cox regression analysis (Table 7). Overall, we
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Figure 2 Distribution of miRNA expression values in (A) inflammatory
breast tumours and (B) non-inflammatory breast tumours.

Table 3 Association of miRNA expression with clinicopathological factors

Factor Upregulated Downregulated

T1/2 vs T3/4 — miR-337-5p; miR-369-5p; miR-455-5p
N+ vs N0 miR-216a; miR-155; miR-891a miR-31; miR-138; miR-140-3p; miR-140-5p; miR-146a;

miR-150; miR-186; miR-330-5p; miR-363; miR-374a;
miR-450a, miR-489; miR-542-3p

M+ vs M0 miR-96; miR-128; miR-130b; miR-216b; miR-372; miR-423-5p;
miR-425; miR-431

miR-150; miR-202; miR-223; miR-548d-5p; miR-589;
miR-618; miR-629; miR-636; miR-506

Stage I/II vs Stage III/IV miR-302b; miR-576-5p; miR-642 miR-30c; miR-130a; miR-337-5p
Grade 3 vs Grade 1/2 miR-9; miR-18a; miR-25; miR-28-5p; miR-98; miR-106b; miR-128;

miR-130b; miR-139-3p; miR-181a; miR-200c; miR-203; miR-210;
miR-324-5p; miR-340; miR-362-3p; miR-455-3p; miR-455-5p;
miR-483-5p; miR-486-3p; miR-486-5p; miR-551b

let-7c; miR-16; miR-18b; miR-126; miR-133a; miR-139-5p;
miR-140-3p; miR-140-5p; miR-181c; miR-204; miR-208b;
miR-218; miR-301b; miR-502-3p; miR-505; miR-509-5p;
miR-548d-3p; miR-576-3p; miR-579; miR-636; miR-376c

ER+ vs ER� miR-10a; miR-10b; miR-18b; miR-29c; miR-145; miR-149; miR-193b;
miR-199a-5p; miR-328; miR-155; miR-342-3p; miR-422a; miR-503;
miR-505; miR-511

miR-18a; miR-19a; miR-34c-5p; miR-106a; miR-139-3p;
miR-142-3p; miR-142-5p; miR-146a; miR-146b-5p; miR-154;
miR-199b-5p; miR-222; miR-224; miR-299-5p; miR-362-3p;
miR-409-5p; miR-433; miR-486-5p; miR-499-5p; miR-532-3p;
miR-532-5p; miR-615-3p; miR-874

HER2+ vs HER2� miR-33b; miR-184; miR-216b; miR-331-3p; miR-425; miR-520a-3p let-7c; miR-26b; miR-29a; miR-29c; miR-30c; miR-101;
miR-130a; miR-148a; miR-195; miR-205; miR-324-3p;
miR-455-3p; miR-455-5p; miR-485-3p

IBC vs non-IBC miR-335; miR-451; miR-520a-5p; miR-548a-5p; miR-337-5p; miR-486-3p miR-15a; miR-24; miR-29a; miR-30b; miR-320; miR-342-3p;
miR-342-5p

Abbreviations: ER¼ oestrogen receptor; HER2¼ human epidermal growth factor receptor 2; IBC¼ inflammatory breast cancer; miRNA¼microRNA.
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observed significant associations between miRNA target gene
expression and patient outcome (DMFS, RFS and OS) for miR-29a,
miR-30b and miR-520a-5p, but not for miR-342-3p. In particular,
high levels of miR-520a-5p target genes correlated with shorter
DMFS, RFS and OS in, respectively, 3 out of 4, 3 out of 5 and 3 out
of 3 data sets and performed best in a Cox regression analysis.

Expression of miRNA processing genes in breast cancer

Recently, Cheng et al (2009) reported that the post-transcriptional
regulation of miRNA expression may be important for the
regulatory effect of miRNAs on their targets (Cheng et al, 2009).
We therefore examined whether miRNA processing genes (trbp2,
dicer, ago1, ago2 and drosha) are differentially expressed between
IBC and non-IBC. We observed that among the miRNA processing
genes, ago2 was significantly upregulated and dicer significantly
downregulated in IBC (N¼ 20) compared with non-IBC samples
(N¼ 24), with P-values of 0.002 and 0.004 (false discovery rate
o0.1), respectively. We further examined whether this altered
expression of ago2 and dicer in IBC when compared with non-IBC
is also reflected in altered regulatory effects of miRNAs on their
targets. We calculated an RE score for each of 153 representative

miRNA families from TargetScan 5.1 in all 44 samples using a
strategy adapted from Cheng et al (2009). Then, we compared RE
scores between IBC and non-IBC samples. Of 153 miRNA families,
104 (68%) showed higher RE scores in IBC and 49 (32%) showed
higher RE scores in non-IBC. Using the significance analysis of
microarrays method, we observed 20 significant RE-changing
miRNAs (miRNAs that show different regulatory effects between
IBC and non-IBC).

DISCUSSION

MiRNAs are a recently discovered class of small regulatory RNAs,
which influence the stability and translational efficiency of target
mRNAs (Verghese et al, 2008). In this study, we examined the
expression of 384 miRNAs in 70 breast cancer samples to look for
miRNAs, of which expression levels are significantly different in
IBC compared with non-IBC. The spectrum of expressed miRNAs
mostly varied according to steroid hormone receptor expression
and histological tumour grade and not according to tumour
subtype (IBC vs non-IBC). However, we did identify a set of
13 miRNAs for which expression levels were able to correctly

Table 4 Correlations between miRNAs and mRNAs in breast cancer (N¼ 44)

Total number
of correlations

Negative
correlation

Positive
correlation

GSEAa

P-value
Intersect with

TargetScan
GSEAb

P-value

miR-15a 98 35 63 o0.001 9 (9%) 0.652
miR-24 8 2 6 0.003 0 (0%) NA
miR-29a 2925 1300 1625 o0.001 156 (5%) 0.0001
miR-30b 1962 658 1304 o0.001 199 (10%) 0.003
miR-320 201 81 120 o0.001 13 (6%) 0.697
miR-335 575 181 394 0.007 8 (1%) 0.307
miR-342-5p 3029 1146 1883 o0.001 13 (o1%) 0.416
miR-342-3p 3580 1296 2284 o0.001 31 (o1%) 0.0001
miR-337-5p 1650 712 938 0.03 1 (o1%) 0.528
miR-451 322 186 136 0.001 2 (o1%) 0.256
miR-486-3p 95 46 49 NS NA NA
miR-520a-5p 1011 586 425 0.03 17 (2%) 0.028
miR-548d-5p 1839 783 1056 0.02 111 (6%) 0.554

Abbreviations: GSEA¼ gene set enrichment analysis; IBC¼ inflammatory breast cancer; mRNA¼messenger RNA; miRNA¼microRNA; NA¼ not available; NS¼ non-
significant. aGene set enrichment analysis of miRNA-correlated genes using a list of all genes that are differentially expressed in IBC and non-IBC as a reference set. bGene set
enrichment analysis of predicted target genes by TargetScan using the miRNA-correlated genes as a reference set.

Table 5 Gene symbols for direct miRNA target genes

miRNA Direct target genes

miR-29a MGC21874, BRWD1, MIER3, HBP1, THSD4, FAM116A, USP37, AFF4, ZBTB40, UBTF, SP1, PALM, DNAL1, MTX3, MAP2K4, KIAA0831, SLC39A9,
JMJD2B, LCORL, KLHL9, SESTD1, RERE, C5orf24, USP34, NEBL, PIAS4, NKTR, JARID1A, AMFR, ARPP-19, CCNL2, CAPN7, BSDC1, TTC30B, ELF2,
RAP1GDS1, LNPEP, GCC2, ERLIN2, PAN2, NCOR2, GNG12, EML5, STX17, CNOT8, MSL-1, RHBDD1, tcag7.1228, ATRN, FAM168B, PRPF40A,
DICER1, KLHL28, PAIP2, BTBD7, ARFGEF2, LOC153364, SR140, BTG2, C19orf6, RIT1, SLC7A6, EML4, TTYH2, TNFAIP3, FBXL11, NANP, NUP160,
TRAM2, NANOS1, IFI30, CDK6, MLXIP, MYCN, MAPRE2, MAP4K4, CHFR, LUZP1, SLC36A1, TRIB2, FSTL1, SLC16A14, CBX2, MEST, NCOA3,
CDCA4, DIO2, DNAJB11, DNMT3A, NUFIP2, IMPDH1, INSIG1, OSBPL3, MAPRE1, PHACTR2, TFEC, EIF4E2, ABCE1, TSPAN14, SERPINH1,
B3GNT5, PLXNA1, RPS6KA3, GNB4, DTX4, HMGCS1, DEF8, KIAA1128, COMMD2, SLC2A3, MYBL2, TET3, CCNJ, TMEM65, DPP4, JOSD1,
DNMT3B, TAF11, CYCS, TBC1D7, CHIC2

miR-30b NRIP1, RAPGEF6, BECN1, TRPS1, HIPK2, NF1, VAPA, BRWD1, SLC1A2, IGF1R, USP37, CSNK1G1, MIER3, TSGA14, KCTD3, KIAA1712, AFF3,
ANKHD1, ZNF770, C2orf55, CHD1, SLC4A7, GIGYF2, CPEB4, IRS1, CCNT2, MKL2, CSAD, PAPOLA, VAV3, LCORL, C15orf29, DCTN4, SCAMP1,
NEK4, MTX3, PHF13, ELOVL5, CCPG1, MAGI2, AFF4, LASS6, GZF1, CPEB2, FLJ40142, HNRNPA3, BCL2L11, ZBTB40, ABHD2, EPC2, ZNF148,
SNX1, TNKS, ATRN, PHC3, TTC8, REV1, MNT, ARID4A, MGC21874, PPP1R9A, RBM12, FBXL17, ZDHHC17, KIAA1632, USP47, TMEM106B,
PCGF3, KIAA0999, MSI2, CLCC1, MBD6, SIRT1, PSME3, PIP4K2B, CXorf39, KIF3A, TTC39A, IRS2, FAM110B, BCL6, PNKD, PAWR, PPAPDC1B,
BCL2, MARCKS, SH2B3, ZNRF1, WDR26, CHFR, IGF2R, LYCAT, CAMK2D, ARL4C, CCNK, IFNAR2, NT5E, SLC36A1, FBXO45, MFHAS1,
PHACTR2, TET3, EML4, SMAP1, FAM152A, CALU, TRAM2, ITGA5, KPNA3, GRK6, LYN, SURF4, RASSF4, RAP2B, NRBF2, NCOA3, FAM43A,
LMBR1 L, MAP4K4, SUV39H2, MYO5A, KLHL20, ME1, DNMT3A, MYBL2, LCP1, SMAD1, KIAA1949, PHTF2, SPTLC2, CHST2, QKI, SOCS1,
SEC24A, FLJ36031, CLN8, CAPZA1, DBF4, KLF11, IDH1

miR-342-3p MRFAP1, CA12, ACVR2B, PCGF3, MSI2, LARP4, ZAK, AAMP, HIP1, NBEA, UQCC, PTRF, SHE, ID4, SSR1, MEX3A, PDGFRA, NCOA7, CDK6
miR-520a-5p PPP1R9B, SMEK1, HEG1, SLC25A13, TMPO, ABCE1, KPNA1, PTP4A2, BAG1, ARHGEF12, NOVA1, PDPK1, LZTFL1

Abbreviation: miRNA¼microRNA.

MicroRNA expression in inflammatory breast cancer

I Van der Auwera et al

537

British Journal of Cancer (2010) 103(4), 532 – 541& 2010 Cancer Research UK

M
o

le
c
u

la
r

D
ia

g
n

o
st

ic
s



predict the nature of the sample analysed (IBC vs non-IBC). Six of
them, miR-335, miR-337-5p, miR-451, miR-486-3p, miR-520a-5p
and miR-548d-5p, were upregulated in IBC and the remaining
seven, miR-15a, miR-24, miR-29a, miR-30b, miR-320, miR-342-5p
and miR-342-3p, were downregulated in IBC. The observation that
few miRNAs are specifically associated with IBC does not support
the hypothesis of a prominent role for altered miRNA expression
in the phenotype of IBC. However, miRNA expression levels are
not necessarily representative of the regulatory ability of an
miRNA. Cheng et al (2009) recently reported that the inhibitory
effects of miRNAs on their targets differs between two breast
cancer subtypes (ER� and ERþ ) due to a differential expression of
several key miRNA processing genes and not due to differences in
miRNA expression levels (Cheng et al, 2009). We therefore
examined the expression levels of genes in the miRNA biogenesis
pathway in samples from IBC and non-IBC. We observed
significantly lower expression levels for dicer, a ribonuclease,
which cleaves the pre-miRNA into a single-stranded mature
miRNA and significantly higher expression levels for ago2, the
catalytic endonuclease of the RNA-induced silencing complex in
IBC when compared with non-IBC. The latter observation may
suggest higher RNA-induced silencing complex activities, and
therefore may further suggest that miRNAs regulate target gene
expression in IBC with higher efficiency. Indeed, miRNAs seem to

have a higher regulatory effect (reflected by the RE score) in IBC
samples than in non-IBC samples. It has been previously observed
that low dicer expression and high ago2 expression in breast
cancer is associated with the more aggressive basal-like, HER2þ
and luminal B subtypes (Blenkiron et al, 2007), which are known to
be overrepresented in IBC (Van Laere et al, 2006). Moreover,
decreased dicer expression has been reported to be associated with
poor clinical outcome in breast, ovarian and lung cancer (Karube
et al, 2005; Merritt et al, 2008; Grelier et al, 2009).

At present, the lack of knowledge about bona fide miRNA target
genes hampers a full understanding on the biological functions
deregulated by aberrant miRNA expression. To overcome this
limitation, we adopted the strategy recently described by Wang
et al (2009) for the miRNAs of which expression differed between
IBC and non-IBC (Wang et al, 2009). First, we used a whole
genome approach to identify thousands of highly correlated
miRNA–mRNA pairs. We identified a large number of both
negative and positive correlations. The detection of a positive
correlation between miRNA and mRNA levels suggests a positive
regulatory role for miRNAs, as has been reported for some genes
(Vasudevan et al, 2007). Second, we made use of a computational
approach to search for predicted miRNA targets. Concordant
genes are direct miRNA targets that are tightly correlated with
fluctuations in miRNA expression. We observed significant

Table 6 Association of direct miRNA target genes with biological processes

miRNA ID Term P-value

miR-29a GO:0003886 DNA (cytosine-5-) methyltransferase activity 0.0001
GO:0010468 Regulation of gene expression 0.0001
GO:0009008 DNA methyltransferase activity 0.0003
GO:0043414 Biopolymer methylation 0.0010
GO:0032259 Methylation 0.0016
GO:0009889 Regulation of biosynthetic process 0.0020
GO:0050794 Regulation of cellular process 0.0025
GO:0010467 Gene expression 0.0026
GO:0040029 Regulation of gene expression, epigenetic 0.0027
GO:0006305 DNA alkylation 0.0034

miR-30b GO:0043548 Phosphoinositide 3-kinase binding o0.0001
GO:0008286 Insulin receptor signalling pathway 0.0004
GO:0005010 Insulin-like growth factor receptor activity 0.0005
GO:0000122 Negative regulation of transcription from RNA pol II promoter 0.0007
GO:0019899 Enzyme binding 0.0009
GO:0043434 Response to peptide hormone stimulus 0.0009
GO:0009725 Response to hormone stimulus 0.0009
GO:0009719 Response to endogenous stimulus 0.0010
GO:0045892 Negative regulation of transcription, DNA dependent 0.0011
GO:0005158 Insulin receptor binding 0.0011

miR-342-3p GO:0008284 Positive regulation of cell proliferation o0.0001
GO:0048146 Positive regulation of fibroblast proliferation o0.0001
GO:0048144 Fibroblast proliferation 0.0001
GO:0048145 Regulation of fibroblast proliferation 0.0001
GO:0048522 Positive regulation of cellular process 0.0001
GO:0045667 Regulation of osteoblast differentiation 0.0001
GO:0042063 Gliogenesis 0.0002
GO:0048518 Positive regulation of biological process 0.0002
GO:0001649 Osteoblast differentiation 0.0003
GO:0008283 Cell proliferation 0.0004

miR-520a-5p GO:0001560 Regulation of cell growth by extracellular stimulus 0.0011
GO:0000164 Protein phosphatase type 1 complex 0.0012
GO:0015810 Aspartate transport 0.0022
GO:0043490 Malate–aspartate shuttle 0.0022
GO:0004727 Prenylated protein tyrosine phosphatase activity 0.0025
GO:0008157 Protein phosphatase 1 binding 0.0025
GO:0015183 L-aspartate transmembrane transporter activity 0.0025
GO:0044453 Nuclear membrane part 0.0033
GO:0005521 Lamin binding 0.0063
GO:0031965 Nuclear membrane 0.0068

Abbreviation: miRNA¼microRNA.
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Van de vijver et al; log-rank test: P =0.0002 Van de vijver et al; log-rank test: P <0.0001

Desmedt et al; log-rank test: P =0.046 Desmedt et al; log-rank test: P =0.036
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Figure 3 Kaplan–Meier survival analysis of miR-520a-5p target gene expression in breast cancer with distant metastasis-free (A and C) and overall
survival (B and D) as outcome. Kaplan–Meier curves are shown for the data sets of van de Vijver et al (2002) (A and B) and of Desmedt et al (2007)
(C and D).

Table 7 Association of direct miRNA target genes with prognosis in breast cancer

DMFS RFS OS

miRNA Data set HR P-value Data set HR P-value Data set HR P-value

miR-29a Desmedt et al (2007) 0.836 0.156 Desmedt et al (2007) 0.893 0.276 Desmedt et al (2007) 0.800 0.092
Schmidt et al (2008) 0.738 0.038 Loi et al (2008) 0.549 0.028 Pawitan et al (2005) 0.564 0.001
Loi et al (2008) 0.487 0.021 Wang et al (2007) 0.874 0.159 van de Vijver et al (2002) 0.595 0.0001
van de Vijver et al (2002) 0.736 0.001 Ivshina et al (2006) 0.846 0.127 — — —
— — — Pawitan et al (2005) 0.617 0.001 — — —
Total (N¼ 770) 0.760 0.0001 Total (N¼ 1009) 0.815 0.001 Total (N¼ 652) 0.652 0.0001

miR-30b Desmedt et al (2007) 0.789 0.066 Desmedt et al (2007) 0.912 0.374 Desmedt et al (2007) 0.766 0.049
Schmidt et al (2008) 0.789 0.083 Loi et al (2008) 0.560 0.022 Pawitan et al (2005) 0.575 0.002
Loi et al (2008) 0.535 0.030 Wang et al (2007) 0.919 0.378 van de Vijver et al (2002) 0.510 0.0001
van de Vijver et al (2002) 0.679 0.0001 Ivshina et al (2006) 0.949 0.637 — — —
— — — Pawitan et al (2005) 0.630 0.002 — — —
Total (N¼ 770) 0.745 0.0001 Total (N¼ 1009) 0.837 0.004 Total (N¼ 652) 0.600 0.0001

miR-342-3p Desmedt et al (2007) 0.944 0.661 Desmedt et al (2007) 1.086 0.456 Desmedt et al (2007) 0.936 0.622
Schmidt et al (2008) 1.003 0.985 Loi et al (2008) 1.035 0.911 Pawitan et al (2005) 0.978 0.911
Loi et al (2008) 0.908 0.773 Wang et al (2007) 0.919 0.391 van de Vijver et al (2002) 0.787 0.027
van de Vijver et al (2002) 0.977 0.830 Ivshina et al (2006) 1.102 0.409 — — —
— — — Pawitan et al (2005) 0.983 0.918 — — —
Total (N¼ 770) 0.979 0.763 Total (N¼ 1009) 0.993 0.918 Total (N¼ 652) 0.870 0.078

miR-520a-5p Desmedt et al (2007) 1.452 0.005 Desmedt et al (2007) 1.263 0.027 Desmedt et al (2007) 1.471 0.006
Schmidt et al (2008) 1.285 0.083 Loi et al (2008) 2.216 0.009 Pawitan et al (2005) 2.080 0.0001
Loi et al (2008) 2.651 0.006 Wang et al (2007) 1.204 0.062 van de Vijver et al (2002) 1.828 0.0001
van de Vijver et al (2002) 1.488 0.0001 Ivshina et al (2006) 1.163 0.169 — — —
— — — Pawitan et al (2005) 1.855 0.0001 — — —
Total (N¼ 770) 1.452 0.0001 Total (N¼ 1009) 1.344 0.0001 Total (N¼ 652) 1.762 0.0001

Abbreviations: DMFS¼ distant metastases-free survival; HR¼ hazard ratio; miRNA¼micro RNA; OS¼ overall survival; RFS¼ relapse-free survival.
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concordance between miRNA-correlated genes and miRNA-pre-
dicted targets in only 4 of 13 miRNA sets (miR-29a, miR-30b, miR-
342-3p and miR-520a-5p). Thus, we did not see any evidence of
concordance in a majority of miRNA sets. Generally, miRNAs are
believed to bind 30 untranslated region of a target gene and
regulate gene expression at protein level (Wang et al, 2009).
Therefore, miRNA targets themselves may not demonstrate
noticeable change at the mRNA level. However, this can also be
explained by discordance in changes of expression between the key
miRNA processing genes. For miR-29a, miR-30b, miR-342-3p and
miR-520a-5p target genes, we were able to detect a variety of
biological processes that may indicate function of those miRNAs.
MiR-29a target genes were mainly related to DNA methyltrans-
ferase activity. Indeed, expression of the miR-29 family has been
shown to target DNA methyltransferase 3A and 3B expression in
lung cancer tissues (Fabbri et al, 2007) and in acute myeloid
leukaemia (Garzon et al, 2009), inducing global hypomethylation.
For miR-30b, we observed target genes related to insulin receptor
signalling. Recently, it has been reported that another member of the
miRNA-30 family, miR-30d, is upregulated by glucose and increases
insulin gene expression (Tang et al, 2009). MiR-342-3p and miR-
520a-5p target genes proved to be involved in cell proliferation.

As IBC is regarded as a model for breast cancer aggressiveness,
we were interested in determining whether the IBC-specific
miRNAs were associated with a dismal prognosis in non-IBC.
Given the limited number of our clinical samples, we used an
indirect approach and correlated miRNA target gene expression
with patients’ outcome using publicly available information from

microarrays studies, which could be extracted from the gene
expression omnibus database. This analysis demonstrated
a marked association of miR-520a-5p target gene expression with
a shorter DMFS, RFS or OS in most breast cancer data sets that
were investigated. This result demonstrates a possible role of
miR-520a-5p as a prognostic factor in breast cancer. Although we
acknowledge the limitations of using an indirect approach, these
kinds of analyses may help to guide future large-scale studies on
the prognostic value of miRNAs in breast cancer.

In conclusion, this study, to the best of our knowledge,
represents the first integrated analysis of miRNA and mRNA
expression in IBC. We identified a number of miRNAs that are
differentially expressed between IBC and non-IBC. Furthermore,
we reported altered expression of miRNA processing genes in IBC
when compared with non-IBC. For four of the IBC-related
miRNAs, we were able to detect a variety of biological processes
that may indicate function of these miRNAs and to indicate their
potential association with prognosis in breast cancer based on the
expression levels of their target genes.
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