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Abstract: The design of novel materials to use simultaneously in an ocular system for driven
therapeutics and wound healing is still challenging. Here, we produced nanocomposites of tungsten
disulfide carriers with spherical cobalt ferrite nanoparticles (NPs) as core inside a cubic iron oxide
NPs shell (WS2/s-CoFe2O4@c-Fe3O4). Transmission electron microscopy (TEM) confirmed that
10 nm s-CoFe2O4@c-Fe3O4 NPs were attached on the WS2 sheet surfaces. The cytotoxicity of the
WS2 sheets and nanocomposites were evaluated on bovine cornea endothelial cells (BCECs) using
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay for a duration of three
days. The MTT assay results showed low toxicity of the WS2 sheets on BCECs by 67% cell viability
at 100 µg/mL in 24 h, while the nanocomposites show 50% cell viability in the same conditions.
The magnetic resonance imaging (MRI) of nanocomposites revealed the excellent T2-weighted imaging
with an r2 contrast of 108 mM−1 S−1. The in vitro photothermal therapy based on WS2 sheets and
WS2/s-CoFe2O4 @c-Fe3O4 nanocomposites using 808 nm laser showed that the maximum thermal
energy dispatched in medium at different applied power densities (1200 mw, 1800, 2200, 2600 mW)
was for 0.1 mg/mL of the sample solution. The migration assay of BCECs showed that the wound
healing was approximately 20% slower for the cell exposed by nanocomposites compared with
the control (no exposed BCECs). We believe that WS2/s-CoFe2O4@c-Fe3O4 nanocomposites have a
synergic effect as photothermal therapy agents for eye diseases and could be a target in an ocular
system using MRI.

Keywords: WS2/s-CoFe2O4@c-Fe3O4 nanocomposites; MRI; BCECs; photo thermal therapy

1. Introduction

The new generation of two dimensional (2D) materials called transition metal dichalcogenide
(TMDC) consists of hexagonal layers of metal atoms between two layers of the chalcogen atoms which
have the ability to observed microwave and near infrared (NIR) wave lengths [1–3]. These novel
two-dimensional sheets such as MoS2, MoSe2, WS2, and WSe2, exhibit large surface area and show a
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boundary effect, resulting in notable electronics and photonics properties [4–6]. In addition, the TMDC
semiconductors have direct band gaps in the visible and infrared regimes with giant light matter coupling
properties and thus become a suitable candidate for the optoelectronics and optics applications [7–9].
Among the TMDCs, tungsten disulfide (WS2) sheets warrant particular attention because of their
non-toxicity, high thermal degradation and high resistance against oxidations [10,11]. The WS2 sheets
have high NIR absorption capability to use for photothermal treatments in cancer therapy [9,12].
The laser-assisted therapeutics for in vivo and in vitro treatments can be more effective while coupled
with materials with high NIR absorbance [13–16]. In this regard, various types of nanoparticles (NPs)
are found to assist laser treatments specially for treatment of eye diseases [17,18]. Sauvage et al.
reported on applying laser to ablate the plasmonic NPs conjugated with the vitreous opacities as feasible
treatments for eye diseases [19]. In other research, laser has been used to trigger graphene nanosheets
to release the drugs inside the eyes after administrations [20–22]. To navigate therapeutics, in NPs
movements inside the eyes, the use of non-invasive medical diagnostic tools like magnetic resonance
imaging (MRI) is promising. To target the nanodevices by MRI, the novel design of nanocomposites for
theragnostic applications in biomedicine is of interest. Hatamie et al. designed graphene (2D)/cobalt
nano composites for both cancer therapy and MRI imaging [23], while Shahsavari Alavijeh et al.
synthesized the molybdenum disulfide/cobalt ferrite (MoS2/CoFe2O4) nanocomposites to use as contrast
agents for MRI in cancer treatments [24]. To induce the magnetic properties into the 2D carriers
(graphene, TMDCs), magnetic nanoparticles (MNPs) with better magnetic properties are required.
Besides, iron oxide MNPs (Fe3O4) in magnetite phase have great potential in therapeutic and advanced
diagnostics because of their high saturation magnetization [25–27]. Also, the spinel ferrimagnetic cobalt
ferrite MNPs (CoFe2O4) have high curie temperature (~400 ◦C), high magnetic anisotropy, and high
coercivity compared to those of magnetite NPs [28–30]. Interestingly, the combination of MNPs named
bi-magnetic core-shell NPs are used in multiferroic technologies and MRI bioimaging because of their
unique properties such as high exchange bias, tunable coercivity, blocking temperatures, and large
resonance fields compared to the single MNPs [31,32]. The magnetic properties of the core-shell
nanostructures are reported to improve due to the diverse coupling interactions between the core and
shell nano particles via interfacial defect acts as anisotropy in ferro-ferri and ferro-anti ferro magnetic
structures [33–35], which make them great candidates to use in magnetic imaging [36–38]. In this study,
we used the seed-growth technique to prepare spherical cobalt ferrite (s-CoFe2O4) as a magnetic core
template to cover with the cubic iron oxide as shell (c-Fe3O4) to form (s-CoFe2O4@c-Fe3O4) core-shell
NPs [39–42]. The WS2 nanosheets were synthesized by a series of chemical methods followed by a
non-oxygen annealing process. Furthermore, the nanocomposites of the WS2/s-CoFe2O4@c-Fe3O4 are
prepared with the facile bath sonication of as-synthesized materials. The morphology of the WS2,
core-shell NPs, and nanocomposites have been characterized using TEM. The cytotoxicity of the WS2 and
nanocomposites are evaluated using MTT assay on BCECs. The cell migration assay for wound healing
was done on the BCECs exposed with nanocomposites. The in vitro photothermal measurements were
done on nanocomposites and WS2 for comparison. These WS2/s-CoFe2O4@c-Fe3O4 nanocomposites
have great potential for use in theragnostic applications as therapeutics and bioimaging material [43].

2. Result and Discussion

2.1. TEM of WS2/s-CoFe2O4@c-Fe3O4 Nanocomposites

TEM images of the WS2 sheets, s-CoFe2O4@c-Fe3O4 core-shell NPs, WS2/s-CoFe2O4@c-Fe3O4

nanocomposites are shown in Figure 1. As seen in Figure 1a, the WS2 sheets performed layered
structures in micro size. The TEM images of core shell MNPs (Figure 1b) showed the cubic iron
oxide shell. The size of the core shell NPs is evaluated to be ~10 nm. The spherical cobalt ferrites
are expected to cover inside the core-shell structures. Here, the core-shell NPs were obtained by a
seed mediation thermal decomposition routes, which was used as prepared CoFe2O4 NPs as template,
then the cubic structured iron oxide NPs is grown as a shell. As seen in Figure 1b,d, the CoFe2O4 does
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not appear in the TEM mode. This could be considered as an obscured signal because of the thick shell.
This assumption can be supported by energy dispersive spectrometer (EDS), which confirmed the
present of the cobalt and iron and oxygen element in the core-shell NPs (Figure 1d). The TEM image of
nanocomposites (Figure 1c) confirmed the s-CoFe2O4@c-Fe3O4 NPs attachments in the WS2 surfaces.
In addition, its inset shows the selected area electron diffraction (SAED) pattern for the nanocomposites;
lattice fringes corresponding to the WS2 sheets and core-shell NPs could be observed [44].

Figure 1. Transmission Electron Microscopy (TEM) images of the (a) WS2 sheets, (b) s-CoFe2O4@c-Fe3O4

NPs and (c) WS2/s-CoFe2O4@c-Fe3O4 nanocomposites shows the layered structure of WS2 and the
size of the nanoparticles (NPs) is observed to be 10 nm, (d) the energy dispersive spectrometer (EDS)
structural study of the s-CoFe2O4@c-Fe3O4 NPs. The inset of figure (c) showed its corresponding
selected area electron diffraction (SAED) pattern. (d) The EDS structural study of the s-CoFe2O4@
c-Fe3O4 NPs confirmed the presence of the cobalt, iron and oxygen elements in the core-shell magnetic
nanoparticles (MNPs).

2.2. MTT Assay of WS2 Sheets and WS2/s-CoFe2O4@c-Fe3O4 Nanocomposites

To study the cytotoxicity of the WS2 sheets and WS2/s-CoFe2O4@c-Fe3O4 nanocomposites,
the bovine cornea endothelial cells were utilized. MTT assay of the BCECs exposed to the different
concentrations of WS2 sheets and nanocomposites (range from 0 to 100 µg/mL) with treatment times of
24, 48, 72 h are presented in Figure 2. The result of cell viability of WS2 sheets on the BCECs (Figure 2a)
shows low toxicity effects (~25% cell destruction) at the higher concentration of 100 µg/mL for 72 h [45].
Teo et al. [46] also reported previously that the cytotoxicity of TMDs (MoS2, WS2, and WSe2) was even
lower than of graphene derivatives [47,48]. In their experiments, the MTT assays are evaluated on
human lung carcinoma epithelial cells (A549) for 24 h of exposure, for which WS2 sheets show higher
cell viability of 90.6%. The cytotoxicity of the WS2/s-CoFe2O4@c-Fe3O4 nanocomposites toward BCECs
was shown in Figure 2b. As seen in the figure, BCECs cells exhibit different toxicity responses in
different time and dosage of nanocomposites. The MTT assay result of nanocomposites revealed that
toxicity is enhanced drastically in 100 µg/mL compared with the WS2 sheets. Moreover, cell destruction
of ~50% was detected in 72 h of incubations. These results can be supported by research done by
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Yang et al. [43] on WS2@Fe3O4 nanocomposite coated with the mesoporous silica which showed no
toxicity to the three types of tested cells (i.e., 4T1 murine breast cancer cells, HeLa human cervical
cancer cells and 293T human embryonic kidney cells) even in 200 µg/mL. However, WS2 sheets and iron
oxide nanoparticles are well known to be biocompatible materials and used often for in vivo cancer
therapy. Then the increases of the cell death in nanocomposites could correspond to the trace amount
of the cobalt content in the cobalt ferrites NPs [49,50]. In contrast, the WS2 was used as a biocompatible
2D material here for offsetting the toxic nature of cobalt add-up in the WS2/s-CoFe2O4@c-Fe3O4

nanocomposites [51].
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Figure 2. 3-[4,5-dimethylthiazol-2yl]-2,5-diphenyl tetrazolium bromide (MTT) assay of the (a) WS2

sheets and (b) WS2/s-CoFe2O4@c-Fe3O4 nanocomposites on bovine cornea endothelial cells for duration
of the 24, 48, and 72 h. The data were represented as mean ± SD (n = 3).

2.3. WS2/s-CoFe2O4@c-Fe3O4 Nanocomposites Effect on BCECs Migration Capacity

The cell migration response of the cornea endothelial cells is important for wound healing in
eye surgery, ocular diseases, and angiogenesis [52,53]. The cell migration assay tested on BCECs was
exposed with WS2/s-CoFe2O4@c-Fe3O4 nanocomposites for 24 h. The scratch wound assay of the layers
of BCECs used as control, and the cell closures were scanned by optical microscope. The presented
photograph was procured at 0, 16 h, 24 h after the wound formation in the culture of exposed BCECs
and control (Figure 3a). The nanocomposites-treated BCECs show moderate wound closures compared
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to the control of ~33% closure and ~80% after 16 h and 24 h of incubation, respectively. Our results
could be supported by previous studies on investigation the effect of nanoceria conjugated with heparin
that suppressed the migrations of cornea endothelial cells [54]. The representative photograph of the
BCECs used as control and cells contain nanocomposites shows that the BCECs loaded the gap by
their migration and not by stretching the cell via increasing the cell size. Furthermore, the result shows
that the WS2/s-CoFe2O4@c-Fe3O4 nanocomposites-treated BCECs attenuate the migration in transwell
migration assay [55].
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(0 h). Results are expressed as mean ± SD repeated n = 3 experiments.

2.4. Photothermal Effect of WS2 Sheets and WS2/s-CoFe2O4@c-Fe3O4 Nanocomposites

To investigate the photothermal response of the WS2 sheets and WS2/s-CoFe2O4@c-Fe3O4

nanocomposites, their NIR absorption was evaluated using 808 nm laser. The laser ablation evaluations
of three different concentrations of the WS2 and WS2/CoFe2O4 @Fe3O4 nanocomposites (1, 0.5 and
0.1 mg/mL) for four different laser power densities of 1200, 1800, 2200 and 2600 mW were shown in
Figures 4 and 5, respectively. The results show an increasing trend of temperature via time in each
laser when densities for all nanocomposites suspensions are applied. In other words, for concentration
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of 1 mg/mL of the WS2 sheets and WS2/CoFe2O4 @Fe3O4 nanocomposites suspension in DI water,
in the same power density of 1200 mW at 2 min of laser irradiation, the temperature was found to be
17.4 ◦C and 15.6 ◦C, respectively. The increasing of the temperature rate is proved to be dependent on
samples concentration, laser irradiation time, and power density. As reported previously, WS2 sheets
and their composites exhibited an absorption in NIR regions (750–850 nm) which was higher than that
for graphene in the same region [56,57].

The reason for the decreases of temperature rate in nanocomposites compared with the WS2 sheets
could be due to the partial coverage of the WS2 sheet surfaces with the core-shell NPs. Also, when the
magnetic core-shell NPs are attached electrostatically on the WS2 sheet surfaces, with proper distance
between them, it avoids their aggregations via dipole-dipole interactions, which is a great benefit to
manage the appropriate distance between the WS2 sheets for better NIR absorption when the WS2

sheets are multilayered. The experiments were repeated for three cycles under laser irradiation for each
sample to confirm the equal temperature rate. Thermal stability of the samples shows no significant
reduction in optical absorbance in each cycle and the temperature of the water under laser irradiation
of reported power densities in two minutes shows elevation below 1 ◦C.
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in various laser power densities of (a) 1200, (b) 1800, (c) 2200 and (d) 2600 mW at concentration 1, 0.5,
and 0.1 mg/mL.

2.5. MRI Study

MRI is a strong medical imaging technique that can provide great anatomical detail. It works by
interaction of protons with the tissue’s surrounding molecules [58,59]. To improve the resolution and
specificity of MRI, the use of the effective contrast agents is important. Recently, research attentions have
been devoted to the design and synthesis of novel MNPs with higher saturation magnetization values
that have better MRI contrast agents and shorten T2 relaxation times. However, superparamagnetic
iron oxide NPs (SPIONs) have been used in clinics as negative contrast agents. Harrison et al. injected
SPIONs coated polymers and tags with the fluorophore in the animal optical nerve for in vivo
MR imaging [60]. Here, the nanocomposites of 2D/iron-based contrast agents in the core-shell
form are designed to use as in vitro MRI contrast agents of the ocular system. Figure 6 shows the
relaxivity measurements of WS2/s-CoFe2O4@c-Fe3O4 nanocomposites for various concentrations.
The T1-weighted and T2-weighted images show concentration-dependent contrast. The results show
which nanocomposites could act as a T2-weighted contrast agent. Figure 6b shows the 1/T1and 1/T2

relaxation diagram versus the nanocomposite’s concentrations. The longitudinal and transverse
nuclear relaxivities generated from the slopes of 1/T1 and 1/T2 plots are approximately r1 = 0.73 mM−1

S−1 (R2 = 0.84), and r2 = 108 mM−1 S−1 (R2 = 0.98). The high r2 revealed the darkening effect of
nanocomposites via different concentrations. The results show that the nanocomposites have the
potential to be used as T2 MRI contrast agents in a diagnostic probe.
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Figure 6. (a) T1 and T2-weighted MR images at five different concentrations of nanocomposites.
(b) The linear fitting of relaxation rates (1/T2) of versus nanocomposites concentrations. (c) The linear
fitting of relaxation rates (1/T1) of versus nanocomposites concentrations. The relaxivity values of r2

and r1 were obtained from the slopes.



Nanomaterials 2020, 10, 2555 9 of 15

3. Materials and Methods

3.1. Materials

Iron acetylacetonate (Fe(acac)3), cobalt acetylacetonate (Co(acac)2), phenyl ether, benzyl ether,
oleic acid (OA), and absolute ethanol were obtained from (ACROS ORGANIC, Morris Plains, NJ, USA),
Tungsten hexachloride (WCl6) and 1-octadecene were purchased from (Alfa Aesar Inc., Haverhill,
MA, USA), Oleylamine (OAm), hexane, ethylene glycol, 3-(3,4-dihydroxy)hydrocinnamic acid (DHCA),
tetrahydrofuran (THF), NaOH, and phosphate buffered saline (PBS, concentration of PO4

2− ions
(0.0067 M) were acquired from Tokyo Chemical Industry (TCI Co, Tokyo, Japan), (Fisher chemicals,
Pittsburgh, PA, USA), (J.T.Baker, Phillipsburg, NJ, USA), (Sigma Aldrich, St. Louis, MO, USA)
(ECHO CHEMICAL CO., LTD., Taipei, Taiwan), (SHOWA Chemical, Tokyo, Japan), and HyCloneTM,
Marlborough, MA, USA) respectively. The above chemicals were used without further purification.
The 3-[4,5-dimethylthiazol-2yl]-2,5-diphenyl tetrazolium bromide (MTT) and Dulbecco’s Phosphate
Buffered Saline (DPBS) were purchased from (Sigma Aldrich, St. Louis, MO, USA).

3.2. Synthesis of the Core-Shell NPs

3.2.1. Cobalt Ferrite (s-CoFe2O4) Seed Nanoparticle Preparation

A quantity of 2.655 g Fe(acac)3 and 1.26 g Co(acac)2 were mixed in the presence of 60 mL phenyl
ether, followed by adding 60 mL OAm. The mixed solution was added into the nitrogen-injected
three-necked round-bottom flask and heated at 100 ◦C for 1 h, in order to remove the moisture. After 1 h,
the solution was heated to the temperature 260 ◦C at rate 3 ◦C/min and heated to reflux at 260 ◦C for
2 h. Then, the solution was cooled down by the removal of the heat resource to the room temperature.
The as-synthesized mixture was washed by ethanol and collected by the magnetic decantation twice
for each sample to remove the residues of the unreacted chemicals. The black precipitation was
redispersed in 30 mL hexane. The obtained product was labeled as spherical OAm-CoFe2O4.

3.2.2. s-Cobalt Ferrite@c-iron Oxide (s-CoFe2O4@c-Fe3O4) Core-Shell Preparation

A quantity of 1 g Fe(acac)3, 3 mL seed solution (12.6 mg CoFe2O4), 20 mL OA, 20 mL OAm,
20 mL benzyl ether, and 1.75 mL ethylene glycol were mixed uniformly, followed by being added
to the three-necked round-bottom flask, which was preheated at 100 ◦C under nitrogen atmosphere.
After preheating for 1 h, the solution was heated to the temperature 290 ◦C at rate 6 ◦C/min and
refluxing for 30 min. Due to the presence of ethylene glycol as mentioned above, as the temperature
reached 240 ◦C, a vigorous evaporation would be expected. Thus, the nitrogen flow rate was adjusted
to increase the flow rate to remove the vaporous ethylene glycol from flask. After refluxing, the solution
was cooled down to room temperature and further washed with the absolute ethanol and magnetic
decantation twice for each. The obtained powders were suspended in 10 mL hexane for storage,
and labeled as cubic OA-CoFe2O4@Fe3O4.

3.2.3. Ligand Exchange of Core-Shell Nanoparticles

A volume of 2 mL cubic OA-CoFe2O4@Fe3O4 (solvent: hexane) was added into a flask, which contained
3-(3,4-dihydroxy) hydrocinnamic acid/tetrahydrofuran solution (DHCA/THF, 0.125 g/15 mL). The solution
was stirred with magnetic stirrer at 60 °C for 4 h. After the ligand exchange finished, the products were
washed with ethanol containing a small amount of NaOH twice. The precipitation was further redispersed
in 2 mL DI water. The samples were labeled as cubic DHCA-CoFe2O4@Fe3O4 [61].
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3.2.4. Preparation of WS2/Core-Shell Nanocomposites

WS2 Preparation

A quantity of 0.3966 g WCl6 was mixed with 20 mL OAm and 10 mL 1-octadecene at room
temperature [45]. After 1 h of preheating and nitrogen injection at 100 ◦C, the mixture was heated to
300 ◦C and reflux for 30 min, followed by adding 0.4 M of sulfur/OAm solution. The reaction at 300 ◦C
was further carried out for 1 h to form WS2 sheets. The solution was cooled down and washed by
conducting the addition of absolute ethanol and centrifugation at rate 4000 rpm twice. The resultant
solution was dried and annealed at 500 ◦C in the oven under nitrogen atmosphere for 2 h. Finally,
the WS2 sheets could be collected to use in further work.

WS2/Core-Shell Nanocomposite Preparation

To decorate the cubic DHCA-CoFe2O4@Fe3O4 between the layers of WS2 sheets, the few-layer
WS2 sheets were sonicated in a bath-type sonicator before capping the cubic core/shell structured
MNPs. The as-made few-layer WS2 sheets with phosphate buffered saline (PBS) (1 mg mL−1) were
added to cubic DHCA-CoFe2O4@Fe3O4 in the ratio of 1:5 in weight. The mixture was stirred at room
temperature for 24 h. The products were collected by magnetic decantation. The nanocomposites were
labeled as WS2/spherical CoFe2O4@cubicFe3O4 (see Scheme 1).
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3.3. Characterization Techniques

3.3.1. Transmission Electron Microscopy (TEM)

The morphology, selected area electron diffraction (SAED) and energy dispersive spectrometer
(EDS) nanocomposites was obtained with the TEM (operating accelerating voltage: 200 kV, Philips
field-emission, Tecnai F20, electron gun of ZrO/W(100) Schottky type, resolution ≤0.23 nm (Philips/FEI
Corporation, Eindhoven, The Netherlands). The aqueous samples suspended in DI-water were
dropped on the carbon-coated copper grids (200 mesh), followed by dried at 80 ◦C for a few hours
before entering the TEM chamber.
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3.3.2. Derivation of Bovine Cornea Endothelial Cells (BCECs)

The bovine eyes were collected from butcher (Taipei, Taiwan) and cleaned and fumigated by
iodine solution. Then the eyes were washed with Dulbecco’s Phosphate Buffered Saline (DPBS) and
the cornea were detached from the eyes followed by removal of the Descemet membranes. The 10 mL
of trypsin were added to the membranes and incubated at 37 ◦C with 5% of CO2 flow for 45 min.
The BCECs were collected using centrifuge for five minutes of 1000 rpm and dispersed in the 6 cm
culture dish. The cells grew and increased during a two-week incubation.

3.3.3. Cytotoxicity Measurements

The cytotoxicity of the WS2 and the WS2/s-CoFe2O4@c-Fe3O4 nanocomposites on the BCECs were
assessed using 3-[4,5-dimethylthiazol-2yl]-2,5-diphenyl tetrazolium bromide (MTT) assay. The cells
were cultured in the 96 well plates (104 cells/well) and incubated in 37 ◦C with 5% of Co2 for 24 h.

Then the various concentrations of the WS2 and nanocomposites (10, 30, 50, 70, 100 µg/mL)
were dispersed in the PBS and added to the cells. The MTT assay was done on BCECs incubated
with the samples after 24, 48 and 72 h. Finally, the 10 µL of the MTT solution was added to each
well and incubated under 5% CO2 at 37 ◦C for 4 h. The cells were washed by PBS followed by
adding the dimethyl sulfoxide (DMSO) in each plate and shake for 10 min. The optical density was
collected by inserting the plates in microplate reader (Bio-Rad S/N 21648, Pleasanton, CA, USA) with
excitation wave length of 595 nm. [62]. Data were presented as mean standard deviation (±SD) of three
experiments. The following equation was used to calculate the survival BCECs from the absorbance
collected by microplate:

MTT assay(cell viability%) = (sample abs 595 nm)/(control abs 595 nm) × 100

3.3.4. BCECs Migration Assay

In vitro BCECs scratch assay or migration assay was performed in 6 cm round culture plates.
The procedure was started with the seeding of the 106 BCECs in each dish and incubated for 24 h.
Then 100 µL of the WS2/s-CoFe2O4@c-Fe3O4 nanocomposites was dispersed in PBS and added to
the culture dish. The cells and nanocomposites were incubated for 24 h until the nanocomposites
were taken up by the BCECs. Straight lines were scratched in the cultured dishes (control and dish
with the nanocomposites) by a sterile pipet tip of 100 µL. The cell migrations were targeted for 24 h.
The collected images of the scratches were achieved at 100×magnification followed by further analysis
by Image J software. Each experiment was repeated in triplicate.

3.3.5. Magnetic Resonance Imaging of Nanocomposites

To achieve the WS2/s-CoFe2O4@c-Fe3O4 nanocomposites MRI relaxivity, a 7 Tesla (Bruker BioS
pec 70/30 US, Billerica, MA, USA) scanner was used. The phantoms are prepared by the various
concentration of the nanocomposites (0.07, 0.05, 0.03, 0.02, 0.01 mg/mL) dispersed in deionized
water (DW) by adding 1% of agarose gel in the 0.5 mL plastic container. The relaxation times of
hydrogen protons in the aqueous solution (T1 and T2-weighted) were measured at repetition time TR:
4000 ms; TE: 18 ms. To calculate the data, the obtained T1 and T2 maps were analysed presuming a
mono-exponential signal decay. The maps were recognized using six-spin echo (SE) images of TE and
TR. The T1 and T2-weighted images were analyzed using a non-linear least-square curve using pixel
intensities basis (Levenberg–Marquardt fit) using MATLAB (MathWorks inc. Natick, MA, USA) [59].
The r1 and r2 relaxivities were calculated from the slop of 1/T1 and 1/T2 (i.e., reciprocal for T1 and T2

relaxation times) versus the nano composite’s concentrations. The images were acquired by designing
a sequence of slice thickness of 1 mm and a matrix size of 128 × 128 over FOV of 6 × 6 cm2.
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3.3.6. Near Infrared (NIR) Experiment

The WS2 sheets and WS2/s-CoFe2O4@c-Fe3O4 nanocomposites with concentrations of 0.1, 0.5,
1 mg/mL were dispersed in 1 mL DW and ultrasonicated until complete dispersion in the solution
was achieved. The suspensions were irradiated by 808 nm NIR laser system (Arno Electro-Optics Ltd.
Taipei, Taiwan) under four various power densities of 1200, 1800, 2200, 2600 mW. The temperature of
the samples’ suspension in the DW were monitored using k-type thermocouple (TM-947SD) (Lutron,
Taipei, Taiwan).

4. Conclusions

The WS2/s-CoFe2O4@c-Fe3O4 nanocomposites were synthesized via chemical routes. The TEM
showed that the core-shell NPs with the size of the 10 nm were pinned up on the WS2 sheet surfaces.
The MTT cell viability assay of the nanocomposites on the BCECs showed the 50% cell viability in
100 µg/mL at 72 h of incubation. The cell migration studies of the nanocomposites exposed to the
BCECs showed wound closure of 80% compared to the control. The photothermal studies of the
WS2/s-CoFe2O4@c-Fe3O4 nanocomposites showed temperature elevated trend in each power density
and the temperature rates were maximized for the lower concentration of 0.1 mg/mL. In the MRI of
WS2/s-CoFe2O4@c-Fe3O4 nanocomposites the r2 relaxivity value was calculated to be 108 mM−1 S−1.
The results showed that nanocomposites have the potential for use in laser treatments and as a
T2-weighted MRI contrast agent for ocular systems.
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