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Abstract: Clinical trials have shown that sodium glucose co-transporter 2 (SGLT2) inhibitors improve
clinical outcomes in diabetes mellitus (DM) patients. As most studies were performed in Type 2 DM,
the cardiovascular effects of SGLT2 inhibition still require clarification in Type 1 DM. We analyzed the
effects of SGLT2 inhibitor dapagliflozin on cardiac remodeling in rats with streptozotocin-induced
diabetes, an experimental model of Type 1 DM. Methods: Male Wistar rats were assigned into four
groups: control (C, n = 14); control treated with dapagliflozin (C + DAPA, n = 14); diabetes (DM,
n = 20); and diabetes treated with dapagliflozin (DM + DAPA, n = 20) for 8 weeks. Dapagliflozin
dosage was 5 mg/kg/day. Statistical analyses: ANOVA and Tukey or Kruskal–Wallis and Dunn.
Results: DM + DAPA presented decreased blood pressure and glycemia and increased body weight
compared to DM (C 507± 52; C + DAPA 474± 50; DM 381± 52 *; DM + DAPA 430± 48 # g; * p < 0.05
vs. C; # p < 0.05 vs. C + DAPA and DM + DAPA). DM echocardiogram presented left ventricular and
left atrium dilation with impaired systolic and diastolic function. Cardiac changes were attenuated
by dapagliflozin. Myocardial hydroxyproline concentration and interstitial collagen fraction did not
differ between groups. The expression of Type III collagen was lower in DM and DM + DAPA than
their controls. Type I collagen expression and Type I-to-III collagen ratio were lower in DM + DAPA
than C + DAPA. DM + DAPA had lower lipid hydroperoxide concentration (C 275 ± 42; C + DAPA
299 ± 50; DM 385 ± 54 *; DM + DAPA 304 ± 40 # nmol/g tissue; * p < 0.05 vs. C; # p < 0.05 vs. DM)
and higher superoxide dismutase and glutathione peroxidase activity than DM. Advanced glycation
end products did not differ between groups. Conclusion: Dapagliflozin is safe, increases body weight,
decreases glycemia and oxidative stress, and attenuates cardiac remodeling in an experimental rat
model of Type 1 diabetes mellitus.

Keywords: SGLT2 inhibitor; ventricular remodeling; oxidative stress; myocardial fibrosis; dapagliflozin;
cardiac function

1. Introduction

Diabetes mellitus (DM) is a chronic worldwide pandemic [1]. Patients with DM have
a 2.5 times higher risk for developing heart failure than non-diabetic individuals [2]. DM
may cause heart failure from ischemic cardiac disease and diabetic cardiomyopathy [1,2].
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Diabetic cardiomyopathy is characterized by pathological cardiac changes that can result in
heart failure in the absence of systemic arterial hypertension, and structural heart diseases
such as coronary artery disease or valvular heart disease [3].

Several mechanisms are involved in diabetic cardiomyopathy [4]. Hyperglycemia
increases oxidative stress and advanced glycation end products (AGE) which lead to
deleterious systemic and cardiac effects [5]. Furthermore, AGE increases oxidative stress
making an interplay between oxidative stress and AGE formation [6,7]. Both AGE and
increased oxidative stress induce changes in collagen cross-linking molecules collaborating
to reduce cardiac elasticity [4].

Currently, there is no specific treatment to prevent or treat diabetic cardiomyopathy. A
new class of antidiabetic drug, selective sodium-glucose co-transporter 2 (SGLT2) inhibitors,
has been introduced in clinical practice in the last decade [8]. SGLT2 inhibitors reduce
renal glucose reabsorption by inhibiting sodium-glucose co-transporter 2, thus decreasing
plasma glucose levels [8]. SGLT2, which is predominantly located in the S1 segment of
the proximal tubule, is the main glucose transporter in the kidney and is responsible for
90% of reabsorbed glucose [9]. As well as renal effects, clinical trials have shown that
SGLT2 inhibition is associated with important cardiovascular benefits, such as a decrease
in cardiovascular death and hospitalization for heart failure in both diabetic and non-
diabetic patients, and those with and without heart failure [10–13]. Although different
possibilities have been suggested to explain the cardiovascular effects of SGLT2 inhibitors,
their protection mechanisms are not completely understood [12].

Most studies have evaluated the effect of SGLT2 inhibitors on Type 2 DM but few
have assessed their effects on Type 1 DM [14–19]; also, their effects on cardiovascular
diseases are still unclear in Type 1 DM in both clinical and experimental scenarios. In Type
1 DM, the main mechanism responsible for cardiomyopathy is related to the decreased
insulin signaling [20]. On the other hand, Type 2 DM-induced cardiomyopathy is mostly
related to the development of hyperinsulinemia and cardiac insulin resistance [20]. This
study analyzed the effects of SGLT2 inhibitor dapagliflozin on cardiac remodeling in rats
with streptozotocin-induced diabetes, an experimental model of Type 1 diabetes mellitus.
As possible cardiac injury mechanisms, we assessed myocardial collagen content and
crosslinking and oxidative stress including AGEs formation.

Most studies have evaluated the effect of SGLT2 inhibitors on Type 2 DM, but few
have assessed their effects on Type 1 DM [14–19]; also, their effects on cardiovascular
diseases are still unclear in Type 1 DM in both clinical and experimental scenarios. In this
study we evaluated the effects of SGLT2 inhibitor dapagliflozin on cardiac remodeling
in rats with streptozotocin-induced diabetes, an experimental model of Type 1 diabetes
mellitus. As possible cardiac injury mechanisms, we assessed myocardial collagen content
and crosslinking and oxidative stress including AGEs formation.

2. Materials and Methods
2.1. Experimental Groups

Male Wistar rats weighing approximately 450 g were purchased from the Central Animal
House at Botucatu Medical School, Sao Paulo State University, UNESP. All animals were
housed in individual cages in a room under temperature control at 23 ◦C and kept on a
12-h light/dark cycle. Water and food were supplied ad libitum. All experiments and
procedures were approved by the Ethics Committee of Botucatu Medical School, UNESP.

The rats were assigned into four groups: control (C, n = 14); control treated with
dapagliflozin (C + DAPA, n = 14); diabetes (DM, n = 20); and diabetes treated with da-
pagliflozin (DM + DAPA, n = 20).

Diabetes was induced by an intraperitoneal injection of streptozotocin (Sigma, St. Louis,
MO, USA) at 40 mg/kg body weight diluted in 0.01 M citrate buffer pH 4.5 [21,22]. Control
groups were injected intraperitoneally with the same volume of vehicle. A glucometer
(Advantage®) was used to measure blood glucose seven days after streptozotocin admin-
istration. Rats with glycemia higher than 220 mg/dL were included in the study [23,24].
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Dapagliflozin (Bristol Myers Squibb Farmaceutica, Portuguesa, SA, Brazil) was added to
rat chow at a dosage of 5 mg/kg/day for 8 weeks. To adjust dapagliflozin dose, chow
consumption was measured daily and body weight weekly.

Systolic arterial pressure was measured using the tail-cuff method with a 709-0610
electro-sphygmomanometer (Narco Bio-System®, International Biomedical Inc., Austin,
TX, USA) [25,26] at the end of the experiment. Cardiac hypertrophy was assessed by right
ventricle, left ventricle (LV), and atria weights in both absolute and normalized to body
weight values [27,28].

2.2. Echocardiographic Study
2.2.1. M-Mode

At the end of the experiment, an echocardiogram was performed with an echocardio-
graph (General Electric Medical Systems, Vivid S6, Tirat Carmel, Israel) using a 5–11.5 MHz
multifrequency probe, as described in our laboratory [29–31]. Rats were anesthetized by
an injection of ketamine (50 mg/kg) and xylazine (0.5 mg/kg) intramuscularly. Images
were printed on a thermal printer (Sony UP-890MD) at a speed of 100 mm/s. All cardiac
structures were manually measured by the same investigator (KO), who was blinded to
the experimental groups. Values were obtained as the mean of at least five cardiac cycles
on M-mode tracings. The following structural variables were measured: left atrium (LA)
diameter, LV diastolic and systolic dimensions (LVDD and LVSD, respectively), LV diastolic
posterior (LVPWT) and septal (LVSWT) wall thickness, and aorta diameter (AO). LV mass
(LVM) was calculated using the formula [(LVDD + LVPWT + LVSWT)3 – LVDD3] × 1.04.
LV relative wall thickness (RWT) was calculated by the formula 2 × LVPWT/LVDD. LV
systolic function was analyzed by the following parameters: ejection fraction, endocardial
fractional shortening (EFS), and posterior wall shortening velocity (PWSV). LV diastolic
function was assessed by the variables of early and late diastolic mitral inflow velocities (E
and A waves, respectively), E/A ratio, isovolumetric relaxation time (IVRT), and E-wave
deceleration time (EDT). A combined evaluation of systolic and diastolic LV function was
made using the myocardial performance index (Tei index).

2.2.2. Tissue Doppler Imaging

Tissue Doppler imaging (TDI) was used to assess systolic (S’) and early (E’) and late
(A’) diastolic velocity of the mitral annulus, and E/E’ ratio [32].

2.3. Histological Analysis

Transverse sections of LV were fixed in formalin and immersed in paraffin. Hematoxylin–
eosin-stained sections [33] were used to measure in each LV at least 50 myocyte diameters
as the smallest distance between cell borders across the nucleus [34]. Interstitial collagen
fraction was evaluated in Sirius red F3BA-stained slides [35] by analyzing 20 microscopic
fields [36]. Evaluation was performed in a Leica microscope (magnification 40×) equipped
with camera, computer, and an image analysis software (Image-Pro Plus 3.0, Media Cyber-
netics, Silver Spring, MD, USA).

2.4. Myocardial Hydroxyproline Concentration

The concentration of hydroxyproline (HOP) was evaluated in LV to estimate the
myocardial collagen content using a colorimetric assay (QuickZyme Hydroxyproline Assay,
Leiden, The Netherlands).

2.5. Western Blotting

The expression of lysil oxidase (Abcam, LOX1, ab60178) and Type I (Santa Cruz
Biotechnology Inc., Santa Cruz, CA, USA, col1a1, sc-8784-r) and Type III collagen (Abcam,
Cambridge, UK, col3a1, ab6310) was assessed by Western blot [37]. After protein extraction,
the samples were separated on polyacrylamide gel and transferred to a nitrocellulose
membrane. Polyacrylamide concentration was 10% for Types I and III collagen, and 12%
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for lysyl oxidase. After blockade with milk, the membrane was incubated with primary
antibodies overnight at 4 ◦C. Next, the membrane was washed with PBS and Tween 20
and incubated with secondary peroxidase-conjugated antibodies (Santa Cuz Biotechnology,
anti-mouse, sc-2005, and anti-rabbit, sc-2004) for 90 min at room temperature. Bound
antibodies were detected using ECL Western Blotting Substrate (Pierce Protein Research
Products, Rockford, IL, USA). After stripping antibodies from the membrane (Restore
Western Blot Stripping Buffer, Pierce Protein Research Products, Rockford, IL, USA), it was
incubated with anti-GAPDH antibody (Santa Cruz Biotechnology, GAPDH 6C5, sc-32233).
Protein levels were normalized to GAPDH.

2.6. Myocardial Oxidative Stress

An LV sample (∼100 mg) was homogenized in phosphate buffer (0.1 M) pH 7.4 and cen-
trifuged at 12,000× g for 15 min at 4 ◦C. The supernatant was used to measure total protein,
lipid hydroperoxide, and anti-oxidant enzyme activities as previously described [38,39].

2.7. Advanced Glycation End Products

A myocardial sample embedded in paraffin was cut and prepared on slides for im-
munohistochemical evaluation. Following deparaffinization, antigen was retrieved in
citrate buffer (pH 6.0). After the blockade of endogenous peroxidase and proteins, slides
were incubated with primary antibody (anti-AGE, ABCAM, ab23722) overnight at 4 ◦C
and secondary antibody (Histofine Simple Stain Rat, Nichirei, 414191F) for 30 min at room
temperature. Slides were then stained with 3,3’-diaminobenzidine (DAB) and hematoxylin,
dehydrated, and covered with a cover slip. Quantification was performed using a micro-
scope (magnification 40×). Advanced glycation end products were seen as brown and
myocytes as lilac in color. Areas containing vessels were excluded from the analysis.

2.8. Statistical Analyzes

Results are shown as mean ± standard deviation or median and percentiles in accor-
dance with normal or non-normal distribution, respectively. Variables were compared by
analysis of variance (ANOVA) for a 2 × 2 factorial design followed by the Tukey test for
normal distribution parameters, or Kruskal–Wallis and Dunn test for non-normal distribu-
tion variables. The following comparisons were performed: C + DAPA vs. C; DM vs. C;
DM + DAPA vs. DM; and DM + DAPA vs. C + DAPA. For morphological and molecular
analyses, samples were chosen randomly. A level p < 0.05 was considered statistically
significant.

3. Results

Table 1 shows body weight, blood pressure, and glycemia values. There were no
differences between groups before DM in body weight and glycemia. Blood glucose
concentration after DM induction and before dapagliflozin treatment did not differ between
DM + DAPA and DM groups. At the end of the study, body weight was lower and blood
pressure and glycemia were higher in DM than C. DM + DAPA had greater body weight
and lower blood pressure and glycemia than DM.

Figure 1 shows illustrative LV M-mode echocardiograms from all groups. Echocardio-
graphic structural variables are shown in Table 2. LV systolic diameter and LV mass-to-body
weight ratio were higher in DM and DM + DAPA than their controls. Left atrium diameter,
in absolute or normalized values, and LV diastolic diameter-to-body weight ratio were
higher in DM compared to C and lower in DM + DAPA than DM. These data show that the
heart was dilated and remodeled by DM; these changes were attenuated in DM + DAPA
group. All systolic function indexes were impaired in DM than C (Table 3). DM + DAPA
had impaired ejection fraction compared to C + DAPA and a more improved posterior
wall shortening velocity and Tei index than DM. In DM + DAPA, endocardial fractional
shortening and S’ wave values were between those in C + DAPA and DM and did not differ
significantly from either group. LV diastolic function parameters are shown in Table 4. E
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wave was lower in DM than C. Isovolumic relaxation time in absolute or normalized to
heart rate values was higher in DM than C and DM + DAPA.

Table 1. Body weight, systolic blood pressure, and blood glucose.

C
(n = 14)

C + DAPA
(n = 14)

DM
(n = 20)

DM + DAPA
(n = 20)

Initial BW (g) 448 ± 44 449 ± 44 450 ± 42 448 ± 39
Final BW (g) 507 ± 52 474 ± 50 381 ± 52 * 430 ± 48 #§

Final BP (mmHg) 124 (122–127) 123 (120–126) 140 (136–144) * 133 (130–138) #§

Initial blood glucose (mg/dL) 111 (106–115) 103 (99–111) 111 (104–114) 105 (103–114)
Blood glucose before DAPA 110 (102–113) 108 (104–119) 573 (443–600) * 560 (439–600) #

Final blood glucose (mg/dL) 101 (95–105) 99 (90–109) 494 (422–546) * 145 (131–188) #§

Data are expressed as mean ± standard deviation or median and 25th and 75th percentiles. C: control; C + DAPA:
control treated with dapagliflozin; DM: diabetes mellitus; DM + DAPA: DM treated with dapagliflozin; BW: body
weight; BP: systolic blood pressure; Blood glucose before DAPA: blood glucose concentration after DM induction
and before dapagliflozin treatment. ANOVA for a 2 × 2 factorial design and Tukey or Kruskal–Wallis and Dunn;
* p < 0.05 vs. C; # p < 0.05 vs. C + DAPA; § p < 0.05 vs. DM.
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Table 2. Echocardiographic structural data.

C
(n = 14)

C + DAPA
(n = 14)

DM
(n = 20)

DM + DAPA
(n = 20)

HR (bpm) 273 ± 35 251 ± 43 248 ± 33 254 ± 39
LVDD (mm) 7.78 (7.64–7.83) 7.69 (7.46–8.03) 7.88 (7.56–8.37) 8.09 (7.56–8.34)
LVSD (mm) 3.68 ± 0.40 3.88 ± 0.35 4.36 ± 0.53 * 4.30 ± 0.56 #

LVPWT (mm) 1.30 (1.27–1.37) 1.33 (1.30–1.37) 1.33 (1.29–1.39) 1.37 (1.33–1.40)
LVSWT (mm) 1.30 (1.27–1.37) 1.33 (1.30–1.37) 1.35 (1.30–1.39) 1.37 (1.33–1.40)

AO (mm) 4.01 (4.01–4.16) 4.01 (3.83–4.10) 3.83 (3.83–3.89) * 4.01 (3.83–4.01)
LA (mm) 5.62 ± 0.34 5.52 ± 0.44 5.99 ± 0.42 * 5.34 ± 0.44 §

LA/AO 1.39 ± 0.08 1.39 ± 0.06 1.55 ± 0.10 * 1.37 ± 0.09 §

LVDD/BW (mm/kg) 15.4 (15.0–15.8) 15.9 (15.3–18.1) 21.4 (19.7–23.0) * 19.5 (17.0–20.3) #§

LA/BW (mm/kg) 11.2 ± 1.41 11.7 ± 1.18 15.9 ± 1.93 * 12.6 ± 1.36 §

LV mass (g) 0.69 ± 0.07 0.68 ± 0.07 0.72 ± 0.10 0.75 ± 0.09 #

LV mass/BW (g/kg) 1.36 (1.31–1.42) 1.47 (1.30–1.50) 1.95 (1.73–2.11) * 1.79 (1.52–2.03) #

RWT 0.34 ± 0.01 0.35 ± 0.02 0.34 ± 0.02 0.34 ± 0.02

Data are expressed as mean ± standard deviation or median and 25th and 75th percentiles. C: control; C + DAPA:
control treated with dapagliflozin; DM: diabetes mellitus; DM + DAPA: DM treated with dapagliflozin; HR: heart
rate; LVDD and LVSD: left ventricular (LV) diastolic and systolic diameters, respectively; LVPWT: LV posterior
wall thickness; LVSWT: LV septal wall thickness; AO: aorta diameter; LA: left atrial diameter; RWT: relative wall
thickness. ANOVA for a 2 × 2 factorial design and Tukey or Kruskal–Wallis and Dunn; * p < 0.05 vs. C; # p < 0.05
vs. C + DAPA; § p < 0.05 vs. DM.
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Table 3. Echocardiographic data for left ventricular systolic function.

C
(n = 14)

C + DAPA
(n = 14)

DM
(n = 20)

DM + DAPA
(n = 20)

EFS (%) 52.9 ± 4.51 49.5 ± 3.64 44.9 ± 4.73 * 46.5 ± 4.99
Ejection fraction 0.89 ± 0.03 0.87 ± 0.03 0.83 ± 0.04 * 0.84 ± 0.04 #

PWSV (mm/s) 39.9 ± 4.23 36.3 ± 4.58 * 30.1 ± 3.83 * 33.6 ± 4.85 §

Tei Index 0.48 ± 0.06 0.50 ± 0.06 0.55 ± 0.08 * 0.49 ± 0.07 §

Lateral TDI-S’ (cm/s) 3.50 (3.30–4.00) 3.65 (3.40–4.00) 3.30 (3.10–3.40) * 3.45 (3.10–3.70)
Septal TDI-S’ (cm/s) 3.63 ± 0.50 3.41 ± 0.36 3.22 ± 0.39 * 3.29 ± 0.35
Mean TDI-S’ (cm/s) 3.58 (3.45–3.80) 3.48 (3.35–3.70) 3.20 (3.10–3.40) * 3.35 (3.08–3.68)

Data are expressed as mean ± standard deviation or median and 25th and 75th percentiles. C: control; C + DAPA:
control treated with dapagliflozin; DM: diabetes mellitus; DM + DAPA: DM treated with dapagliflozin; EFS:
endocardial fractional shortening; PWSV: posterior wall shortening velocity; Tei: myocardial performance index;
TDI-S’: tissue Doppler imaging for systolic velocity of the mitral annulus (lateral, septal, and average). ANOVA
for a 2 × 2 factorial design and Tukey or Kruskal–Wallis and Dunn; * p < 0.05 vs. C; # p < 0.05 vs. C + DAPA;
§ p < 0.05 vs. DM.

Table 4. Echocardiographic data for left ventricular diastolic function.

C
(n = 14)

C + DAPA
(n = 14)

DM
(n = 20)

DM + DAPA
(n = 20)

E-wave (cm/s) 76.1 ± 7.75 71.5 ± 3.33 70.5 ± 6.29 * 72.8 ± 6.09
A-wave (cm/s) 46.4 ± 13.7 39.2 ± 6.58 48.5 ± 12.6 44.1 ± 11.9

E/A 1.70 (1.38–1.91) 1.75 (1.67–2.05) 1.48 (1.22–1.74) 1.71 (1.54–2.02)
IVRT (ms) 26.0 ± 2.72 28.5 ± 3.13 38.7 ± 5.67 * 31.1 ± 5.77 §

IVRT/R-R 52.4 (51.4–57.8) 59.4 (57.3–62.3) 80.9 (68.5–87.9) * 61.7 (56.4–66.9) §

EDT (ms) 52.0 ± 8.64 54.5 ± 7.20 54.8 ± 8.57 53.1 ± 7.84
Lateral TDI-E’ 4.43 ± 0.65 4.16 ± 0.46 4.30 ± 0.66 4.19 ± 0.62
Septal TDI-E’ 4.26 ± 0.69 4.13 ± 0.54 4.22 ± 0.66 4.31 ± 0.78

Average TDI-E’ 4.33 (3.85–4.70) 4.10 (3.90–4.40) 4.53 (3.65–4.75) 4.45 (3.78–4.69)
Lateral TDI-A’ 3.50 (2.80–4.90) 2.60 (2.30–3.60) 3.85 (3.10–4.30) 3.20 (2.85–3.93)
Septal TDI-A’ 3.00 (2.70–4.20) 2.60 (2.10–3.40) 3.50 (2.90–4.60) 2.90 (2.80–4.35)

Average TDI-A’ 3.35 (2.80–4.00) 3.20 (2.96–3.99) 3.63 (3.05–4.45) 3.20 (2.96–3.99)
E/average E’ 17.7 ± 2.39 17.7 ± 1.57 16.7 ± 2.56 17.2 ± 2.33

Mean E’/average A’ 1.29 ± 0.40 1.48 ± 0.42 1.20 ± 0.38 1.30 ± 0.35

Data are expressed as mean ± standard deviation or median and 25th and 75th percentiles. C: control; C + DAPA:
control treated with dapagliflozin; DM: diabetes mellitus; DM + DAPA: DM treated with dapagliflozin; E-wave:
early diastolic mitral inflow velocity; A-wave: late diastolic mitral inflow velocity; IVRT: isovolumic relaxation
time; EDT: E-wave deceleration time; TDI-E’: tissue Doppler imaging (TDI) of mitral annular early velocity (lateral,
septal and average between lateral and septal wall velocity); TDI-A’: TDI of mitral annular late velocity (lateral,
septal, and average between lateral and septal wall velocity). ANOVA for a 2 × 2 factorial design and Tukey or
Kruskal–Wallis and Dunn; * p < 0.05 vs. C; § p < 0.05 vs. DM.

Anatomical variables are shown in Table 5. LV weight was lower and LV weight-to-
body weight ratio higher in DM than C. Right ventricle weight-to-body weight ratio was
higher in DM than C and DM-DAPA. The increased right ventricle-to-body weight ratio
in DM suggests that the right ventricle was hypertrophied in response to increased LV
end-diastolic pressure and pulmonary arterial pressure.

Myocardial hydroxyproline concentration and interstitial collagen fraction did not
differ between groups. Myocyte diameter was lower in C + DAPA than C (Table 6). Type III
collagen expression was lower in DM and DM + DAPA than their controls. Type I collagen
expression and Type I-to-type III collagen ratio were higher in C + DAPA than C and DM +
DAPA (Figures 2 and 3).
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Table 5. Anatomical data.

C
(n = 14)

C + DAPA
(n = 14)

DM
(n = 20)

DM + DAPA
(n = 20)

BW (g) 460 ± 43 449 ± 55 343 ± 52 * 389 ± 46 #§

LV (g) 0.79 ± 0.14 0.79 ± 0.09 0.68 ± 0.11 * 0.72 ± 0.10
LV/BW (g/kg) 1.72 ± 0.32 1.80 ± 0.22 2.01 ± 0.32 * 1.86 ± 0.28

RV (g) 0.24 ± 0.05 0.21 ± 0.03 0.22 ± 0.04 0.20 ± 0.04
RV/BW (g/kg) 0.51 (0.46–0.53) 0.47 (0.41–0.53) 0.62 (0.54–0.67) * 0.52 (0.47–0.57) §

Atria (g) 00.10 ± 0.03 0.08 ± 0.02 0.08 ± 0.02 0.08 ± 0.02
Atria/BW (g/kg) 0.22 ± 0.06 0.19 ± 0.04 0.23 ± 0.06 0.22 ± 0.05

Data are expressed as mean ± standard deviation or median and 25th and 75th percentiles. C: control; C + DAPA:
control treated with dapagliflozin; DM: diabetes mellitus; DM + DAPA: DM treated with dapagliflozin; BW: body
weight; LV: left ventricle weight; RV: right ventricle weight. ANOVA for a 2 × 2 factorial design and Tukey or
Kruskal–Wallis and Dunn; * p < 0.05 vs. C; # p < 0.05 vs. C + DAPA; § p < 0.05 vs. DM.

Table 6. Myocardial hydroxyproline (HOP) concentration and left ventricular morphometric parameters.

C
(n = 10)

C + DAPA
(n = 10)

DM
(n = 10)

DM + DAPA
(n = 10)

HOP (mg/g tissue) 1.43 ± 0.35 1.56 ± 0.54 1.48 ± 0.28 1.50 ± 0.28
ICF (%) 9.41 ± 0.02 8.30 ± 0.02 8.85 ± 0.02 9.88 ± 0.02

Diameter (µm) 17.6 (16.7–18.3) 15.5 (15.1–16.3) * 17.1 (15.6–17.8) 17.6 (15.8–18.1)

Data are expressed as mean ± standard deviation or median and 25th and 75th percentiles. C: control; C + DAPA:
control treated with dapagliflozin; DM: diabetes mellitus; DM + DAPA: DM treated with dapagliflozin; ICF:
myocardial interstitial collagen fraction; Diameter: myocyte lower diameter. ANOVA for a 2 × 2 factorial design
and Tukey or Kruskal–Wallis and Dunn; * p < 0.05 vs. C.
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Figure 2. Left ventricular protein expression. Type I collagen (a); Type III collagen (b); Type I/III
collagen ratio (c); lysyl oxidase (d). Data are mean ± standard deviation. C: control; C + DAPA:
control treated with dapagliflozin; DM: diabetes mellitus; DM + DAPA: DM treated with dapagliflozin;
ANOVA for a 2 × 2 factorial design and Tukey; * p < 0.05 vs. C; # p < 0.05 vs. C + DAPA; sample size
is 7 for all groups.
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DM had higher myocardial lipid hydroperoxide concentration and lower anti-oxidant
enzyme activities than C. DM + DAPA had lower lipid hydroperoxide concentration and
higher superoxide dismutase and glutathione peroxidase activity than DM (Figure 4). Ad-
vanced glycation end products did not differ between groups [C 0.88 (0.67–1.73); C + DAPA
1.29 (0.81–1.66); DM 1.02 (0.71–1.23); DM + DAPA 1.29 (0.80–1.88)%; p > 0.05].
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Figure 4. Left ventricular oxidative stress markers. Lipid hydroperoxide (a); superoxide dismutase
activity (b); glutathione peroxidase activity (c); and catalase activity (d). Data are expressed as
mean ± standard deviation. C: control; C + DAPA: control treated with dapagliflozin; DM: diabetes
mellitus; DM + DAPA: DM treated with dapagliflozin; ANOVA for a 2× 2 factorial design and Tukey;
* p < 0.05 vs. C; § p < 0.05 vs. DM; sample size is 8 for all groups.
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4. Discussion

Streptozotocin doses between 50 and 80 mg/kg (intravenous or intraperitoneal) have
been used to induce Type 1 DM [40–46]. We have observed in our previous studies [21,22,47]
(data not published) that administration of a high streptozotocin dose to rats with great
body weights increases glycemia to values higher than 500 mg/dL and leads to a high
mortality rate 6–8 weeks after DM induction. In this study, as we have included adult
rats with initial body weight around 450 g, we used a streptozotocin dose of 40 mg/kg.
Despite the lower dose, glycemia was very high in DM group at the end of the experiment,
which shows the success of the model to induce Type 1 DM. In accordance with our
results, other authors have succeeded in inducing Type 1 DM in rats with 40 mg/kg
streptozotocin [48,49].

As expected, the DM + DAPA group had lower glycemia than DM. SGLT2 inhibitors
were first introduced in clinical practice to reduce renal glucose reabsorption and de-
crease plasma glucose levels. Therefore, clinicians were concerned that loss of urinary
glucose could reduce body weight and impair physical status in lean patients with Type 1
DM [14,50]. In fact, only recently has the European Medicines Agency approved SGLT2
inhibition in Type 1 diabetes in addition to the current therapy in individuals with a body
mass index ≥ 27 kg/m2 [51]. Thus, it was interesting to observe that DM + DAPA had
lower glycemia in combination with higher body weight than DM at the end of the ex-
periment. In accordance with our study, diabetic mice treated with SGLT2 inhibitor had
increased skeletal muscle mass [52]. The reduced deleterious effects of hyperglycemia may
be involved in body mass preservation.

Systolic blood pressure was higher in DM than C and DM + DAPA. Reduced blood
pressure has been observed in DM patients after SGLT2 inhibition and attributed to several
mechanisms, such as increased natriuresis and decreased plasma volume, arterial stiffness,
and sympathetic tone [53–55].

In this study, the streptozotocin-induced diabetic cardiomyopathy was well character-
ized. We have previously showed that this is a good experimental model to assess diabetic
cardiomyopathy [21–24]. DM, despite having lower body weights than C, had increased
LV systolic diameter and left atrium diameter. Additionally, left atrium diameter-to-body
weight ratio and LV diastolic diameter-to-body weight ratio were approximately 40%
greater in DM than C. Both systolic and diastolic function were impaired in the DM group.
Dapagliflozin improved LV systolic and diastolic function in the diabetic rats. Improved
systolic function has been observed in experimental models of Type 2 DM and other cardiac
injury models. For example, dapagliflozin was cardioprotective in angiotensin II-stressed
diabetic mice by decreasing fibrosis and inflammation and improving systolic function [56].

Different mechanisms have been proposed to explain the cardioprotective effects of
SGLT2 inhibitors, such as an increase in diuresis/natriuresis, autophagy, lysosomal degra-
dation, circulating pro-vascular progenitor cells, erythropoiesis and erythropoietin levels;
decrease in blood pressure, oxidative stress, hyperuricemia, inflammation, myocardial
fibrosis, and epicardial fat mass; improvement in energy metabolism and vascular function;
inhibition of sympathetic nervous system, Na+/H+-exchanger, and SGLT1; and prevention
of ischemia/reperfusion injury [12,56,57]. In this study, we evaluated myocardial collagen
content and crosslinking, and oxidative stress including AGEs formation.

Myocardial collagen content evaluated by interstitial collagen fraction and hydroxypro-
line did not differ between groups, suggesting that myocardial fibrosis is not an important
mechanism of cardiac function impairment in this relatively short-term cardiomyopathy
model. In accordance with our results, changes in cardiac function were observed be-
fore overt myocardial structure alterations in Type 1 diabetes rats [58]. Empagliflozin
reduced myocardial fibrosis and cardiac hypertrophy in rats with metabolic syndrome, an
experimental model characterized by cardiac hypertrophy and fibrosis [59].

Mechanical myocardial properties are influenced by both the collagen amount and
collagen crosslinking. Fibrillar collagen Types I and III are the predominant forms in
cardiac extracellular matrix [60]. Type I collagen consists of thick fibers with a high tensile
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strength, and Type III collagen has small diameter fibers with a low tensile strength [61].
Type 1 collagen was higher in C + DAPA than C. The effects of SGLT2 inhibitors on the
normal heart are not completely established. Increased collagen content was observed in
healthy mice after ten days with empagliflozin administration [62]. We have not observed
differences in Type 1 and Type 3 collagen protein expression between DM + DAPA and
DM. Therefore, collagen content or crosslinking was not involved in the differences in
ventricular function between DM + DAPA and DM group.

Hyperglycemia increases reactive oxygen species, which are a major mechanism in the
pathophysiology of diabetic cardiomyopathy [63–65]. DM had higher oxidative stress and
reduced anti-oxidant enzyme activity than C and DM + DAPA, showing that dapagliflozin
normalized oxidative stress. Other authors have shown normalization of oxidative stress by
SGLT2 inhibitors in different models of cardiac injury [56,66]. Arow et al. [56] observed that
SGLT2 inhibition-induced decrease in oxygen radicals was accompanied by improved ac-
tivity of calcium membrane channels with cardioprotective effects similar to those observed
in our study. However, there are conflicting results in rodents with streptozotocin-induced
DM, with reports of no improvement in antioxidant status after low dose dapagliflozin [67].

Hyperglycemia and oxidative stress increase AGEs. AGEs per se increase oxidative
stress and impair ventricular stiffness [6,7,68]. In this study AGEs quantification did not
differ between groups. Similarly, empagliflozin did not modulate AGEs production in an
ischemia/reperfusion mice model [7]. Our results suggest that increased AGEs formation
does not occur after a relatively short period of hyperglycemia. Finally, it should be pointed
out that the dapagliflozin-induced reduction in glycemia may have contributed to the
decreased oxidative stress and improved cardiac remodeling.

In conclusion, dapagliflozin is safe, increases body weight, decreases glycemia and
oxidative stress, and attenuates cardiac remodeling in an experimental model of Type 1
diabetes mellitus. In healthy rats, dapagliflozin increases protein expression of Type 1
collagen.

Author Contributions: C.M.R. and K.O. conceived and designed the study. D.H.S.C., D.R.A.R.,
F.C.D., L.Y.K., L.U.P., M.J.G., C.R.C., A.A.H.F. and M.P.O. contributed to the acquisition or interpreta-
tion of the data. C.M.R., M.P.O. and K.O. drafted the manuscript. All authors have read and agreed
to the published version of the manuscript.

Funding: Financial support was provided by FAPESP (2015/02324-3); CNPq (2018/00567-4, 308557/
2018-2, 310876/2018-4); and PROPe, UNESP.

Institutional Review Board Statement: All experiments and procedures were approved by the
Ethics Committee of Botucatu Medical School, UNESP (1124-2015).

Informed Consent Statement: Not applicable.

Data Availability Statement: All data generated or analyzed during this study are included in this
manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

A-wave late diastolic mitral flow velocity
AGE advanced glycation end products
ANOVA analysis of variance
AO aorta diameter
C control group
C + DAPA control group treated with dapagloflozin
DAB 3,3′-diaminobenzidine
DM diabetes mellitus
DM + DAPA diabetes mellitus group treated with dapagloflozin
E-wave early diastolic mitral flow velocity
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E/A ratio
E/E’ ratio
EDT E-wave deceleration time
EDTA ethylenediamine tetraacetic acid
EFS endocardial fraction shortening
GSH-Px glutathione peroxidase
HOP hydroxyproline
H2O2 Hydrogen peroxide
IVRT isovolumetric relation time
LA left atrium
LV left ventricle
LVDD left ventricle diastolic dimensions
LVPWT left ventricle posterior wall thickness
LVM left ventricle mass
LVSWT left ventricle septal wall thickness
LVSD left ventricle sistolic dimensions
NADH nicotinamida adenina dinucleotídeo
PWSV posterior wall shortening velocity
RWT left ventricle relative wall thickness
SGLT2 sodium-glucose co-transporter 2
SOD superoxide dismutase
TDI tissue Doppler imaging
TDI-A’ tissue Doppler imaging of mitral annular late velocity (lateral, septal and average)
TDI-E’ tissue Doppler imaging of mitral annular early velocity (lateral, septal and average)

TDI-S’
tissue Doppler imaging for systolic velocity of the mitral annulus (lateral,
septal and average)

Tei index myocardial performance index

References
1. Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Alonso, A.; Beaton, A.Z.; Bittencourt, M.S.; Boehme, A.K.; Buxton, A.E.; Carson, A.P.;

Commodore-Mensah, Y.; et al. American Heart Association Council on Epidemiology and Prevention Statistics Committee and
Stroke Statistics Subcommittee. Heart disease and stroke statistics-2022 Update: A report from the American Heart Association.
Circulation 2022, 145, e153–e639.

2. Maack, C.; Lehrke, M.; Backs, J.; Heinzel, F.R.; Hulot, J.-S.; Marx, N.; Paulus, W.J.; Rossignol, P.; Taegtmeyer, H.; Bauersachs,
J.; et al. Heart failure and diabetes: Metabolic alterations and therapeutic interventions: A state-of-the-art review from the
Translational Research Committee of the Heart Failure Association—European Society of Cardiology. Eur. Heart J. 2018, 39,
4243–4254.

3. Dillmann, W.H. Diabetic cardiomyopathy. Circ. Res. 2019, 124, 1160–1162.
4. El Hayek, M.S.; Ernande, L.; Benitah, J.-P.; Gomez, A.-M.; Pereira, L. The role of hyperglycaemia in the development of diabetic

cardiomyopathy. Arch. Cardiovasc. Dis. 2021, 114, 748–760.
5. Pappachan, J.M.; Varughese, G.I.; Sriraman, R.; Arunagirinathan, G. Diabetic cardiomyopathy: Pathophysiology, diagnostic

evaluation and management. World J. Diabetes 2013, 4, 177–189.
6. Prasad, A.; Bekker, P.; Tsimikas, S. Advanced glycation end products and diabetic cardiovascular disease. Cardiol. Rev. 2012, 20,

177–183.
7. Andreadou, I.; Efentakis, P.; Balafas, E.; Togliatto, G.; Davos, C.H.; Varela, A.; Dimitriou, C.A.; Nikolaou, P.E.; Maratou, E.;

Lambadiari, V.; et al. Empagliflozin limits myocardial infarction in vivo and cell death in vitro: Role of STAT3, mitochondria, and
redox aspects. Front. Physiol. 2017, 8, 1077.

8. Zelniker, T.A.; Braunwald, E. Mechanisms of cardiorenal effects of sodium-glucose cotransporter 2 inhibitors: JACC State-of-the-
art Review. J. Am. Coll. Cardiol. 2020, 75, 422–434.

9. Anderson, S.L. Dapagliflozin efficacy and safety: A perspective review. Ther. Adv. Drug. Saf. 2014, 5, 242–254.
10. Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.;

et al. EMPA-REG Outcome Investigators. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J.
Med. 2015, 373, 2117–2128.

11. Neal, B.; Perkovic, V.; Mahaffey, K.W.; de Zeeuw, D.; Fulcher, G.; Erondu, N.; Shaw, W.; Law, G.; Desai, M.; Matthews, D.R.; et al.
CANVAS Program Collaborative Group. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N. Engl. J. Med.
2017, 377, 644–657.

12. Lopaschuk, G.D.; Verma, S. Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) inhibitors: A
State-of-the-art Review. JACC Basic Transl. Sci. 2020, 5, 632–644.



Antioxidants 2022, 11, 982 12 of 14

13. Anker, S.D.; Butler, J.; Filippatos, G.; Ferreira, J.P.; Bocchi, E.; Bohm, M.; Rocca, H.-P.B.; Choi, D.-J.; Chopra, V.; Chuquiure-
Valenzuela, E.; et al. EMPEROR-Preserved Trial Investigators. Empagliflozin in heart failure with a preserved ejection fraction. N.
Engl. J. Med. 2021, 385, 1451–1461.

14. Baba, Y.; Ishibashi, R.; Takasaki, A.; Ito, C.; Watanabe, A.; Tokita, M.; Meguro, M.; Harama, T.; Hirayama, K.; Yamamoto, T.; et al.
Effects of sodium glucose co-transporter 2 inhibitors in type 1 diabetes mellitus on body composition and glucose variabilities:
Single-arm, exploratory trial. Diabetes Ther. 2021, 12, 1415–1427.

15. Dandona, P.; Phillip, M.; Gillard, P.; Edelman, S.; Jendle, J.; Xu, J.; Scheerer, M.F.; Thoren, F.; Iqbal, N.; Repetto, E.; et al. Effect of
dapagliflozin as an adjunct to insulin over 52 weeks in individuals with type 1 diabetes: Post-hoc renal analysis of the depict
randomised controlled trials. Lancet Diabetes Endocrinol. 2020, 8, 845–854.

16. Ishibashi, R.; Baba, Y.; Kakinuma, K.; Takasaki, A.; Hiraga, C.; Harama, T.; Yamamoto, T.; Nakamura, S.; Koshizaka, M.; Maezawa,
Y.; et al. Assessing patient satisfaction following sodium glucose co-transporter 2 inhibitor treatment for type 1 diabetes mellitus:
A prospective study in Japan. Diabetes Ther. 2021, 12, 453–460.

17. Huang, Y.; Jiang, Z.; Wei, Y. Efficacy and safety of the SGLT2 inhibitor dapagliflozin in type 1 diabetes: A meta-analysis of
randomized controlled trials. Exp. Ther. Med. 2021, 21, 382.

18. Rao, L.; Ren, C.; Luo, S.; Huang, C.; Li, X. Sodium-glucose cotransporter 2 inhibitors as an add-on therapy to insulin for type 1
diabetes mellitus: Meta-analysis of randomized controlled trials. Acta Diabetol. 2021, 58, 869–880.

19. Hughes, M.S.; Bailey, R.; Calhoun, P.; Shah, V.N.; Lyons, S.K.; DeSalvo, D.J. Off-label use of sodium glucose co-transporter
inhibitors among adults in type 1 diabetes exchange registry. Diabetes Obes. Metab. 2022, 24, 171–173.

20. Jankauskas, S.S.; Kansakar, U.; Varzideh, F.; Wilson, S.; Mone, P.; Lombardi, A.; Gambardella, J.; Santulli, G. Heart failure in
diabetes. Metabolism 2021, 125, 154910.

21. Rosa, C.M.; Gimenes, R.; Campos, D.H.; Guirado, G.N.; Gimenes, C.; Fernandes, A.A.H.; Cicogna, A.C.; Queiroz, R.M.; Falcão-
Pires, I.; Miranda-Silva, D.; et al. Apocynin influence on oxidative stress and cardiac remodeling of spontaneously hypertensive
rats with diabetes mellitus. Cardiovasc. Diabetol. 2016, 15, 126.

22. Gimenes, C.; Gimenes, R.; Rosa, C.M.; Xavier, N.P.; Campos, D.H.S.; Fernandes, A.A.H.; Cezar, M.D.M.; Guirado, G.N.; Cicogna,
A.C.; Takamoto, A.H.R.; et al. Low intensity physical exercise attenuates cardiac remodeling and myocardial oxidative stress and
dysfunction in diabetic rats. J. Diabetes Res. 2015, 2015, 457848.

23. Guimaraes, J.F.; Muzio, B.P.; Rosa, C.M.; Nascimento, A.F.; Sugizaki, M.M.; Fernandes, A.A.H.; Cicogna, A.C.; Padovani, C.R.;
Okoshi, M.P.; Okoshi, K. Rutin administration attenuates myocardial dysfunction in diabetic rats. Cardiovasc. Diabetol. 2015, 14,
90.

24. Gimenes, R.; Gimenes, C.; Rosa, C.M.; Xavier, N.P.; Campos, D.H.S.; Fernandes, A.A.H.; Cezar, M.D.M.; Guirado, G.N.; Pagan,
L.U.; Chaer, I.D.; et al. Influence of apocynin on cardiac remodeling in rats with streptozotocin-induced diabetes mellitus.
Cardiovasc. Diabetol. 2018, 17, 15.

25. Oliveira Junior, S.A.; Dal Pai-Silva, M.; Martinez, P.F.; Lima-Leopoldo, A.P.; Campos, D.H.S.; Leopoldo, A.S.; Okoshi, M.P.; Okoshi,
K.; Padovani, C.R.; Cicogna, A.C. Diet-induced obesity causes metabolic, endocrine and cardiac alterations in spontaneously
hypertensive rats. Med. Sci. Monit. 2010, 16, BR367–BR373.

26. Cezar, M.D.; Damatto, R.L.; Martinez, P.F.; Lima, A.R.R.; Campos, D.H.S.; Rosa, C.M.; Guizoni, D.M.; Bonomo, C.; Cicogna, A.C.;
Gimenes, R.; et al. Aldosterone blockade reduces mortality without changing cardiac remodeling in spontaneously hypertensive
rats. Cell. Physiol. Biochem. 2013, 32, 1275–1287.

27. Lima, A.R.; Martinez, P.F.; Damatto, R.L.; Cezar, M.D.; Guizoni, D.M.; Bonomo, C.; Oliveira, S.A., Jr.; Dal-Pai Silva, M.; Zornoff,
L.A.; Okoshi, K.; et al. Heart failure-induced diaphragm myopathy. Cell. Physiol. Biochem. 2014, 34, 333–345.

28. Cicogna, A.C.; Padovani, C.R.; Okoshi, K.; Aragon, F.F.; Okoshi, M.P. Myocardial function during chronic food restriction in
isolated hypertrophied cardiac muscle. Am. J. Med. Sci. 2000, 320, 244–248.

29. Minicucci, M.F.; Azevedo, P.S.; Martinez, P.F.; Lima, A.R.R.; Bonomo, C.; Guizoni, D.M.; Polegato, B.F.; Okoshi, M.P.; Okoshi, K.;
Matsubara, B.B.; et al. Critical infarct size to induce ventricular remodeling, cardiac dysfunction and heart failure in rats. Int. J.
Cardiol. 2011, 151, 242–243.

30. Okoshi, K.; Fioretto, J.R.; Okoshi, M.P.; Cicogna, A.C.; Aragon, F.F.; Matsubara, L.S.; Matsubara, B.B. Food restriction induces
in vivo ventricular dysfunction in spontaneously hypertensive rats without impairment of in vitro myocardial contractility. Braz.
J. Med. Biol. Res. 2004, 37, 607–613.

31. Gomes, N.J.; Pagan, L.U.; Lima, A.R.R.; Reyes, D.R.A.; Martinez, P.F.; Damatto, F.C.; Pontes, T.H.D.; Rodrigues, E.A.; Souza, L.M.;
Tosta, I.F.; et al. Effects of aerobic and resistance exercise on cardiac remodelling and skeletal muscle oxidative stress of infarcted
rats. J. Cell. Mol. Med. 2020, 24, 5352–5362.

32. Reyes, D.R.A.; Gomes, M.J.; Rosa, C.M.; Pagan, L.U.; Damatto, F.C.; Damatto, R.L.; Depra, I.; Campos, D.H.S.; Fernandez,
A.A.H.; Martinez, P.F.; et al. N-acetylcysteine influence on oxidative stress and cardiac remodeling in rats during transition from
compensated left ventricular hypertrophy to heart failure. Cell. Physiol. Biochem. 2017, 44, 2310–2321.

33. Okoshi, M.P.; Matsubara, L.S.; Franco, M.; Cicogna, A.C.; Matsubara, B.B. Myocyte necrosis is the basis for fibrosis in renovascular
hypertensive rats. Braz. J. Med. Biol. Res. 1997, 30, 1135–1144.

34. Guizoni, D.M.; Oliveira-Junior, S.A.; Noor, S.L.; Pagan, L.U.; Martinez, P.F.; Lima, A.R.R.; Gomes, M.J.; Damatto, R.L.; Cezar,
M.D.; Bonomo, C.; et al. Effects of late exercise on cardiac remodeling and myocardial calcium handling proteins in rats with
moderate and large size myocardial infarction. Int. J. Cardiol. 2016, 221, 406–412.



Antioxidants 2022, 11, 982 13 of 14

35. Matsubara, L.S.; Matsubara, B.B.; Okoshi, M.P.; Franco, M.; Cicogna, A.C. Myocardial fibrosis rather than hypertrophy induces
diastolic dysfunction in renovascular hypertensive rats. Can. J. Physiol. Pharmacol. 1997, 75, 1328–1334.

36. Damatto, R.L.; Lima, A.R.R.; Martinez, P.F.; Cezar, M.D.M.; Okoshi, K.; Okoshi, M.P. Myocardial myostatin in spontaneously
hypertensive rats with heart failure. Int. J. Cardiol. 2016, 215, 384–387.

37. Martinez, P.F.; Bonomo, C.; Guizoni, D.M.; Oliveira Junior, S.A.; Damatto, R.L.; Cezar, M.D.M.; Lima, A.R.R.; Pagan, L.U.; Seiva,
F.R.; Bueno, R.T.; et al. Modulation of MAPK and NF-KB signaling pathways by antioxidant therapy in skeletal muscle of heart
failure rats. Cell. Physiol. Biochem. 2016, 39, 371–384.

38. Martinez, P.F.; Bonomo, C.; Guizoni, D.M.; Oliveira Junior, S.A.; Damatto, R.L.; Cezar, M.D.M.; Lima, A.R.R.; Pagan, L.U.; Seiva,
F.R.; Fernandes, D.C.; et al. Influence of N-acetylcysteine on oxidative stress in slow-twitch soleus muscle of heart failure rats.
Cell. Physiol. Biochem. 2015, 35, 148–159.

39. Reyes, D.R.A.; Gomes, M.J.; Rosa, C.M.; Pagan, L.U.; Zanati, S.G.; Damatto, R.L.; Rodrigues, E.A.; Carvalho, R.F.; Fernandes,
A.A.H.; Martinez, P.F.; et al. Exercise during transition from compensated left ventricular hypertrophy to heart failure in aortic
stenosis rats. J. Cell. Mol. Med. 2019, 23, 1235–1245.

40. Paulson, D.J.; Shug, A.L.; Zhao, J. Protection of the ischemic diabetic heart by L-propionylcarnitine therapy. Mol. Cell. Biochem.
1992, 116, 131–137.

41. Hatch, G.M.; Cao, S.G.; Angel, A. Decrease in cardiac phosphatidylglycerol in streptozotocin-induced diabetic rats does not affect
cardiolipin biosynthesis: Evidence for distinct pools of phosphatidylglycerol in the heart. Biochem. J. 1995, 306, 759–764.

42. Tosaki, A.; Pali, T.; Droy-Lefaix, M.T. Effects of Ginkgo biloba extract and preconditioning on the diabetic rat myocardium.
Diabetologia 1996, 39, 1255–1262.

43. Hadova, K.; Mesarosova, L.; Kralova, E.; Doka, G.; Krenek, P.; Klimas, J. The tyrosine kinase inhibitor crizotinib influences blood
glucose and mRNA expression of GLUT4 and PPARs in the heart of rats with experimental diabetes. Can. J. Physiol. Pharmacol.
2021, 99, 635–643.

44. Badole, S.L.; Chaudhari, S.M.; Jangam, G.B.; Kandhare, A.D.; Bodhankar, S.L. Cardioprotective activity of Pongamia pinnata in
streptozotocin-nicotinamide induced diabetic rats. Biomed. Res. Int. 2015, 2015, 403291.

45. Tosaki, A.; Engelman, D.T.; Engelman, R.M.; Das, D.K. Diabetes and ATP-sensitive potassium channel openers and blockers in
isolated ischemic/reperfused hearts. J. Pharmacol. Exp. Ther. 1995, 275, 1115–1123.

46. Ewis, S.A.; Abdel-Rahman, M.S. Effect of metformin on glutathione and magnesium in normal and streptozotocin-induced
diabetic rats. J. Appl. Toxicol. 1995, 15, 387–390.

47. Rosa, C.M.; Xavier, N.P.; Campos, D.H.; Fernandes, A.A.; Cezar, M.D.; Martinez, P.F.; Cicogna, A.C.; Gimenes, C.; Gimenes, R.;
Okoshi, M.P.; et al. Diabetes mellitus activated fetal gene program and intensifies cardiac remodeling and oxidative stress in aged
spontaneously hypertensive rats. Cardiovasc. Diabetol. 2013, 12, 152.

48. Cunha, J.M.; Funez, M.I.; Cunha, F.Q.; Parada, C.A.; Ferreira, S.H. Streptozotocin-induced mechanical hypernociception is not
dependent on hyperglycemia. Braz. J. Med. Biol. Res. 2009, 42, 197–206.

49. Koh, P.-O. Streptozotocin-induced diabetes increases apoptosis through JNK phosphorylation and Bax activation in rat testes. J.
Vet. Med. Sci. 2007, 69, 969–971.

50. Seufert, J.; Lanzinger, S.; Danne, T.; Bramlage, P.; Schmid, S.M.; Kopp, F.; Kress, S.; Fasching, P.; Schafer, C.; Holl, R.W.; et al. Real-
world data of 12-month adjunct sodium-glucose co-transporter-2 inhibitor treatment in type 1 diabetes from the German/Austrian
DPV Registry: Improved HbA1c without diabetic ketoacidosis. Diabetes Obes. Metab. 2022, 24, 742–746.

51. Gillard, P.; Schnell, O.; Groop, P.-H. The nephrological perspective on SGLT-2 inhibitors in type 1 diabetes. Diabetes Res. Clin.
Pract. 2020, 170, 108462.

52. Bamba, R.; Okamura, T.; Hashimoto, Y.; Majima, S.; Senmaru, T.; Ushigome, E.; Nakanishi, N.; Asano, M.; Yamazaki, M.;
Takakuwa, H.; et al. Extracellular lipidome change by an SGLT2 inhibitor, luseogliflozin, contributes to prevent skeletal muscle
atrophy in db/db mice. J. Cachexia Sarcopenia Muscle 2022, 13, 574–588.

53. Briasoulis, A.; Dhaybi, O.A.; Bakris, G.L. SGLT2 inhibitors and mechanisms of hypertension. Curr. Cardiol. Rep. 2018, 20, 1.
54. Kawasoe, S.; Maruguchi, Y.; Kajiya, S.; Uenomachi, H.; Miyata, M.; Kawasoe, M.; Kubozono, T.; Ohishi, M. Mechanism of

the blood pressure-lowering effect of sodium-glucose cotransporter 2 inhibitors in obese patients with type 2 diabetes. BMC
Pharmacol. Toxicol. 2017, 18, 23.

55. Durante, W.; Behnammanesh, G.; Peyton, K.J. Effects of sodium-glucose co-transporter 2 inhibitors on vascular cell function and
arterial remodeling. Int. J. Mol. Sci. 2021, 22, 8786.

56. Arow, M.; Waldman, M.; Yadin, D.; Nudelman, V.; Shainberg, A.; Abraham, N.G.; Freimark, D.; Kornowski, R.; Aravot, D.;
Hochhauser, E.; et al. Sodium-glucose cotransporter 2 inhibitor dapagliflozin attenuates diabetic cardiomyopathy. Cardiovasc.
Diabetol. 2020, 19, 7.

57. Joshi, S.S.; Singh, T.; Newby, D.E.; Singh, J. Sodium-glucose co-transporter 2 inhibitor therapy: Mechanisms of action in heart
failure. Heart 2021, 107, 1032–1038.

58. Marchini, G.S.; Cestari, I.N.; Salemi, V.M.C.; Irigoyen, M.C.; Arnold, A.; Kakoi, A.; Rocon, C.; Aiello, V.D.; Cestari, I.A. Early
changes in myocyte contractility and cardiac function in streptozotocin-induced type 1 diabetes in rats. PLoS ONE 2020, 15,
e0237305.

59. Kusaka, H.; Koibuchi, N.; Hasegawa, Y.; Ogawa, H.; Kim-Mitsuyama, S. Empagliflozin lessened cardiac injury and reduced
visceral adipocyte hypertrophy in prediabetic rats with metabolic syndrome. Cardiovasc. Diabetol. 2016, 15, 157.



Antioxidants 2022, 11, 982 14 of 14

60. Fan, D.; Takawale, A.; Lee, J.; Kassiri, Z. Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease.
Fibrogenesis Tissue Repair 2012, 5, 5–15.

61. Pagan, L.U.; Damatto, R.L.; Gomes, M.J.; Lima, A.R.R.; Cezar, M.D.M.; Damatto, F.C.; Reyes, D.R.A.; Caldonazo, T.M.M.; Polegato,
B.F.; Okoshi, M.P.; et al. Low-intensity aerobic exercise improves cardiac remodelling of adult spontaneously hypertensive rats. J.
Cell. Mol. Med. 2019, 23, 6504–6507.

62. Quagliariello, V.; De Laurentiis, M.; Rea, D.; Barbieri, A.; Monti, M.G.; Carbone, A.; Paccone, A.; Altucci, L.; Conte, M.; Canale,
M.L.; et al. The SGLT-2 inhibitor empagliflozin improves myocardial strain, reduces cardiac fibrosis and pro-inflammatory
cytokines in non-diabetic mice treated with doxorubicin. Cardiovasc. Diabetol. 2021, 20, 150.

63. Cieluch, A.; Uruska, A.; Zozulinska-Ziolkiewicz, D. Can we prevent mitochondrial dysfunction and diabetic cardiomyopathy in
type 1 diabetes mellitus? Pathophysiology and treatment options. Int. J. Mol. Sci. 2020, 21, 2852.

64. Singh, R.M.; Waqar, T.; Howarth, F.C.; Adeghate, E.; Bidasee, K.; Singh, J. Hyperglycemia-induced cardiac contractile dysfunction
in the diabetic heart. Heart Fail. Rev. 2018, 23, 37–54.

65. Rukavina-Mikusic, I.A.; Rey, M.; Martinefski, M.; Tripodi, V.; Valdez, L.B. Temporal evolution of cardiac mitochondrial dysfunction
in a type 1 diabetes model. Mitochondrial complex I impairment, and H2O2 and NO productions as early subcellular events. Free
Radic. Biol. Med. 2021, 162, 129–140.

66. Hatanaka, T.; Ogawa, D.; Tachibana, H.; Eguchi, J.; Inoue, T.; Yamada, H.; Takei, K.; Makino, H.; Wada, J. Inhibition of SGLT2
alleviates diabetic nephropathy by suppressing high glucose-induced oxidative stress in type 1 diabetic mice. Pharmacol. Res.
Perspect. 2016, 4, e00239.

67. Sayed, N.; Abdalla, O.; Kilany, O.; Dessouki, A.; Yoshida, T.; Sasaki, K.; Shimoda, M. Effect of dapagliflozin alone and in
combination with insulin in a rat model of type 1 diabetes. J. Vet. Med. Sci. 2020, 82, 467–474.

68. Vlassara, H.; Uribarri, J. Advanced glycation end products (AGE) and diabetes: Cause, effect, or both? Curr. Diab. Rep. 2014, 14,
453.


	Introduction 
	Materials and Methods 
	Experimental Groups 
	Echocardiographic Study 
	M-Mode 
	Tissue Doppler Imaging 

	Histological Analysis 
	Myocardial Hydroxyproline Concentration 
	Western Blotting 
	Myocardial Oxidative Stress 
	Advanced Glycation End Products 
	Statistical Analyzes 

	Results 
	Discussion 
	References

