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Background: Alzheimer’s disease (AD) is a fatal neurodegenerative disease characterized
by progressive cognitive decline and memory loss. However, several therapeutic
approaches have shown unsatisfactory outcomes in the clinical setting. Thus,
developing alternative therapies for the prevention and treatment of AD is critical.
Salidroside (SAL) is critical, an herb-derived phenylpropanoid glycoside compound,
has been shown to attenuate lipopolysaccharide (LPS)-induced cognitive impairment.
However, the mechanism underlying its neuroprotective effects remains unclear. Here, we
show that SAL has a therapeutic effect in the senescence-accelerated mouse prone 8
(SAMP8) strain, a reliable and stable mouse model of AD.

Methods: SAMP8 mice were treated with SAL, donepezil (DNP) or saline, and cognitive
behavioral impairments were assessed using the Morris water maze (MWM), Y maze, and
open field test (OFT). Fecal samples were collected and analyzed by 16S rRNA sequencing on
an Illumina MiSeq system. Brain samples were analyzed to detect beta-amyloid (Aβ) 1–42
(Aβ1-42) deposition by immunohistochemistry (IHC) and western blotting. The activation of
microglia and neuroinflammatory cytokines was detected by immunofluorescence (IF),
western blotting and qPCR. Serum was analyzed by a Mouse High Sensitivity T Cell
Magnetic Bead Panel on a Luminex-MAGPIX multiplex immunoassay system.

Results:Our results suggest that SAL effectively alleviated hippocampus-dependentmemory
impairment in the SAMP8 mice. SAL significantly 1) reduced toxic Aβ1-42 deposition; 2)
reducedmicroglial activation and attenuated the levels of the proinflammatory factors IL-1β, IL-
6, and TNF-α in the brain; 3) improved the gut barrier integrity and modified the gut microbiota
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(reversed the ratio of Bacteroidetes to Firmicutes and eliminated Clostridiales and
Streptococcaceae, which may be associated with cognitive deficits); and 4) decreased the
levels of proinflammatory cytokines, particularly IL-1α, IL-6, IL-17A and IL-12, in the peripheral
circulation, as determined by a multiplex immunoassay.

Conclusion: In summary, SAL reversed AD-related changes in SAMP8 mice, potentially
by regulating the microbiota-gut-brain axis and modulating inflammation in both the
peripheral circulation and central nervous system. Our results strongly suggest that
SAL has a preventive effect on cognition-related changes in SAMP8 mice and highlight
its value as a potential agent for drug development.

Keywords: microbiota, inflammation, microglia, SAMP8, cognition, salidroside

INTRODUCTION

A prevalence-based study reported that the worldwide cost of
dementia in 2015 was an enormous sum of US $818 bn, an
increase of 35.4% compared to that in 2010 that was related to an
increasing number of patients and rising costs per person (Wimo
et al., 2017). The latest data from the United States show that the
total costs for health care and hospice care for elderly people
(≥65 years) with dementia in 2020 are estimated to be up to $305
billion (Alzheimer’s disease facts and figures. Alzheimer’s &
dementia, 2020). Alzheimer’s disease (AD), as the primary
cause of dementia, is a fatal neurodegenerative disease
characterized by progressive cognitive decline and memory
loss. The amyloid cascade hypothesis has been considered the
main pathogenic concept in AD research for the past few decades.
This hypothesis suggests that the accumulation of amyloid-β (Aβ)
peptide in brain tissue is the primary event in AD, followed by the
formation of neurofibrillary tangles (NFTs) containing tau
protein (Hardy and Selkoe, 2002).

A number of recent studies have revealed the significance of
the gut microbiota in AD. The microbiota-gut-brain axis has
emerged as a potential key player that can have marked effects on
AD pathology (Cryan et al., 2019). It has been confirmed that
germ-free mice exhibit deficits in nonspatial and working
memory, indicating that a commensal microbiota is required
for cognition (Thion et al., 2018). It is widely accepted that the
microbiota has a direct impact on the immune system, which is
one of the various routes through which the microbiota
communicates with the central nervous system (CNS). In
addition, the microbiota has a profound impact on the
maturation of microglial cells and effectively promotes the
steady-state condition of microglia via secretion of short-chain
fatty acids (SCFAs), highlighting the importance of the
microbiota-gut-brain axis (Erny et al., 2015; Thion et al., 2018).
On the other hand, there has been a growing number of recent
studies investigating immune system-related events in AD, which
have been shown to have strong pathogenic and therapeutic
relevance (Heppner et al., 2015). Indeed, the inflammatory
reaction that occurs in AD is driven mainly by CNS-resident
immune cells, particularly microglia, which exert a dual influence
in AD. It has been reported that disruption of the defense function of
microglia leads to injury and even neuronal death (Hickman et al.,

2018). Recent evidence strongly suggest that both the innate and
adaptive immune systems are involved in AD, and it has been shown
that proinflammatory mediators, including cytokines and
chemokines, are increased in the peripheral circulation in
individuals with AD (Cao and Zheng, 2019).

Animal models are paramount in AD research, especially for
linking pathological changes, such as Aβ and tau accumulation.
The senescence-accelerated mouse prone 8 (SAMP8) mouse
strain, a spontaneous model of dementia, exhibits deficits in
learning and memory abilities as well as pathological alterations
in the brain, including increased oxidative stress, inflammation,
Aβ accumulation and tau hyperphosphorylation (Currais et al.,
2015). In contrast, its control, the senescence-accelerated mouse
resistant 1 (SAMR1) line, ages normally. Salidroside (SAL), an
herb-derived phenylpropanoid glycoside compound, has been
shown to attenuate cognitive impairment in both
lipopolysaccharide (LPS)-induced and d-gal-induced
cognitive deficit models (Gao et al., 2015; Xu et al., 2019).
Recent evidence has revealed that SAL provides
neuroprotection by modulating mitochondrial biogenesis and
microglial polarization (Barhwal et al., 2015; Liu et al., 2018).
Notably, SAL exhibits significant anti-inflammatory effects in
multiple diseases, such as osteoarthritis (Chen et al., 2019),
colitis (Liu et al., 2019), skeletal muscle atrophy (Huang et al.,
2019), renal interstitial fibrosis, (Li et al., 2019) and CNS
diseases (Liu et al., 2018; Wang et al., 2018). Furthermore,
recent findings have suggested that SAL alleviates liver injury
by maintaining the balance of the gut microbiota (Yuan et al.,
2019). Thus, it is reasonable to speculate that SAL exerts its
neuroprotective function by regulating the gut microbiota,
systemic inflammation, and subsequently neuropathologic
changes. This study reports that SAL ameliorates cognitive
decline in a reliable AD model, the SAMP8 mouse strain,
and has beneficial effects on the inflammation-related
microbiota-gut-brain axis.

MATERIALS AND METHODS

Animals
A total of 10 male SAMR1 mice and 30 male SAMP8 mice
weighing 27–32 g were used. The mice were obtained from the
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First Affiliated Hospital of Tianjin Traditional Chinese Medicine
University (Tianjin, China). They were housed in a specific
pathogen-free (SPF) level laboratory at Southern Medical
University (Guangzhou, China) under standard conditions
(22–23°C, 12-h light/dark cycle, and 60 ± 10% humidity) and
provided with water and food ad libitum. They were adapted to
their environmental conditions for 7 days before the experiments.
All experimental protocols and animal handling procedures were
conducted in strict accordance with the Guide for the Care and
Use of Laboratory Animals published by the National Institutes of
Health (NIH Publications No. 8023, revised in 1978). This study
was approved by the Ethical Committee on Animal
Experimentation of Southern Medical University.

Experimental Designs
After being acclimatized to the laboratory conditions for 1 week,
the 10 male SAMR1 mice were assigned to the control group
(R1-Ct, treated with saline), and the 30 SAMP8 mice were
randomly divided into the following three groups (10 mice/
group): the model group (P8-Ct , treated with saline), the
SALgroup (P8-SAL, treated with 50 mg kg−1 d−1 SAL) and
donepezil (DNP) group (P8-DNP , treated with 1 mg kg−1 d−1

DNP). SAL (C14H20O7, purity >98%) was obtained from
Macklin Biochemical Co., Ltd. (Shanghai, China). DNP was
supplied by Eisai Pharmaceutical Co., Ltd. (Tokyo, Japan). All
mice were treated by daily gavage for 3 months, and tissues were
then removed for other experiments. Every effort to minimize
suffering was made Figure 1.

Y-Maze
Spontaneous spatial working memory was assessed with a Y
maze apparatus, which consisted of three identical arms (30 cm
long, 8 cm wide, and 15 cm high). Each mouse was allowed to
freely explore the three arms from the center of the maze for
5 min. The sequence of arm entries was recorded by a camera
above the apparatus. A spontaneous alternation was defined as
arm choices differing from the previous two choices (e.g., ABC,
BCA, CAB, etc.). The alternation percentage (%) was calculated
as the proportion of total spontaneous alternations relative to
possible alternations (total arm entries −2) × 100%.

Morris Water Maze (MWM)
To assess the hippocampus-dependent learning and memory
abilities of the mice, the MWM test was performed after the Y
maze. The MWM apparatus consisted of a blue circular pool

with a diameter of 120 cm filled 2/3 with water (25°C ± 1)
containing nontoxic ink and a circular platform (14 cm in
diameter) submerged 1.5 cm below the water surface. The
MWM test was performed as described previously (O’Neal-
Moffitt et al., 2015). Briefly, during the acquisition trial (days
1–5), each mouse was trained to find the hidden platform within
60 s. The search trajectories were recorded with a camera, and
the escape latencies were measured using DigBehv-Morris
software (Shanghai, China). The time each mouse needed to
find the platform within 60 s was defined as the escape latency. If
a mouse did not find the platform successfully, the latency was
recorded as 60 s, and the mouse was gently guided to the
platform and allowed to stay on it for 10 s. A probe trial, in
which the platform was removed, was performed on day 6. The
number of target platform crossings and the time spent in each
quadrant were recorded.

Histological Analysis
Mice were anesthetized and intracardially perfused with cold PBS.
Brain and intestinal tissues were carefully dissected and immersed
in 4% paraformaldehyde at 4°C overnight. After being embedded
in paraffin, the tissues were cut into sections (3 µm). Intestinal
tissues were subjected to hematoxylin-eosin (HE) staining.
Immunohistochemistry (IHC) analysis with a beta-amyloid
1–42 (Aβ1-42) antibody (ab201060-10, 1:1,000; Abcam) was
performed on the brain sections following the standard IHC-
paraffin protocol from Abcam. Pictures were taken with an
MVX10 microscope (Olympus). For immunofluorescence (IF)
analysis, brain sections were blocked with 5% BSA for 1 h and
incubated with a primary antibody against CD68 (1:500;
Servicebio) overnight at 4°C followed by an anti-rabbit Cy3-
labeled secondary antibody for 1 h at room temperature. The
nuclei were stained with DAPI reagent (Servicebio). For IF
imaging, confocal microscopy (Zeiss, LSM800) was used, and
images were taken and processed with ZEN software and
Microsoft PowerPoint.

Flow Cytometry
Flow cytometry was performed to detect the proportion of
CD4+ or CD8+ lymphocytes in the spleen. Following sacrifice,
the spleens were removed under sterile conditions, weighed,
and processed into single cell suspensions, which then stained
simultaneously with the following antibodies: PerCP-Cy™5.5
Rat Anti-Mouse CD3 (BD Biosciences, 560527), BV421 Rat
Anti-Mouse CD4 (BD Biosciences, 562891), and FITC Rat
Anti-Mouse CD8a (BD Biosciences, 553030), protected from
light for 30 min. Labeled cells were fixed with 1% PFA and
analyzed with a LSRFortessa X-20 flow cytometer (BD
Biosciences, MA, United States) on FACSDiva 8.0.1 software
(BD Biosciences). For each sample, corresponding isotype
control antibodies were used. CD3+ cells were gated as T
lymphocytes, and then the CD4+ and CD8+ populations
were analyzed.

Western Blot
Protein was extracted using theWhole Cell Lysis Assay (KeyGEN,
Nanjing, China) according to the manufacturer’s instructions.

FIGURE 1 | Molecular structure of Salidroside.
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The proteins were separated using SDS-PAGE and transferred to
PVDF membranes (Millipore, Bedford, MA, United States). The
membranes were blocked in 5% BSA for 1.5 h and then incubated
with the following primary antibodies: anti-Aβ1–42 (ab201060-10,
1:1,000; Abcam), occludin (DF7504, 1:1,000; Affinity), ZO-1
(AF5145; 1:1,000; Affinity), β-actin (4,970; 1:1,000; CST), and
GAPDH-HRP (HRP-60004, 1:8,000; Proteintech). After being
washed with TBS-T, the membranes were incubated with
secondary antibodies (SA00001-2, 1:8,000; Proteintech) for
2 h at 4°C except when the GAPDH-HRP antibody was used.
The protein signals were detected using an ECL system (Affinity,
Jiangsu, China).

Polymerase Chain Reaction
Total RNA was extracted from brain tissues using TRIzol reagent
(Vazyme Biotech Co., Ltd) and converted to cDNA using the
HiScript® III RT SuperMix for qPCR (+gDNA wiper) kit
(Vazyme Biotech Co., Ltd.). qPCR was performed with
ChamQ Universal SYBR qPCR Master Mix (Vazyme Biotech
Co., Ltd.). All primers used are shown in Supplementary Table
S1. Relative mRNA levels were calculated by normalization to the
level of GAPDH (B661304, Sangon Biotech, Shanghai, China).
Relative gene expression was analyzed based on the fold change
(the 2 −ΔΔCt method) Table 1.

16S rRNA Sequencing and Data Analysis of
Fecal Samples
Fecal samples were collected by using standardized collection
procedures and were chosen at random. Five samples per
group were used for 16S rRNA sequencing. The DNA samples
were quantified, and then the V3-V4 hypervariable region was
amplified using 338F (5′ACTCCTACGGGAGGCAGCAG 3′)
and 806R (5′GGACTACHVGGGTWTCTAAT 3′) primers.
All PCR amplicons were concentrated and purified by gel
electrophoresis and 3 µg of each amplicon was subsequently
extracted. Sequencing was performed on the Illumina MiSeq
system. The raw data were quality-filtered using QIIME
(version 1.9.1). Operational taxonomic units (OTUs) were

clustered by UPARSE (version 7.0.1090 http://www.drive5.
com/uparse) with 97% similarity cut-off. The taxonomy of
each 16S rRNA gene sequence was analysed using the RDP
Classifier (https://sourceforge.net/projects/rdp-classifier)
against the SILVA rRNA database (https://www.arb-silva.
de) with 70% confidence threshold. PCoA were conducted
according to the distance matrices. LEfSe analysis (linear
discriminant analysis [LDA]) was conducted to calculate
significant changes in relative abundance of microbial taxa
between the groups.

Multiplex Cytokine Assay
Serum was collected by centrifugation at 1000 g for 15 min at 4°C,
aliquoted, and stored at −80°C until analysis. A Mouse High
Sensitivity T Cell Magnetic Bead Panel (EMDMillipore, Billerica,
MA, Unites States) was performed on the Luminex-MAGPIX
multiplex immunoassay system according to the manufacturer’s
instructions. The data were analyzed using Milliplex Analyst 5.1
software (EMD Millipore, Billerica, MA, United States).

Statistical Analyses
Statistical analyses were performed with SPSS (IBM SPSS
Statistics for Windows, version 20; IBM Corp., Armonk, NY,
United States). Comparisons between groups were performed
using one-way ANOVA for groups with one independent
variables, and using two-way ANOVA for groups with two
independent variables, followed by the least significant
difference (LSD) test post hoc test. The following significance
levels were used for comparisons between independent groups:
#p < 0.05, ##p < 0.01, and ###p < 0.001 versus the R1-Ct group
and *p < 0.05, **p < 0.01, and ***p < 0.001 versus the P8-Ct group.
“ns” indicates no significant difference.

RESULTS

Effect of SAL on the Behavioral
Performance of SAMP8 Mice
We treated mice with 50 mg kg−1 d−1 SAL, 1 mg kg−1 d−1 DNP
or saline for 3 months, as described in the Materials and
Methods. Treatment was started when the mice were
5 months of age, which is when AD pathological changes
begin to emerge in this mouse strain (Pallas et al., 2008). To
evaluate the effect of salidroside on the behavioral performance
of SAMP8 mice, the Y maze test was conducted on day 78.
Afterward, the MWM was performed for six consecutive days.
Subsequently, the mice were sacrificed by euthanasia for
histological and biochemical analyses (Figure 2A). The
learning trials of the MWM revealed that SAMP8 required
more time than SAMR1 mice to find the hidden platform
and that escape latency was shortened by treatment with SAL
or DNP (Figures 2B–D). Moreover, SAL treatment resulted in
significant improvements in the percentage of time spent in the
target quadrant and the number of target platform crossings,
which represent memory recall, during the 60-s probe trial on
the last day of the MWM (Figures 2E,F). Although the

TABLE 1 | Primers used for qPCR.

QPCR Timers Sequence(5’-3’)

CD68-F GAAATGTCACAGTTCACACCAG
CD68-R GGATCTTGGACTAGTAGCAGTG
AIF1-F ATTATGTCTTTGAAGCGAATGC
AIF1-R TCTGAAGATGGCAGATCTCTTG
TNFα-F ATGTCTCAGCCTCTTCTCATTC
TNFα-R GCTTGTCACTCGAATTTTGAGA
IL6-F CTCCCAACAGACCTGTCTATAC
IL6-R CCATTGCAGAATGGAAAGTG
APP-F TGAATGTGCAGAATGGAAAGTG
APP-R AACTAGGCAACGGTAAGGAATC
IL-1β-F TCGCAGCACATCAACAAGAG
IL-1β-F AGGTCCACGGGAAAGACAGG
TREM2-F TCATGTACTTATGAACGCCTGA
TREM2-R GAGGTTCTTCAGAGTGATGGTG
TNF-F ATGTCTCAAGCCTCTTCTCATTC
TNF-R GCTTGTCAACTCGAATTTTGAGA
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performances of P8-DNP mice were slightly better than those of
P8-SALmice, the difference was not significant (p > 0.05). In the
Y maze test, the correct alternation rates of the SAL- and DNP-
treated SAMP8 mice were significantly higher than the correct
alternation rate of the model group (Figures 2G).

Effect of SAL on Neurodegeneration and
Neuroinflammation in SAMP8 Mice
The immunohistochemical results showed that Aβ1-42 was highly
expressed in the hippocampi (CA1 and CA3 regions) and cortices
of SAMP8 mice but showed almost no expression in SAMR1
mice. Due to their exposed hydrophobic surfaces, Aβ1–42

monomers and oligomers tend to interact with the neuronal
membrane and cause toxicity (Narayan et al., 2013). However,
SAL administration induced a reduction in neuronal damage
resulting from Aβ1–42, which is thought to lead to an
improvement in cognitive function, in SAMP8 mice (Figures
3A,B). The western blot analysis yielded results consistent with
those of Aβ1–42 IHC (Figures 3C,D), and the mRNA expression
of the amyloid precursor protein (APP) was also prevented by
SAL (Figure 3E).

We observed strong CD68 immunoreactivity in the P8-Ct
group and fewer CD68-positive cells in the P8-SAL group than in
the P8-Ct group, indicating that SAL reduced microglial
activation in SAMP8 mice (Figures 4A, B). Consistently, the
mRNA expression of CD68 and ionized calcium binding adaptor
molecule 1 (IBA-1) was also prevented by SAL (Figures 4C,D).
Moreover, the production of proinflammatory cytokines
(interleukin (IL)-1β, IL-6, and TNF-α) was decreased in the
SAL-treated group compared to the saline-treated group
(Figures 4E–G). Our data revealed that SAL administration
significantly reduced toxic Aβ peptide deposition in SAMP8
mice and that this effect was accompanied by a reduction in
microglial neuroinflammation.

Effect of SAL on the Intestinal Barrier and
Gut Microbiota in SAMP8 Mice
Histological analysis and western blot analysis demonstrated that
the integrity and tight junctions of the intestine were destroyed in
SAMP8 mice. The HE staining of intestine showed that cells in
the SAMP8 group were arranged irregularly, and edema was
noted in villi (width of the villi). The intestinal mucosa of the P8-

FIGURE 2 | Effect of SAL on the behavioral performance of SAMP8mice. (A) Schematic of the experimental design. (B) Representative automated traces from day
5 of the MMWare shown for each group. (C) The average swimming speed. (D) The escape latency to reach the hidden platform wasmeasured during the 5-day training
period. (E,F) In the probe trial, the number of platform crossings and the percentage of time that the mice spent in the target quadrant were analyzed (n � 5 for each
group). (G) The percentage of correct alternations (alternation rate) in the Y maze test was calculated (n � 8 for each group). All data are shown as the mean ± SEM.
One way ANOVA for (D–F), two way ANOVA for (C). #p < 0.05, ##p < 0.01, and ###p < 0.001 versus the R1-Ct group and *p < 0.05, **p < 0.01, and ***p < 0.001 versus
the P8-Ct group. “ns” indicates no significant difference.
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SAL group exhibited a more complete structure, less
inflammatory infiltration in crypts, and less swelling of villi
than the intestinal mucosa of the P8-Ct group (Figure 5 A),
and the ZO-1 and occludin protein levels were higher in the P8-
SAL group (Figures 5B,C).

The sequence of the variable region of the 16S rRNA gene V3/V4
in fecal samples was analyzed. Fecal metagenomic sequencing data is
available in the National Center for Biotechnology Information
(NCBI) database with accession code PRJNA637826. To evaluate
alterations in the microbial alpha diversity, we measured Chao,
Shannon, Simpson, sob and ace diversity indices, which were not
significantly different among groups (Supplemental Figure S1).
Neither improvement in the total species diversity nor adverse
effects was observed after SAL administration. Principal coordinate
analysis (PCoA) revealed that the cluster from P8-SAL samples was
more similar to that from R1-Ct samples, whereas the cluster from
P8-Ct samples was more distinct (Figure 6A). To illustrate the
differences in the microbiota composition, we conducted bar plot
(Figure 6B), Circos (Supplemental Figure S2), and heatmap
(Figure 6C) analyses. At the phylum level, there was a decrease in
theBacteroidetes phyla (R1-Ct, P8-Ct, and P8-SAL� 34, 30, and 36%,
respectively) and an increase in the Firmicutes phyla (30, 40, and 29%,

respectively), which are considered age-related differences that may
also be associated with altered immune system function, in P8-Ct
group (Nicholson et al., 2012). Interestingly, SAL treatment reversed
the ratio of Bacteroidetes to Firmicutes to a level that wasmore similar
to that observed in the R1-Ct group. Community barplot analysis at
genus level showed that SAL administration increased the median
abundance of Norank_f_Muribaculaceae (R1-Ct, P8-Ct, and P8-SAL
� 37, 26, and 37%, respectively), Alloprevotella (70, 0.0, and 30%,
respectively) and Parasutterella (48, 6.3, and 46%, respectively), and
decreased the median abundance of Prevotellaceae (32, 37, and 31%,
respectively), Lachnospiraceae_NK4A136_group (30, 46, 24%,
respectively), Unclassified_f_Lachnospiraceae (35, 42, and 23%,
respectively), Alistipes (28, 38, and 34%, respectively),
Norank_f_Lachnospiraceae (26, 44, and 29%, respectively),
Odoribacter (17, 55, and 28%, respectively), Rikenellaceae_RC9_gut_group
(14, 61, and 25%, respectively), Ruminococcaceae_UCG-014
(5.1, 78, and 17%, respectively) and Ruminiclostridium_9 (28,
47, and 25%, respectively) in SAMP8 mice. A Circos diagram was
used to visualize the associations between the abundance
relationship between samples and bacterial communities at the
genus level, which were consistent with the bar plot analysis
results.

FIGURE 3 | Effect of SAL on neurodegeneration in SAMP8mice. (A,B) Immunohistochemical staining and quantification of Aβ1-42 in the hippocampus and cortex
in each group (magnification ×400). The dotted box presents an enlarged image of the inset. (C) Western blot analysis of Aβ1-42 expression and quantification in the
hippocampus. (D) mRNA levels of APP determined by qPCR. All data are shown as the mean ± SEM (n � 3 for each group). ##p < 0.01, versus the R1-Ct group and
*p < 0.05 versus the P8-Ct group.
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To further identify specific individual bacterial taxa that were
differentially enriched among groups, we applied LEfSe analysis
(Supplemental Figure S3). As shown above, significant enrichments in
two families (Clostridiales_vadinBB60 and Streptococcaceae), four genera
(norank_f_Clostridiales_vadinBB60, Peptococcus, Streptococcus, and
Ruminococcaceae_UCG_009) and seven species that were abolished by
the SAL administration were identified in the SAMP8 mice, and five
newborn species were present only in the P8-SAL group (Figure 6D).
Venn diagram at the phylum, family, and genus levels. The analysis of the
species in the Venn plots showed that salidroside basically eliminated the
Chloroflexi phylum and five families and seven genera in SAMP8, and
Corynebacterium was confirmed to be associated with AD-related
pathological development (Supplemental Figure S4).

Effect of SAL on Systematic Inflammation in
SAMP8
To assess the effects of SAL on peripheral cytokine secretion, a
magnetic bead analysis approach was used to detect the
concentration of 18 cytokines/chemokines in the plasma.
The results showed that granulocyte-macrophage colony
stimulating factor (GM-CSF), IL-1α, IL-6, IL-12, IL-13, and
IL-17A were increased in SAMP8 mice compared to SAMR1
mice (Supplemental Figure S5) and that the levels of IL-1α
(Figure 7B), IL-6 (Figure 7C), IL-17A (Figure 7D) and IL-12
(Figure 7E) were decreased after SAL administration
compared to after saline administration. These data suggest
that there is chronic inflammation in the circulation of SAMP8

mice and that SAL has significant anti-inflammatory
properties in SAMP8 mice. In addition, the flow cytometry
results demonstrated that the number of CD3+CD4+

lymphocytes and the CD4+/CD8+ ratio were significantly
decreased in the spleens of SAMP8 mice compared to the
spleens of SAMR1 mice. However, there were no significant
changes in these measures after SAL administration compared
to after saline administration (Figure 7F).

DISCUSSION

The senescence-accelerated prone mouse 8 (SAMP8) mouse
strain is considered a reliable experimental model for studying
the pathogenesis of and developing preventive and therapeutic
strategies for age-related AD (Cheng et al., 2014). SAMP8 mice
develop early deficits in learning and memory (at 5 months of
age) accompanied by a number of AD-related brain
alterations, including increased oxidative stress and tau
phosphorylation (Pallas et al., 2008). Here, we treated 5-
month-old SAMP8 with SAL for 3 months. At 8 months of
age, the mice presented a stronger AD-related phenotype than
SAMR1 mice, and the preventive effect of SAL was prominent.
Our results suggest that SAL effectively alleviated
hippocampus-dependent memory impairment in SAMP8
mice and did not have significantly different effects from
those of DNP. Although DNP exerts a neuroprotective

FIGURE 4 | Effect of SAL on neuroinflammation in SAMP8 mice. (A,B) Representative images and quantification of immunofluorescence analysis using antibodies
against CD68 (red) and DAPI staining (blue) in the hippocampus (CA1 and CA3 regions) and cortex (magnification ×400). The dotted box presents an enlarged image of
the inset. The mRNA levels of (C) CD68, (D) IBA-1, (E) IL-1β, (F) IL-6 and (G) TNF-α,were determined by qPCR. All data are shown as the mean ± SEM (n � 3 for each
group). #p < 0.05, and ##p < 0.01 versus the R1-Ct group and *p < 0.05, **p < 0.01, and ***p < 0.001 versus the P8-Ct group.
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effect and is widely used in the treatment of AD, numerous
studies have demonstrated that it causes adverse effects,
including symptoms such as hostility, somnolence, fecal
incontinence, nausea and rhinitis (Birks and Harvey, 2006;
Lee et al., 2017; Adlimoghaddam et al., 2018). Previous studies
have shown that SAL exerts neuroprotection, and no
significant adverse effects have been reported yet (Zhang
et al., 2010; Zhang et al., 2016; Zhong et al., 2018). Thus,
SAL has the potential to be developed into an alternative
treatment for AD.

In this study, SAL was shown to effectively attenuate both
Aβ1–42 deposition and neuroinflammation in the brains of
SAMP8 mice. Recent research in on a 3D noncell-
autonomous cell culture model showed that a high Aβ42/40
ratio drives robust tau phosphorylation in human neurons,
suggesting that selectively reducing the Aβ42/40 ratio could be
a novel therapeutic approach (Kwak et al., 2020). In the present
study, less Aβ1–42 deposition were observed in the hippocampi
(CA1 and CA3 regions) and cortices of SAMP8 mice after SAL
treatment compared to after saline treatment, confirming its
therapeutic efficacy. Indeed, Aβ1–42 oligomers have a high
tendency to attach to the membrane and have been
implicated in neuronal injury and cognitive impairment
associated with AD (Guglielmotto et al., 2014).
Proinflammatory microglial activities are believed to have
various detrimental effects on the brain and contribute to
neurodegeneration. In particular, the activation of microglia

increases the formation of Aβ oligomers and further
aggregation (Narayan et al., 2013; Venegas et al., 2017). We
showed here that the number of activated microglial cells, as
determined by CD68 immunofluorescence, was significantly
reduced in SAL-treated SAMP8 mice compared to saline-
treated SAMP8 mice. Moreover, the mRNA levels of the
proinflammatory cytokines IL-1β, IL-6, and TNF-α were
decreased by varying degrees in SAMP8 mouse brains after
SAL administration compared to after saline administration.
These results therefore illustrate a novel effect of SAL
involving attenuation of neuroinflammation in the AD
brain Figure 8.

Multiple studies have indicated that microbial colonization of
the gut is linked to dementia pathogenesis via detrimental effects
on metabolic disorders or low-grade inflammatory progression,
leading to brain damage (Alkasir et al., 2017). Consistent with
previous studies (Peng et al., 2018), our findings provide further
evidence that the microbiota-gut-brain axis may be involved in
AD-like pathogenesis in SAMP8 mice. PCoA and microbiota
composition analysis revealed that the cluster from salidroside-
treated SAMP8 mice was more similar to that from SAMR1
mice, whereas the cluster from untreated SAMP8 mice was
the most distinct. In our study, a shift in the ratio of
Bacteroidetes to Firmicutes, which is one of the classic
age-related changes in microbiota composition that is
associated with increased inflammation, was observed in
SAMP8 mice (Nicholson et al., 2012; Cowan et al., 2014). The

FIGURE 5 | Effect of SAL on the intestinal barrier in SAMP8mice. (A)HE staining of mouse intestinal tissues (scale bar � 100 μm). (B)Western blot analysis of ZO-1
and occludin in the intestine. (C) Protein quantification by western blotting. All data are shown as the mean ± SEM (n � 3 for each group). ##p < 0.01 versus the R1-Ct
group and *p < 0.05 versus the P8-Ct group.
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reversal effect of SAL indicated its potential to delay senescence
and reduce inflammation. Significant enrichments in two families
(Clostridiales_vadinBB60 and Streptococcaceae), four genera
(norank_f_Clostridiales_vadinBB60, Peptococcus, Streptococcus,
and Ruminococcaceae_UCG_009) and seven species, which
were abolished by SAL administration, were identified in
SAMP8 mice,. These results suggest that SAL normalizes
alterations in the intestinal microbiota. It should be noted that
Clostridiales and Streptococcaceae are part of the phylum
Firmicutes and may be associated with cognition (Bajaj et al.,
2019). In addition, five newborn species were present only in the
P8-SAL group, but whether they are beneficial requires
further study.

Given the importance of microglial functions in the promotion of
neurodegenerative processes, it is reasonable to speculate that changes
in the gutmicrobiota, which are capable of inducing inflammation via
some cell components or metabolites, may influence these

inflammatory and degenerative alterations in the AD brain. In our
study, SAL was able to restore intestinal barrier integrity, which may
result in less accumulation of microbial products in the periphery as
well as a reduction in chronic inflammation. As immune-related
effects on bacteria are important steps toward understanding bacterial
contributions to cognition, we estimated alterations in the circulating
levels of proinflammatory and anti-inflammatory cytokines/
chemokines, which directly affect brain function. Low-grade
systemic inflammation was observed in the serum of SAMP8
mice, whereas SAL decreased the levels of the proinflammatory
cytokines IL-1α, IL-6, IL-17A and IL-12. Notably, elevated levels of
these four proinflammatory cytokines are reported to be involved in
cognitive decline or AD pathology (Veerhuis et al., 2003; Vom Berg
et al., 2012; Fragoulis et al., 2017; Italiani et al., 2018). Th1 cells
significantly accelerate markers of AD, as demonstrated primarily in
murine models (Lambracht-Washington et al., 2011), and in vivo
imaging experiments have shown that Th17 cells induce severe

FIGURE 6 | Effect of SAL on the gut microbiota in SAMP8mice. (A) PCoA plots of the Bray-Curtis distance at the operational taxonomic unit (OTU) level. (B)Barplot
analysis of the relative abundance in the community at the genus level. Genera with abundances less than 0.01 (1%) are summed in the category “others”. (C) Heatmap
of microbial community abundance profiles at the phylum level. Top 50 species by total abundance. (D) Results of the LEfSe analysis (LDA > 2) at the phylum to the
species level.
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fluctuations in the neuronal intracellular Ca (2+) concentration,
causing neuronal damage and neuroinflammation (Siffrin et al.,
2010). It is known that IL-12 induces T lymphocytes to
differentiate into Th1 cells and that IL-17A is a Th17-specific
cytokine. Additionally, the pleiotropic cytokine IL-6 is crucial
for the differentiation of Th17 cells. Indeed, there are
associations between serum profiles of inflammatory factors
and gut microbiomes. One study suggested that variability of the
microbiota, especially the phylum Proteobacteria, is positively
correlated with IL-6 (Biagi et al., 2010). Moreover, it has been
reported that blocking IL-1α leads to a modification in the gut
microbiome and effectively reduces inflammation and damage
in a mouse model of Crohn’s-like ileitis (Menghini et al., 2019).
Microbial products have direct effects on the immune system,
which affects brain function through circulating cytokines
(Cryan and Dinan, 2012). It has been reported that many of
the beneficial effectual of bacteria on learning and memory
occur alongside reductions in proinflammatory cytokines
(Wang et al., 2015; Allen et al., 2016; Burokas et al., 2017).
One study showed that systemic immune alterations trigger and
drive the development of AD-related neuropathology,

specifically Aβ accumulation and tau phosphorylation, as well
as microglia and gliosis activation in wild-type mice, suggesting
that immune reactions can precede AD-related pathology and
may even be sufficient to cause it (Krstic et al., 2012). Thus, the
effect of SAL on cognition may be associated with recovery of
the gut microbiota composition, which is crucial for reducing
peripheral low-grade inflammation thus improving of brain-
blood barrier function and suppressing neuroinflammatory
stimuli.

In summary, SAL reversed theAD-related changes in the SAMP8
mice potentially by regulating the microbiota-gut-brain axis and
modulating inflammation in both the peripheral circulation and
central nervous system. Our results strongly suggest that SAL has a
therapeutic effect on cognition-related changes in SAMP8 mice and
highlight its value as a potential agent for drug development.
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