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INTRODUCTION 
 

Cigarette smoking is a common brain disorder that is 

extremely harmful to the individual and society. 

Smoking  prevalence is much higher among individuals  

 

with mental disorders than in the general population [1]. 

In developed countries, the smoking rate among the 

general population has decreased over recent decades, 

whereas there has been no decrease among mental health 

patients. In particular, smoking shows a significant 
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ABSTRACT 
 

The prevalence of smoking is significantly higher in persons with schizophrenia (SCZ) than in the general 
population. However, the biological mechanisms of the comorbidity of smoking and SCZ are largely unknown. 
This study aimed to reveal shared biological pathways for the two diseases by analyzing data from two 
genome-wide association studies with a total sample size of 153,898. With pathway-based analysis, we first 
discovered 18 significantly enriched pathways shared by SCZ and smoking, which were classified into five 
groups: postsynaptic density, cadherin binding, dendritic spine, long-term depression, and axon guidance. Then, 
by using an integrative analysis of genetic, epigenetic, and expression data, we found not only 34 critical genes 
(e.g., PRKCZ, ARHGEF3, and CDKN1A) but also various risk-associated SNPs in these genes, which convey 
susceptibility to the comorbidity of the two disorders. Finally, using both in vivo and in vitro data, we 
demonstrated that the expression profiles of the 34 genes were significantly altered by multiple psychotropic 
drugs. Together, this multi-omics study not only reveals target genes for new drugs to treat SCZ but also reveals 
new insights into the shared genetic vulnerabilities of SCZ and smoking behaviors. 
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association with schizophrenia (SCZ) [2], with around 

80% of schizophrenic patients being smokers [3, 4]. 

There are three primary hypotheses intended to elucidate 

the comorbidity of smoking and SCZ [5–8]. One 

dominant hypothesis contends that smoking is able to 

remedy, at least partly, the symptoms of SCZ [6]. There 

are two main lines of evidence for this hypothesis. One 

is that nicotine intake enhances the metabolizing of anti-

psychotic drugs [7]; the other is that nicotine promotes 

the release of several neurotransmitters (e.g., dopamine, 

glutamate, and serotonin) and improves patient 

performance in memory and attention [4, 5]. The second 

hypothesis is that given that both diseases are highly 

influenced by genetics [9, 10], there might exist shared 

genetic components predisposing to both SCZ and 

smoking behaviors. Recently, many genetics-based 

studies have lent support to this hypothesis [11–14]. The 

third hypothesis is that smoking leads to the onset of 

SCZ in view of the fact that smoking initiation typically 

predates the appearance of SCZ [8]. A meta-analysis of 

cross-sectional and prospective studies reported that 

daily cigarette smoking was associated with an earlier 

age of onset of a psychosis [15]. Consistently, a large 

prospective study of Swedish registry data demonstrated 

that both light and heavy smoking were highly 

associated with a greater risk for SCZ [16]. To some 

extent, these hypotheses are mutually non-exclusive and 

may collectively contribute to the correlation of SCZ 

with smoking. 

 

Increasing neuroimaging evidence supports the presence 

of an association between SCZ and smoking [17]. An 

fMRI study [18] showed that nicotine can restore 

deficient sensorimotor gating, which is associated with 

activation of the limbic regions and striatum in both SCZ 

patients and healthy controls. Compared with non-

smoking SCZ patients and healthy subjects, SCZ 

patients with concurrent nicotine addiction have reduced 

grey matter volumes [19]. Furthermore, it is well 

documented that nicotine increases the release of 

dopamine, acetylcholine, glutamate, norepinephrine, and 

serotonin, which are all implicated in the etiology of 

SCZ [4]. 

 

Accumulating evidence has revealed shared genetic 

components for SCZ and smoking [11–14]. One of the 

most promising findings is that variants in the 

CHRNA5/A3/B4 cluster on chromosome 15q24 are 

associated not only with nicotine dependence (ND) [12] 

but also with SCZ [11]. By using experimental evidence 

from animal models of addiction and SCZ, Koukouli et 

al. [20] found that in rodents, nicotine addiction-

associated polymorphisms in CHRNA5 provoke a 

decrease in neuronal activity, which mirrors the hypo-

frontiality detected in SCZ or addictive patients. 

Furthermore, there were multiple susceptibility genes 

reported to be associated with both SCZ and smoking 

risk, including DRD2 [11, 21–23], BDNF [24], and 

COMT [25, 26], to name a few. As we know, psychiatric 

disorders including SCZ are highly comorbid diseases 

[27–30]; thus there exists a great comorbidity on the 

relations between SCZ and substance addictions [31, 

32]. For example, a good number of reports [33–37] 

have concentrated on the genetic effect of the 

Val158Met polymorphism in COMT on the comorbidity 

of SCZ and substance addictions. In addition, Chen et al. 

[13] reported that ND is positively correlated with a 

polygenic risk score for SCZ whereas SCZ is positively 

correlated with the polygenic risk score for cotinine 

concentration. A recent study [38] revealed a statistically 

significant genetic correlation between SCZ and several 

smoking-related phenotypes. 

 

To make further progress in the prevention and treatment 

of SCZ and smoking, it is essential to identify the 

etiologic biological pathways and susceptibility genes 

underlying the comorbidity of both disorders. Earlier 

genetics association studies or pathway-based studies 

focused primarily on either SCZ or smoking [39–42]. To 

date, only two reports [13, 14] investigated the genetic 

relations between SCZ and smoking based on pathway 

analysis results for a limited number of candidates or 

significant genes. To the best our knowledge, there has 

been no study providing an integrative genomics analysis 

based on multi-omics data and biological pathways for 

both SCZ and smoking. Therefore, the primary objective 

of this study was to identify susceptibility SNPs, genes, 

and pathways for the comorbidity of SCZ and smoking 

with the use of multi-omics data from various sources 

(Supplementary Figure 1). 

 

RESULTS 
 

GWAS-based enrichment analysis for SCZ and 

smoking behaviors 
 

Our pathway analysis of GWAS summary statistics on 

SCZ and smoking phenotypes revealed 175, 172, 233, 

225, and 158 significantly enriched pathways (q value < 

0.1) for SCZ, CPD, ever smoking, former smoking, and 

age at smoking initiation, respectively. There were 84 

pathways with a q value < 0.1 for SCZ that were in 

common with that for at least one smoking phenotype 

(Figure 1A and Supplementary Table 2). Of them, 18 

showed significant enrichment in SCZ and all four 

smoking phenotypes (Table 1 and Figure 1A). For SCZ, 

the most significant pathway was postsynaptic density (P 

< 3.04 × 10−14), which is consistent with a previous 

report [43]. This postsynaptic density pathway also 

showed highly significant enrichment in all smoking-

related behaviors, with P values from 3.09 × 10−6 for age 

at smoking initiation to 1.43 × 10−13 for CPD (Table 1), 
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confirming an important role for postsynaptic density in 

these two disorders. In contrast, we found that the 

enriched pathways in smoking behaviors had a much 

higher overlap with SCZ than that in the traits of null 

and height (Figure 1B, Supplementary Figures 2 and 3). 

Next, by using multidimensional scaling (MDS) for 

shared genes, we found that the 18 common pathways 

were categorized into five clusters (Figure 1C and Table 

1): postsynaptic density (Cluster #1), cadherin binding 

(Cluster #2), dendritic spine (Cluster #3), long-term 

depression (Cluster #4), and axon guidance (Cluster #5). 

 

Following the pathway analysis of GWAS summary data 

on SCZ and smoking, we performed gene-based analysis 

on the same dataset. For SCZ, we found 590 

significantly associated genes after correction for 

multiple testing. Of them, 236 were located in 108 

previously identified loci [11]. Even though numerous 

genes were significantly associated with CPD and 

former smoking, no one gene reached significance for 

ever-smoking or age at smoking initiation. We found 

208 genes significantly associated with SCZ that also 

were associated with at least one of the four smoking 

phenotypes (Supplementary Table 3). Of these 208 

shared genes, 70 were located in 108 previously reported 

loci for SCZ (Supplementary Figure 4). In addition, by 

performing computer permutation analysis, we found 

that the genes identified in our gene-based analysis were 

significantly overrepresented in the identified common 

pathways (P < 0.003; Figure 1D and Supplementary 

Figures 5 and 6). 

 

Brain gene expression of common pathways 

 

By analyzing brain expression data, we found 1,443 

genes from the 84 common pathways to be coexpressed 

 

 
 

Figure 1. Shared pathways of SCZ and smoking phenotypes. (A) Venn diagram of significantly enriched pathways (q value < 0.1) for 

SCZ, CPD, ever smoking, former smoking, and age at smoking initiation. (B) Heatmap of the correlation among SCZ, CPD, ever smoking, 
former smoking, age at smoking initiation, null, and height based on the Z score of pathway enrichment. (C) Multidimensional scaling plot of 
18 shared pathways for SCZ and smoking behaviors. Circular ring sizes reflect number of genes in the pathway (range 18–284). Color indicates 
the significance of the pathway (red marks the significant pathways with lowest P values). Arabic numerals are the pathway numbers as 
shown in Table 1. (D) Computer permutation analysis of 590 genes associated with SCZ in 84 shared pathways. 
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Table 1. Top 18 pathways shared between schizophrenia and smoking behaviors. 

Pathway 

Number 
Pathway ID Description Category SCZ P-value CPD P-value 

Ever smoking 

P-value 

Former 

smoking  

P-value 

Age at smoking 

initiation  

P-value 

1 GO:0014069 Postsynaptic density Cluster #1 3.04 × 10−14 1.43× 10−13 1.21 × 10−9 1.50 × 10−6 3.09 × 10−6 

2 GO:0045211 Postsynaptic membrane Cluster #3 7.44 × 10−13 4.97 × 10−11 1.10 × 10−10 5.92 × 10−9 5.52 × 10−6 

3 GO:0045202 Synapse Cluster #4 3.01 × 10−9 2.76 × 10−13 6.88 × 10−15 1.91 × 10−9 4.88 × 10−8 

4 GO:0030425 Dendrite Cluster #1 9.46 × 10−9 1.34 × 10−7 0.0043 0.0011 0.0001 

5 GO:0007268 Synaptic transmission Cluster #1 3.22 × 10−8 8.03 × 10−10 1.85 × 10−11 3.22 × 10−11 9.84 × 10−6 

6 GO:0007411 Axon guidance Cluster #5 5.89 × 10−8 8.28 × 10−6 6.04 × 10−12 8.10 × 10−12 3.64 × 10−9 

7 GO:0005001 
Transmembrane receptor protein 

tyrosine phosphatase activity 
Cluster #2 7.21 × 10−7 0.0010 5.50 × 10−8 0.0086 7.84 × 10−5 

8 GO:0043197 Dendritic spine Cluster #3 4.34 × 10−6 0.0009 0.0007 0.0011 0.0048 

9 hsa05412 
Arrhythmogenic right ventricular 

cardiomyopathy (ARVC) 
Cluster #1 1.06 × 10−5 0.0025 4.17 × 10−6 1.36 × 10−5 0.0008 

10 hsa04912 GnRH signaling pathway Cluster #4 7.76 × 10−5 0.0056 8.06 × 10−5 0.0042 0.0001 

11 GO:0045296 Cadherin binding Cluster #2 0.00014 0.0028 0.0008 0.0004 5.83 × 10−5 

12 GO:0007156 Homophilic cell adhesion Cluster #5 0.00049 0.0011 1.48 × 10−5 2.00 × 10−7 1.50 × 10−7 

13 GO:0005216 Ion channel activity Cluster #1 0.00051 2.95 × 10−13 0.0001 1.29 × 10−5 0.0001 

14 GO:0051056 
Regulation of small GTPase 

mediated signal transduction 
Cluster #1 0.00053 0.0002 1.14 × 10−6 4.88 × 10−5 0.0002 

15 hsa04020 Calcium signaling pathway Cluster #1 0.0006 0.0056 2.74 × 10−10 2.38 × 10−6 2.99 × 10−6 

16 GO:0006813 Potassium ion transport Cluster #1 0.00074 0.0038 2.73 × 10−6 0.0017 9.14 × 10−5 

17 GO:0007626 Locomotory behavior Cluster #2 0.0012 9.36 × 10−14 0.0032 3.10 × 10−5 0.0030 

18 hsa04730 Long-term depression Cluster #4 0.0042 7.10 × 10−5 0.0012 2.85 × 10−6 0.0009 

 

in six modules (Supplementary Figures 7–9), and the top 

10 “hub” genes in each module were demonstrated to 

have highly intramodular and intermodular connections 

(Supplementary Figures 10 and 11). Interestingly, we 

observed two distinct and dynamic expression patterns 

in different brain regions and at different developmental 

stages (Figure 2A). For example, one module (marked in 

yellow) has a greater than twofold difference between 

brain regions, and two modules (brown and red) showed 

twofold temporal changes (Supplementary Table 4). 

 

Common methylated genes in both smoking and 

schizophrenia 

 

By comparison with the previously reported findings 

[44], we found 149 module genes that overlapped with 

smoking-associated DNA-methylated genes; and 38 of 

these genes had at least two independent pieces of 

supporting evidence (Supplementary Table 5). Next, we 

performed a differential methylation analysis of 8,236 

CpG loci in 149 genes related to SCZ and found that 822 

CpG loci, mapped to 124 genes (124/149; binomial test: 

P < 2.2 × 10−16), showed significant association with 

SCZ (P < 6.07 × 10−6; Supplementary Table 5). For the 

38 genes, 413 significantly methylated CpG loci were 

annotated in 34 of the genes, and there existed a high 

consistency of shared methylated genes between SCZ 

and smoking (34/38; binomial test: P = 6.04 × 10−7). Of 

note, 16 of these 34 candidate genes have been reported 

extensively to be associated with SCZ (Table 2 and 

Supplementary Table 6). 

 

Through using these 34 genes to construct a subnetwork, 

we found 23 of 34 genes significantly enriched in that 

subnetwork (PPI enrichment: P = 1.3 × 10−4; Figure 2E). 

Many of these genes had several significantly SCZ-

associated CpG loci (Figure 2B–2D and Supplementary 

Figures 12 and 13). For example, SCZ-associated 

cg10334053 (P = 8.66 × 10−21), cg02481000 (P = 1.7 × 

10−19), and cg18188739 (P = 3.56 × 10−14) were all 

located in PRKCZ (Figure 2B). Of note, cg18188739 

appeared to be associated with smoking at a genome-

wide significance level (P = 2.86 × 10−8) [45]. 

 

Differential expression profiles of 34 candidate genes 

 

We next examined the difference in the influence of 

smoking on gene expression between SCZ patients and 

healthy controls and found that 9 of 34 genes showed 

significantly different expression in SCZ subjects and 
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controls stratified by smoking status (Table 2; 

Supplementary Table 7; Figure 3; Supplementary 

Figures 14–16). Furthermore, several genes showed 

distinct expression profiles in schizophrenic hiPSC-

derived neurons (Supplementary Figure 17) compared 

with the control neurons. Consistent with previous 

studies [11, 39], most of these candidate genes were 

highly expressed in human brain regions (Supplementary 

Figures 18–26). 

 

The pharmacological effects of 34 candidate genes 

 

Based on the DGIdb database, we found that 13 of the 

34 genes (38.24%) were targeted by at least one drug. 

For example, HRH1, CDKN1A, and TNF are targeted by 

various psychotropic drugs. Also, 25 (73.53%) belong to 

one or more potentially “druggable” gene categories 

(Supplementary Figure 27). Consistently, the expression 

of several genes in the mouse brain was significantly 

modulated by quetiapine (Supplementary Figure 28) and 

nicotine (Supplementary Figure 29) in a dose-dependent 

pattern. Further, the count of significantly quetiapine- 

and nicotine-induced genes among these 34 genes were 

prominently higher than that of genes in 18 (Figure 3C, 

3G) and 84 common pathways (Figure 3D, 3H) or all 

background genes (Figure 3E, 3I). For example, the 

expression of Arhgef3 was downregulated by both 

quetiapine (Figure 3F: ANOVA P = 0.00018) and 

nicotine (Figure 3J: ANOVA P = 0.0084). In addition, 

we found that many genes showed different expression 

 

 
 

Figure 2. Brain co-expression modules and common methylated genes. (A) Regional and temporal patterns of gene expression 

mean-centered by the extent of gene expression within each module. (B–D) Regional plot of association between genetic and epigenetic 
variants of the PRKCZ, PTPRN2, GNA12 loci, and SCZ, respectively. Circular symbols indicate the association of CpG loci with SCZ (red 
represents loci significantly associated with SCZ with P ≤ 6.07 × 10-6; orange indicates loci with 6.07 × 10-6 < P ≤ 0.05; blue marks loci with P > 
0.05). Triangular symbols indicate association of SNPs with SCZ (red represents top-ranked SNPs associated with SCZ; orange indicates SNPs 
associated with SCZ with P ≤ 0.05; blue marks SNPs with P > 0.05). (E) Gene subnetwork constituted from the 34 common genes. The 
protein–protein interactions are according to the database of STRING (v. 10.5). We used Cytoscape software to visualize the subnetwork. The 
color of a node indicates the co-expression module of the genes. 
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Table 2. Multiple lines of evidence support involvement of 34 genes in the comorbidity of both SCZ and smoking. 

Gene 

names 

Chro

moso

me 

Brain 

coexpressio

n modules 

Smoking-

associated 

methylation 

genes 

SCZ-

associated 

methylation 

genes 

cis-

meQTLs in  

brain 

samples  

Genes 

enriched in 

the PPI 

subnetwork 

Differential expressed 

genes in SCZ patients 

stratified by smoking: 

Anova P values 

Differential expression 

genes treated by 

quetiapine or nicotine: 

Anova P values 

Genes risk to 

SCZ in 

previous 

studies  

TRIO Chr5 Turquoise Yes Yes Yes Yes Not significant 0.031 (Quetiapine) Yes (PMID: 

21422296) 

GNA12 Chr7 Brown Yes Yes Yes Yes Not significant 0.049 (Quetiapine) Yes (PMID: 

22792057) 

KCNQ1 Chr11 Blue Yes Yes Yes Yes Not significant 0.0073 (Nicotine); 0.3 

(Quetiapine) 

Yes (PMID: 

26971948; 

28188958) 

AKT3 Chr1 Turquoise Yes Yes Yes Yes 0.0395 0.018 (Nicotine) Yes (PMID: 

25056061; 

28467426; 

29173281; 

23974872; 

25599223) 

ARHGEF3 Chr3 Yellow Yes Yes Yes Yes 0.00723 0.00018 (Quetiapine); 

0.0084 (Nicotine) 

No data 

CACNA1D Chr3 Turquoise Yes Yes Yes Yes 0.052 Not significant Yes (PMID: 

29214423; 

26255836; 

24996399) 

RGS12 Chr4 Brown Yes Yes Yes Yes 0.0058 0.053 (Nicotine) Yes (PMID: 

25420024) 

RPS6KA2 Chr6 Brown Yes Yes Yes Yes Not significant 0.05 (Nicotine) No data 

NOTCH1 Chr9 Yellow Yes Yes Yes Yes Not significant 0.0166 (Quetiapine) Yes (PMID: 

26232790) 

PARD3 Chr10 Yellow Yes Yes Yes Yes 0.054 0.018 (Nicotine) Yes (PMID: 

22969987) 

AP2A2 Chr11 Brown Yes Yes No Yes Not significant 0.0032 (Nicotine) Yes (PMID: 

23811784) 

NOS1AP Chr1 Brown Yes Yes Yes Yes Not significant Not significant Yes 

(PMID:268619

96; 25542305; 

20605702; 

16146415; 

15065015; 

12116186; 

19077434) 

HRH1 Chr3 Brown Yes Yes No Yes Not significant Not significant Yes 

(PMID:284001

55; 27855565) 

HTT Chr4 Brown Yes Yes No Yes Not significant 0.0085 (Quetiapine); 

0.075 (Nicotine) 

No data 

CDKN1A Chr6 Turquoise Yes Yes No Yes Not significant 0.00085 (Quetiapine); 

0.23 (Nicotine) 

Yes (PMID: 

23549417) 

TIAM2 Chr6 Turquoise Yes Yes Yes Yes 0.062 Not significant No data 

TNF Chr6 Blue Yes Yes No Yes Not significant 0.06 (Nicotine) Yes (PMID: 

29499967; 

29706448) 

CNTNAP2 Chr7 Brown Yes Yes No No 0.087 0.0085 (Quetiapine) Yes (PMID: 

29610457; 
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25852443; 

23123147) 

MAD1L1 Chr7 Brown Yes Yes Yes No Not significant 0.024 (Nicotine) Yes (PMID: 

25056061; 

26193471; 

26528791) 

PTPRN2 Chr7 Red Yes Yes Yes No 0.00142 0.0028 (Nicotine) No data 

CLCN6 Chr1 Green Yes Yes Yes No Not significant Not significant No data 

PRKCZ Chr1 Brown Yes Yes Yes Yes Not significant Not significant No data 

ALPI Chr2 Blue Yes Yes Yes Yes Not significant Not significant No data 

ALPPL2 Chr2 Blue Yes Yes Yes Yes Not significant Not significant No data 

ARHGAP2

5 

Chr2 Turquoise Yes Yes No Yes 0.00026 Not significant No data 

PLEK Chr2 Turquoise Yes Yes No Yes 0.043 0.018 (Nicotine) No data 

ZMIZ1 Chr10 Turquoise Yes Yes Yes Yes 0.041 0.0128 (Quetiapine) No data 

TBC1D14 Chr4 Turquoise Yes Yes Yes No 0.03 Not significant No data 

SORBS1 Chr10 Turquoise Yes Yes Yes No Not significant Not significant No data 

TGFBR3 Chr1 Turquoise Yes Yes No No Not significant Not significant No data 

CPOX Chr3 Brown Yes Yes No No Not significant Not significant No data 

TIGIT Chr3 Blue Yes Yes No No Not significant Not significant No data 

GPSM3 Chr6 Blue Yes Yes No No 0.0014 Not significant No data 

DUSP4 Chr8 Turquoise Yes Yes No No Not significant Not significant No data 

 

profiles in the mouse striatum at four time points of 

treatment with 18 major psychotropic drugs (Sup-

plementary Figures 30–32). 

 

Cis-regulatory effects of SNPs in 34 candidate genes 
 

Based on two large GWAS datasets, there were 3,483 

risk-suggested SNPs shared by SCZ and at least one 

smoking phenotype (Figure 4A and Supplementary 

Figure 33), and 228 of these were common to SCZ and 

all four smoking phenotypes (Figure 4B). A great 

number of SNPs among these identified 3,483 risk SNPs 

were located within different types of regulatory 

elements in brain tissues and neuroblastoma cell lines 

(Supplementary Figures 34 and 35). We performed a cis-

meQTL analysis in human brain samples, which showed 

7,558 significant SNP–CpG methylation pairs with 

1,145 SNPs in 21 genes (FDR < 0.01; Figure 4A and 

Supplementary Figure 36). A number of the 392 variants 

in the 21 genes had cis-regulatory roles in both DNA 

methylation and gene expression (Figure 4A, 4C).  

 

DISCUSSION 
 

Cigarette smoking is highly concurrent with SCZ [2, 18, 

46]. Individuals with mental disorders such as SCZ are 

at higher risk for developing smoking-related diseases, 

which include cardiovascular and respiratory diseases 

and various cancers [5]. Based on a national cohort study 

including about 6 million Swedish adults, Crump et al. 

[47] found a significant portion of the morbidity and 

premature death in persons with SCZ was ascribable to 

ischemic heart disease and cancers. Considering that the 

co-occurrence of SCZ and smoking has greatly impacted 

public health, it is important to understand the patho-

genesis of the comorbidity of the two diseases. Previous 

studies concentrated largely on the investigation of the 

genetic mechanisms of either SCZ [11] or smoking [12]. 

Similarly, studies employing pathway-based enrichment 

analysis so far have focused mainly on either SCZ or 

smoking [39–42]. 

 

Recently, multiple large-scale GWAS studies [27–30, 

38] consistently revealed that there exists a considerable 

genetic correlation between SCZ and smoking-related 

traits. However, susceptibility variants, genes, and 

biological pathways for the comorbidity remain largely 

unknown. In the present study, by conducting an 

integrative genomics analysis of large-scale GWAS data 

with multi-omics data, we intended to identify the risk 

SNPs, genes, and pathways implicated in the etiology of 

these two comorbid diseases. 

 

We first conducted pathway-based enrichment analysis 

of GWAS summary data. For this hypothesis-free 

genome-wide approach, we utilized four commonly used 

resources (i.e., KEGG, GO, BioCarta, and Reactome) to 

determine the number of genes included in the GWAS 

pathway enrichment analyses [40], which could 

overcome the bias of previous studies for arbitrary gene 
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selection [13, 14]. This analysis revealed 18 significantly 

enriched pathways that were shared by SCZ and all four 

smoking phenotypes. These pathways were clustered 

into postsynaptic density, cadherin binding, dendritic 

spine, long-term depression, and axon guidance; all of 

them have been implicated in various psychiatric 

disorders [11, 13, 39, 43, 48–51]. Compared with the 

negative controls, the degrees of correlation between 

pathways across SCZ and smoking phenotypes were 

much higher, indicating that overlap between SCZ and 

smoking was nonrandom at any pathway level. These 

findings strongly indicate that the common pathways 

identified for both SCZ and smoking behaviors were 

attributable to the shared genetic vulnerability. 

 

Given that leveraging multi-omics datasets is a better 

way to understand the molecular mechanism of complex 

diseases, we here provide robust evidence to explain the 

 

 

 

Figure 3. The differential expression patterns of 34 candidate genes. (A) Pattern of PTPRN2 in SCZ patients and controls divided by 

smoking status. (B) Pattern of ARHGAP25 in SCZ patients and controls divided by smoking status. (C–E) Permutation analysis of 34 candidate 
genes in 18 common pathways (N = 1,588 genes), 84 common pathways (N =3,334 genes), and background genes (N = 45,037) for quetiapine 
treatment. (F) Plot summarizing Arhgef3 expression changes in quetiapine (at doses of 10 or 100 mg/kg)-treated mice. (G–I) Permutation 
analysis of 34 candidate genes in 18 common pathways (N = 1,588), 84 common pathways (N = 3,334), and background genes (N = 31,047) 
for nicotine treatment. (J) Plot summarizing Arhgef3 expression alterations in nicotine (at doses of 8 µg, 15 µg, and 23 µg/L)-treated mice. 
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underlying mechanism of the comorbidity between SCZ 

and smoking from genetic, epigenetic, and expression 

points of view. Based on the gene co-expression data, 

we found a considerable number of genes in common 

pathways that showed differential co-expression patterns 

in different developmental time points and brain regions, 

providing supportive evidence that shared genetic risk 

for SCZ and smoking phenotypes has a vital influence 

on neurodevelopmentally regulated pathways. Similar to 

a previous study [43], by integrating gene co-expression 

data with pathway-based analyses on large-scale GWAS, 

we could identify even greater specificity of candidate 

genes conferring risk for the comorbidity. 

 

Previous studies [11, 44, 52–54] have shown that 

aberrant methylated DNAs (DNAm) were involved in 

the etiology of SCZ and smoking. For example, our 

previous study, based on a sophisticated data mining of 

published papers [44], showed that 320 genes exhibited 

robust methylation evidence of involvement in the 

etiology of smoking. In the current study, we highlighted 

34 genes with significant methylation evidence that 

 

 
 

Figure 4. The cis-acting regulatory effects of risk-associated SNPs in 34 common genes on DNA methylation and gene 
expression. (A) Schematic of risk-associated SNPs (P < 0.05) compiled from two large-scale meta-GWASs on SCZ (N = 79,845) and smoking 

behaviors (N = 74,053) and 3,483 risk-associated SNPs in 34 genes shared by SCZ and smoking for cis-meQTL and cis-eQTL analysis. The SNPs 
in strong LD with risk-associated SNPs (LD cutoff r2 ≥ 0.5) were generated according to the 1000 Genome European Phase 3 panel as 
reference. (B) Venn diagram of risk-associated SNPs (P < 0.05) for SCZ, CPD, ever smoking, former smoking, and age at smoking initiation.  
(C) Plot shows the 21 promising genes with SNPs had cis-regulatory roles in both DNA methylation and gene expression. 
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were associated with both SCZ and smoking. More 

interestingly, we found that 23 of these 34 genes were 

located in a molecular subnetwork, which is consistent 

with the previous notion that function-related genes may 

collectively contribute the risk of the pathology of 

complex diseases [44]. Notably, 16 of the 34 methylated 

genes have often been reported to be associated with SCZ 

and smoking. For example, AKT3 is a critical molecule 

underlying psychiatric-related behaviors, including SCZ 

[11, 55], cognitive function [56], and smoking behaviors 

[44]. Multiple lines of evidence from genetic association 

studies [11, 57, 58] have indicated that MAD1L1 is 

significantly associated with SCZ. Based on network-

assisted investigation of combined causal signals from 

GWAS studies [59], CNA12 showed a significant 

association with SCZ. PRKCZ and PTPRN2 were 

reported to be SCZ-associated differential methylation 

regions [54]. The KCNQ1 gene belongs to the potassium 

channel gene family and plays a vital role in signal 

transduction within the central nervous system. It may 

contribute to the shared risk of diminished processing 

speed, diminished white matter integrity, and increased 

risk of SCZ [60, 61]. In addition, we found that a large 

proportion of the 34 genes were targeted by various 

psychotropic drugs, and the expression patterns of these 

drug-responsive genes were significantly regulated in 

mouse brain by treatment with 18 major psychotropic 

drugs in a dose- or time-dependent pattern. Thus, these 

genes likely represent targets for pharmacotherapeutic 

intervention in SCZ and smoking behaviors. 

 

Genetic variants influencing DNAm and mRNA 

expression can modulate gene transcript levels and 

thereby exert risk effects on diseases, as evidenced by 

meQTL and eQTL analyses of top GWAS risk-

associated SNPs for various human phenotypes, 

including smoking [54, 62, 63] and SCZ [64, 65]. Thus, 

we first explored the vital influence of regulatory 

genomic elements (i.e., cis-meQTLs and cis-eQTLs) in 

neurodevelopmental processes of the comorbidity of 

smoking and SCZ. In human brain samples, we 

identified 21 of 34 candidate genes with a great number 

of SNP–CpG pairs. Interestingly, there was a large 

proportion, 39.4%, of these SNPs that showed allele-

specific gene expression. By downloading SNPs from 

the GWAS Catalog (on 03 May 2019), some of the 

identified SNPs were found to be associated with 

psychiatric disorders in GWAS studies. For example, 

rs1107592 (P = 2.0 × 10−6) and rs802568 (P = 2.0 × 

10−7) were suggested to be associated with bipolar 

disorder and SCZ [66]. Rs1107592 (P = 5.0 × 10−6), 

rs4721295 (P = 6.0 × 10−10), and rs12666575 (P = 2.0 × 

10−9) were significantly associated with SCZ and other 

psychiatric disorders, such as autism spectrum, bipolar, 

and major depressive disorders [67–69]. Rs1403174 (P = 

3.0 × 10−10) showed significant association with age at 

smoking initiation [70]. These findings were consistent 

with earlier reports where it was discovered that the 

majority of non-coding risk-associated SNPs for brain 

disorders influence gene expression via DNAm [71, 72]. 

 

Some limitations of the current study warrant comment. 

First, those SCZ- and smoking-related genes identified 

were prioritized from GWAS. In view of the inherent 

defects of the GWAS approach, some of these genes 

might not be truly associated with both of the disorders. 

Second, a great number of genes have not been 

characterized or mapped to computationally predicted or 

manually curated pathways. Thus, the contributions of 

these genes could not be delineated in pathway 

enrichment analysis. Third, although we have provided 

very strong evidence from genetic association, gene 

expression, and DNA methylation to support the 18 

common pathways as being linked to both smoking and 

SCZ, we could not determine to what extent each 

specific pathway contributes to smoking or SCZ, nor 

could we quantify the relative influences of each 

pathway for the two disorders. 

 

In sum, by employing a comprehensive bioinformatics 

analysis of genomic and pharmacogenomics data at the 

DNA, methylation, or expression levels, we first 

identified 18 biological pathways that are significantly 

associated with both SCZ and smoking phenotypes. 

Subsequently, we discovered 34 novel and promising 

susceptibility genes and variants within these genes 

with robust genetic, epigenetic, expression, and 

pharmacological evidence for both SCZ and smoking. 

Our findings lend considerable weight to the hypothesis 

that shared genetic vulnerabilities create a propensity 

for the comorbidity of SCZ and smoking. By 

pinpointing which and how SNPs in these candidate 

genes affect these disorders, this study provides novel 

insights into the biological mechanism and a solid 

foundation for understanding the shared disease biology 

of SCZ and smoking behaviors. 

 

MATERIALS AND METHODS 
 

Multi-omics datasets used in current study 

 

In current investigation, we performed a series of  

multi-omics data analyses, which include large-scale 

meta-GWAS, BrainSpan exon array data on brain 

development and aging, methylation data, expression 

data, and pharmacogenomics data. The following is a 

brief summary of datasets used in our analysis. For 

details on these datasets, please infer to Supplementary 

Table 1. 

 

1. GWAS data on SCZ: This dataset was obtained 

from a published GWAS [11] on SCZ from the 
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Psychiatric Genomics Consortium (PGC), of which 

the data from case-control samples (N = 79,845) 

were used for both gene and pathway analysis. 

 

2. GWAS data on smoking: This dataset was from a 

published meta-GWAS on smoking behaviors 

(including smoking status, quantity smoked in ever-

regular smokers, smoking cessation, and age at 

initiation) by the Tobacco and Genetics Consortium 

(TAG), which contained the genotype data for a 

total sample size of 74,053 [12]. 

 

3. GWAS data on height and null: To demonstrate that 

the identified pathways were attributable to shared 

biology between SCZ and smoking, we performed 

the GWAS enrichment analysis on two other 

independent data sets as negative controls. One of 

them was a GWAS of human height with a sample 

size of 183,727 [73], and the other was a null 

GWAS based on randomly distributed phenotypes 

that we constructed from a real GWAS with a 

sample size of 3,960 [74]. 

 

4. Expression data on brain development and aging: 

The BrainSpan exon array data related to brain 

development and aging were downloaded from the 

NCBI’s Gene Expression Omnibus (GEO; 

Accession No. GSE25219), with a sample size of 

1,340. 

 

5. Methylation data on smoking and SCZ: Three 

datasets were used for this part of the analysis, with 

the first one from our previous study on smoking 

and consisting of 18,677 samples [44], the second 

one on 847 SCZ blood samples from NCBI GEO 

(Accession No. GSE84727) [75], and the third one 

on brain samples (N=258) from NCBI GEO 

(Accession No. GSE74193) [76]. 

 

6. Expression data on smoking and SCZ: Two 

expression datasets were used here, with the first 

one based on olfactory epithelium tissues (N = 31) 

and the second one on induced pluripotent human 

stem cells (hiPSCs; N = 8). Both were downloaded 

from NCBI GEO (Accession Nos. GSE73129 and 

GSE25673). 

 

7. Pharmacogenomics data: To reveal potential 

druggable genes with therapeutic effects, we down-

loaded the psychotropic drug-treated gene expression 

data from NCBI’s GEO with Accession Nos. of 

GSE45229, GES50254, GSE48954, GSE15774, and 

GSE48951. We first explored the dosage influence 

of quetiapine and nicotine on gene expression 

changes in mouse striatum, then concentrated on the 

time-course (1, 2, 4, and 8 hours) of gene expression 

alterations in mouse striatum that were induced by 

18 major psychotropic drugs. 

 

Pathway- and gene-based analysis 

 

We combined gene-set data from four sources: KEGG 

[77], GO [78], BioCarta [79], and Reactome [80], which 

were downloaded from their respective sources on or 

before May 12, 2017. Because of concerns that the gene 

set with > 300 genes or < 10 genes is considered to be 

either less specific and computationally inefficient or 

over-dispersed [40], we confined our analysis to those 

pathways with 10–300 genes.  

 

We used the GSA-SNP program [81] to perform 

GWAS-based enrichment analysis. The SNPs of interest 

were assigned to genes if they lie within 20 kb upstream 

or downstream of the gene, and each SNP was assigned 

to only one gene. When multiple SNPs were mapped to 

the same gene, the GSA-SNP chose the most 

significantly associated SNP. Additionally, we used the 

MAGMA (https://ctg.cncr.nl/software/magma) for 

gene-based analysis of GWAS summary data. Because 

LD could result in a number of genes rather than one 

being counted as significant when genes are physically 

close in one region, we used the LD-pruned method to 

calculate the LD for the published GWAS data with the 

1000 Genome European Phase 3 panel as the reference. 

 

Computer permutation analysis 

 

There were 3,334 genes (named Gene set 1) from 84 

common pathways with a q value < 0.1 from our 

pathway enrichment analysis. To determine whether 

these genes were indeed significantly overrepresented 

with identified genes from our gene-based analysis, we 

conducted permutation analysis by randomly selecting 

3,334 genes in the 84 common pathways from the total 

genes (N = 17,385) in all 2,532 pathways for 106 times. 

We then calculated how many times the counts of genes 

overlapped with the genes from gene-based analysis 

that were larger than the observed number among 106 

trials. The probability of the observation was treated as 

the P-value, with a P value < 0.05 being considered 

significant. 

 

Co-expression network analysis 

 

We then conducted further analysis for 3,334 identified 

genes in Gene Set 1 to determine how these pathways 

were related to brain development and aging with the 

BrainSpan exon array data. RNA expression profiles for 

1,340 samples were analyzed by using weighted gene 

co-expression network analysis (WGCNA), an R 

package used for clustering genes into modules 

according to co-expression data. The 10 most highly 

https://ctg.cncr.nl/software/magma
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connected genes within each module were displayed in 

the network plot by using Cytoscape (v. 3.5.1) 

(http://www.cytoscape.org/). 

 

Smoking- and SCZ-associated differentially 

methylated loci and regions 

 

To determine whether the identified genes from co-

expression modules were involved in the smoking- and 

SCZ-associated methylation process, we first selected a 

list of 1,429 smoking-associated methylated genes from 

our previous study [44], and then examined whether 

these smoking-associated methylation module genes 

were significantly methylated in SCZ patients [75]. 

Bonferroni correction was used to determine significant 

association. An exact binomial analysis was applied to 

examine whether there existed a significant excess of 

consistence of observed methylated genes between 

smoking and SCZ more often than was expected by 

chance. 

 

Candidate gene expression profiles in SCZ and 

smoking 

 

We performed an ANOVA analysis to explore the 

differential expression profiles of the 34 genes in 

olfactory epithelium tissues among SCZ patients and 

controls grouped by smoking status. Turkey HSD test 

was used for multiple comparisons. Considering that 

human induced pluripotent stem cells (hiPSCs) provide 

a novel strategy for defining characteristics of 

schizophrenic neurons, we further used the first cell-

based human model of SCZ by directly reprogramming 

fibroblasts from schizophrenic patients into hiPSCs and 

subsequently differentiating these disorder-specific 

hiPSCs into neurons in vitro to explore the different 

expression profiles of 34 genes between controls and 

schizophrenic patients. 

 

Candidate genes in response to various psychotropic 

drugs 

 

To identify potential druggable targets, we searched for 

these identified genes in the Drug-Gene Interaction 

database (DGIdb) (v. 3.0; http://www.dgidb.org/). 

Firstly, we searched the 20 databases for drug–gene 

interactions with FDA-approved pharmaceutical com-

pounds according to 51 known interaction types with 34 

common genes for both SCZ and smoking phenotypes. 

Secondly, we searched 10 databases for the potential 

drug ability for gene targets to reveal genes that might 

form targets for novel therapies in addition to existing 

medicines. To explore whether these genes had 

therapeutic effects, we applied the dosage treatment of 

quetiapine and nicotine, and the time-course (1, 2, 4, 

and 8 hours) treatment of 18 major psychotropic drugs 

on gene expression changes in mouse striatum. 

Furthermore, using the computer permutation analysis 

of 105 times, we determined whether these 34 candidate 

genes were more prone to drug-induced action than 

other 1,588 genes in 18 common pathways, 3,334 genes 

in 84 common pathways, as well as more than 30,000 

background genes. 
 

Cis-meQTLs/eQTLs of SNPs within 34 genes 
 

To explore the relations between genotype and 

methylation status, we conducted cis-meQTL analysis 

of SNPs within 34 candidate genes. Based on the two 

large GWAS used in our pathway-based analysis, we 

collected suggested SNPs with a P value of < 0.05 in 34 

candidate genes for SCZ and smoking behaviors. 

Considering that multiple lines of evidence have 

suggested that identified tag SNPs were more likely to 

be in LD with casual variants [82], we generated a list 

of SNPs that were in strong LD (LD cutoff r2≥0.5) 

with each tag SNP using the 1000 Genome European 

Phase 3 panel for reference genotyping. 

 

By employing these identified SNPs, we downloaded 

cis-meQTL data from human brain samples (N = 258) 

[76] and used the Matrix eQTL (v. 2.1.1) R package 

[83] to examine the associations between SNPs and 

methylation loci with linear regression under an 

additive model. We restricted methylation loci to 20 kb 

upstream and downstream of each SNP. The intervals 

for nearby SNPs were combined if they overlapped. 

There were 7,426,085 common genotyped and imputed 

SNPs from the 1,000 Genomes reference panel and 

477,636 qualified CpGs used for cis-meQTL analysis 

with a maximum distance of 20 kb between each SNP 

and CpG analyzed, resulting in 47,675,913 tests. A total 

of 4,107,214 significant SNP-CpG methylation 

associations at FDR < 0.01 were identified from this 

dataset. To further explore the cis-regulatory effects of 

SNPs on expression of the 34 candidate genes, we 

performed a cis-acting eQTL analysis in human tissues 

by using a web-based tool of GTEX PROTAL 

(https://gtexportal.org/home/). 
 

Abbreviations 
 

SCZ: schizophrenia; ND: nicotine dependence; GWAS: 

genome-wide association study; CPD: cigarette 

smoking per day; MDS: multidimensional scaling; PPI: 

protein-protein interaction; eQTL: expression 

quantitative trait loci; meQTL: methylation quantitative 

trait loci; PGC: the psychiatric genomics consortium; 

TAG: the tobacco and genetics consortium; GEO: Gene 

Expression Omnibus; hiPSCs: human induced 

pluripotent stem cells; KEGG: Kyoto Encyclopedia of 

Genes and Genomes; GO: gene ontology; WGCNA: 

http://www.cytoscape.org/
http://www.dgidb.org/
https://gtexportal.org/home/).
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weighted gene co-expression network analysis; DGIdb: 

the Drug-Gene Interaction database; LD: linkage 

disequilibrium. 
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Supplementary Figures 
 

 
 

Supplementary Figure 1. Overview of statistical approaches for integrative pathway- and gene-based analysis of GWAS 
summary statistics. Using GSA-SNP and MAGMA software, pathway- and gene-based analyses were carried out. A number of novel genes 

were identified from MAGMA analysis. There was a total of 208 shared genes between SCZ and smoking behaviors. According to pathway-
based enrichment analysis, 18 common pathways were identified. We performed a simulation analysis and found these 208 genes to be 
significantly enriched in common pathways identified from GSA-SNP pathway analysis. Further, to explore the underlying biological 
mechanism of the comorbidity of SCZ and smoking, we then integrated multi-dimensional omics datasets, including human brain and blood 
transcriptome data, on smoking and SCZ with well-established tools for interrogating such datasets. Finally, we identified 34 candidate genes 
conferring risk of the comorbidity of SCZ and smoking and revealed the regulatory mechanism of SNP-methylation expression of the 
comorbidity. 
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Supplementary Figure 2. Overlapped pathways among smoking behaviors, null, and height. (A) Overlapped pathways among 

CPD, null, and height; (B) Overlapped pathways among ever-smoking, null, and height; (C) Overlapped pathways among former smoking, null, 
and height; (D) Overlapped pathways among age at smoking initiation, null, and height; (E) Heatmap of the proportion of significantly 
enriched pathways in CPD, ever smoking, former smoking, and age at smoking initiation with SCZ, null, and height. Heatmap plots were 
generated using the pheatmap package in R. 
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Supplementary Figure 3. Overlapped pathways among SCZ and smoking behaviors, null, and height. (A) Venn diagram of 

significantly enriched pathways for SCZ with the pathways for null and height. (B) Venn diagram of significantly enriched pathways among 84 
shared pathways between SCZ and at least one of four smoking phenotypes with the pathways for null and height. (C) Venn diagram of 
significantly enriched pathways among 18 pathways shared by SCZ and all four smoking phenotypes with the pathways for null and height. 
(D) The proportion of significantly enriched pathways in CPD, ever smoking, former smoking, age at smoking initiation, null, and height with 
SCZ. 
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Supplementary Figure 4. Circus plot of results of gene-based analysis of SCZ and smoking phenotypes. The outer ring shows the 

22 autosomal human chromosomes. Gene symbols marked in the second ring are the 70 of 208 common genes located in the previously 
reported 108 loci for SCZ. The third ring demonstrates the results of gene-based analysis of SCZ and 590 genes significantly associated with it 
(P < 2.73 × 10−6), which are marked with orange points. The orange bars represent 236 genes located in 108 previously identified SCZ-related 
loci. The grey bars mark novel genes associated with SCZ in the current study. The fourth through the seventh rings mark CPD, ever smoking, 
former smoking, and smoking initiation, respectively. The yellow bars indicate the distribution of the 208 genes shared by SCZ and smoking. 
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Supplementary Figure 5. Computer permutation analysis of 208 genes associated with SCZ and smoking behaviors for genes 
in 84 shared pathways.  
 

 
 

Supplementary Figure 6. Computer permutation analysis of 70 genes associated with SCZ and smoking behaviors for genes 
in 84 shared pathways.  
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Supplementary Figure 7. WGCNA module-based analysis for genes in all shared pathways with q value < 0.1. The hierarchical 

clustering dendrogram is for all 1,644 expressed and highly connected genes. Each line represents an individual gene. Genes were clustered 
on the basis of a dissimilarity measure (1-TOM). The branches are related to modules of highly interconnected gene groups. Below the 
dendrogram of each gene group is a color to indicate the six module colors (i.e., blue, brown, green, red, turquoise, and yellow). Genes within 
grey boxes were not assigned to a module. 
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Supplementary Figure 8. Scatterplot of gene significance for brain regions (y axis) vs. module membership (x axis) in 
different modules. (A) For blue module; (B) for brown module; (C) for green module; (D) for red module; (E) for turquoise module; (F) for 

yellow module. 
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Supplementary Figure 9. Scatterplot of gene significance for developmental time points (stages; y axis) vs. module 
membership (x axis) in different modules. (A) For blue module; (B) for brown module; (C) for green module; (D) for red module; (E) for 

turquoise module; (F) for yellow module. For the most significant modules (i.e., blue, brown, green, turquoise, and yellow), genes with high 
module membership often also show high gene significance. Gene significance and module membership have a highly significant correlation, 
indicating that hub genes of these modules also predispose to high correlation with weight. 
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Supplementary Figure 10. Network plot of 10 hub genes from each module showing clustering across different brain regions 
and developmental time points. The nodes (genes) are colored by module, while the edges reflect positive correlations across brain 

regions and developmental epochs. The rectangular nodes represent genes clustered in the 18 shared pathways, and the circular nodes mark 
genes not so clustered. 
 

 
 

Supplementary Figure 11. Enrichment of the five clusters of 18 shared pathways in six co-expression modules (red = cluster 
with the highest proportion in a module). More than 15% of the genes in the five clusters among 18 shared pathways were in the 

turquoise module. 
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Supplementary Figure 12. Regional plot of association between genetic and epigenetic variation at the four genomic loci and 
SCZ. (A) For NOTCH1; (B) for AP2A2; (C) for DUSP4; (D) for RPS6KA2. Circular symbols indicate the association of CpG loci with SCZ (red 

represents these loci significantly associated with SCZ with P ≤ 6.07 × 10-6; orange represents these loci with 6.07 × 10-6 < P ≤ 0.05; blue 
represents these loci with P > 0.05). Triangular symbols indicate the association of SNPs with SCZ (red represents the top-ranked SNPs 
associated with SCZ; orange represents these SNPs associated with SCZ with P ≤ 0.05; blue represents these SNPs with P > 0.05). 
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Supplementary Figure 13. Regional plot of association between genetic and epigenetic variation at the six genomic loci and 
SCZ. (A) For AKT3; (B) for CDKN1A; (C) for TNF; (D) for PLEK; (E) for KCNQ1; (F) for PARD3. Circular symbols indicate the association of CpG 

loci with SCZ (red represents these loci significantly associated with SCZ with P ≤ 6.07 × 10-6; orange represents these loci with 6.07 × 10-6 < P 
≤ 0.05; blue represents these loci with P > 0.05). Triangular symbols indicate the association of SNPs with SCZ (red represents the top-ranked 
SNPs associated with SCZ; orange represents these SNPs associated with SCZ with P ≤ 0.05; blue represents these SNPs with P > 0.05). 
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Supplementary Figure 14. Heatmap of significant genes from ANOVA by comparing the difference between SCZ patients and 
controls divided by smoking status. Colored rectangles represent transcript abundance indicated above the gene labeled on the right. 

The intensity of the color is proportional to the standardized values between -3 and 3 for each gene, as indicated on the bar on the right of 
the heat map plot. Clustering was performed using Euclidean distance according to the scale on the left. Major gene transcription patterns 
are arbitrarily described as A, B, and C. Heatmap plots were generated using the pheatmap package in R. 
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Supplementary Figure 15. Boxplots of 3 genes’ expression patterns in SCZ patients and controls divided by smoking status. 
(A) For HTT; (C) for NOTCH1; (D) for PARD3. 
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Supplementary Figure 16. Boxplots of 3 genes’ expression patterns in SCZ patients and controls divided by smoking status. 
(A) For ZMIZ1; (B) for TBC1D14; (C) for ARHGEF3. 
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Supplementary Figure 17. Plots summarizing significant gene expression alterations in schizophrenic hiPSC-derived neurons. 
Student’s t-test was used for comparing the difference between SCZ hiPSC neurons and controls. Gene expression data from the GEO dataset 
(Accession No. GSE25673). (A) For NOTCH1; (B) for DUSP4; (C) for SORBS1; (D) for RGS12; (E) for CACNA1D; (F) for GPSM3; (G) for PTPRN2; 
(H) for ZMIZ1; (I) for GNA12; (J) for NOS1AP; (K) for AP2A2; (L) for CDKN1A; (M) for CNTNAP2; (N) for TBC1D14; (O) for MAD1L1; (P) for CPOX. 
These plots were generated using the beeswarm package in R. 
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Supplementary Figure 18. An example of PRKCZ expression in 53 human tissues, which were obtained from GTEx analysis 
release V7 (dbGaP Accession No. phs000424.v7.p2). Expression values are shown in transcripts per million (TPM), calculated from a 

gene model with isoforms collapsed into a single gene. Box plots describe median and 25th and 75th percentiles; points are displayed as 
outliers if they are above or below 1.5 times the interquartile range. 
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Supplementary Figure 19. Expression of (A) AP2A2 and (B) CACNA1D in 53 human tissues. The expression data were obtained from GTEx 

analysis release V7 (dbGaP Accession No. phs000424.v7.p2). Expression values are shown in transcripts per million (TPM), calculated from a 
gene model with isoforms collapsed to a single gene. Box plots are shown as median and 25th and 75th percentiles; points are displayed as 
outliers if they are above or below 1.5 times the interquartile range. 
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Supplementary Figure 20. Expression of (A) GNA12 and (B) TRIO in 53 human tissues. The expression data were obtained from GTEx 

analysis release V7 (dbGaP Accession No. phs000424.v7.p2). Expression values are shown in transcripts per million (TPM), calculated from a 
gene model with isoforms collapsed to a single gene. Box plots are shown as median and 25th and 75th percentiles; points are displayed as 
outliers if they are above or below 1.5 times the interquartile range. 
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Supplementary Figure 21. Expression of (A) HTT and (B) RPS6KA2 in 53 human tissues. The expression data were obtained from GTEx 

analysis release V7 (dbGaP Accession No. phs000424.v7.p2). Expression values are shown in transcripts per million (TPM), calculated from a 
gene model with isoforms collapsed to a single gene. Box plots are shown as median and 25th and 75th percentiles; points are displayed as 
outliers if they are above or below 1.5 times the interquartile range. 
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Supplementary Figure 22. Expression of (A) AKT3 and (B) CNTNAP2 in 53 human tissues. The expression data were obtained from GTEx 

analysis release V7 (dbGaP Accession No. phs000424.v7.p2). Expression values are shown in transcripts per million (TPM), calculated from a 
gene model with isoforms collapsed to a single gene. Box plots are shown as median and 25th and 75th percentiles; points are displayed as 
outliers if they are above or below 1.5 times the interquartile range. 
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Supplementary Figure 23. Expression of (A) TIAM2 and (B) ARHGEF3 in 53 human tissues. The expression data were obtained from GTEx 

analysis release V7 (dbGaP Accession phs000424.v7.p2). Expression values are shown in transcripts per million (TPM), calculated from a gene 
model with isoforms collapsed to a single gene. Box plots are shown as median and 25th and 75th percentiles; points are displayed as outliers 
if they are above or below 1.5 times the interquartile range. 
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Supplementary Figure 24. Expression of (A) RGS12 and (B) MAD1L1 in 53 human tissues. The expression data were obtained from GTEx 

analysis release V7 (dbGaP Accession No. phs000424.v7.p2). Expression values are shown in transcripts per million (TPM), calculated from a 
gene model with isoforms collapsed to a single gene. Box plots are shown as median and 25th and 75th percentiles; points are displayed as 
outliers if they are above or below 1.5 times the interquartile range. 
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Supplementary Figure 25. Expression of (A) PTPRN2 and (B) TBC1D14 in 53 human tissues. The expression data were obtained from GTEx 

analysis release V7 (dbGaP Accession No. phs000424.v7.p2). Expression values are shown in transcripts per million (TPM), calculated from a 
gene model with isoforms collapsed to a single gene. Box plots are shown as median and 25th and 75th percentiles; points are displayed as 
outliers if they are above or below 1.5 times the interquartile range. 
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Supplementary Figure 26. Expression of (A) CLCN6 and (B) PRKCZ in 53 human tissues. The expression data were obtained from GTEx 

analysis release V7 (dbGaP Accession phs000424.v7.p2). Expression values are shown in transcripts per million (TPM), calculated from a gene 
model with isoforms collapsed to a single gene. Box plots are shown as median and 25th and 75th percentiles; points are displayed as outliers 
if they are above or below 1.5 times the interquartile range. 
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Supplementary Figure 27. Summary of candidate genes in potentially druggable categories. The numbers of these genes in 

potentially druggable categories, and the numbers of genes in these categories that are targeted by a known drug. 
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Supplementary Figure 28. Plots summarizing significant gene expression alterations in quetiapine (at doses of 10 or 100 
mg/kg)-treated mice. One-way ANOVA was applied, and Tukey-Kramer HSD test was used for multiple comparisons. Gene expression data 

from the GEO dataset (Accession No. GSE45229). (A) For Htt; (B) for Cntnap2; (C) for Zmiz1; (D) for Trio; (E) for Notch1; (F) for Gna2. These 
plots were generated using the beeswarm package in R. 
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Supplementary Figure 29. Plots summarizing significant gene expression alterations in nicotine (at doses of 8 μg nicotine/l, 
15 μg nicotine/l, and 23 μg nicotine/l)-treated mice. One-way ANOVA was applied, and Tukey-Kramer HSD test was used for multiple 

comparisons. Gene expression data from the GEO dataset (Accession No. GES50254). (A) For Ptprn2; (B) for Ap2a2; (C) for Kcnq1; (D) for 
Akt3; (E) for Pard3; (F) for Plek; (G) for Mad1l1; (H) for Rps6ka2; (I) for Rgs12; (J) for Tnf; (K) for Htt; (L) for Cdkn1a. These plots were 
generated using the beeswarm package in R. 
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Supplementary Figure 30. Heatmap of the identified candidate genes treated by psychotropic drugs. Colored rectangles 

represent transcript abundance indicated above the gene labeled on the right. The intensity of the color is proportional to the standardized 
values between -3 and 3 for each gene, as indicated on the bar on the right of the heat map plot. Clustering was performed using Euclidean 
distance according to the scale on the left. Major gene transcription patterns are arbitrarily described as (A–C) Gene expression data from the 
GEO dataset (Accession No. GES50254). Three antidepressants (bupropion 20 mg/kg, tranylcypromine 20 mg/kg, mianserin 20 mg/kg, i.p.), 
three anxiolytics (diazepam 5 mg/kg, buspirone 10 mg/kg, hydroxyzine 10 mg/kg, i.p.), and three antipsychotics (clozapine 3 mg/kg, 
risperidone 0.5 mg/kg, haloperidol 1 mg/kg) were selected for the comparison. To analyze dynamics of early, intermediate, and relatively late 
changes of mRNA abundance, the experiment was performed at four time points (1, 2, 4, and 8h after drug administration). To exclude 
influence of drug injection and circadian rhythm on gene expression profile, control groups of saline or Tween (1% Tween 80)-treated and 
naïve animals were prepared for each time point. Heatmap plots were generated using the pheatmap package in R. 
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Supplementary Figure 31. Heatmap of the identified candidate genes treated by psychotropic drugs. Colored rectangles 

represent transcript abundance indicated above the gene labeled on the right. The intensity of the color is proportional to the standardized 
values between -3 and 3 for each gene, as indicated on the bar on the right of the heat map plot. Clustering was performed using Euclidean 
distance according to the scale on the left. Major gene transcription patterns are arbitrarily described as (A–D) Gene expression data from 
the GEO dataset (Accession No. GSE48951). Three antidepressants (imipramine 10 mg/kg, fluoxetine 20 mg/kg, and tianeptine 20 mg/kg, i.p.) 
were selected for the comparison. To analyze dynamics of early, intermediate, and relatively late changes of mRNA abundance, the 
experiment was performed at four time points (1, 2, 4, and 8h after drug administration). To exclude influence of drug injection and circadian 
rhythm on gene expression profile, control groups of saline or Tween (1% Tween 80)-treated and naïve animals were prepared for each time 
point. Heatmap plots were generated using the pheatmap package in R. 
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Supplementary Figure 32. Heatmap of the identified candidate genes treated by psychotropic drugs. Colored rectangles 

represent transcript abundance indicated above the gene labeled on the right. The intensity of the color is proportional to the standardized 
values between -3 and 3 for each gene, as indicated on the bar on the right of the heat map plot. Clustering was performed using Euclidean 
distance according to the scale on the left. Major gene transcription patterns are arbitrarily described as (A–C) Gene expression data from the 
GEO dataset (Accession No. GSE15774). Six of the most addictive and harmful drugs of abuse (morphine 20 mg/kg, heroin 10 mg/kg, ethanol 
2 g/kg, nicotine 1 mg/kg, methamphetamine 2 mg/kg, or cocaine 25 mg/kg, i.p.) were selected for comparison. To analyze dynamics of early, 
intermediate, and relatively late changes of mRNA abundance, the experiment was performed at four time points (1, 2, 4, and 8h after drug 
administration). To exclude influence of drug injection and circadian rhythm on gene expression profile, control groups of saline-treated and 
naïve animals were prepared for each time point. Heatmap plots were generated using the pheatmap package in R. 
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Supplementary Figure 33. Variants annotation of 3,483 SNPs shared by SCZ and at least one phenotype of smoking behavior. 
We used snpEff (http://snpeff.sourceforge.net/) to carry out the annotation analysis. 
 

 
 

Supplementary Figure 34. 3843 SNPs shared by SCZ and smoking located within different types of regulatory elements in 
brain tissues and neuroblastoma cell lines. (A) For brain tissues. (B) for SK-N-MC cells. (C) for SK-N-SH. The data of different types of 

regulatory elements, including H2AFZ, H3F3A, H3K27ac, H3K27me3, H3K36me3, H3K4me1, H3K4me2, H3K4me3, H3K79me2, H3K9ac, 
H3K9me2, H3K9me3, and H4K20me1, were downloaded from ENCODE database (https://www.encodeproject.org/). 

http://snpeff.sourceforge.net/
https://www.encodeproject.org/
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Supplementary Figure 35. 933 of 3843 SNPs shared by SCZ and smoking having 4313 eQTLs in 31 human tissues. (A) 4313 

eQTLs distributed in 31 human tissues. (B) Variant annotation of 933 SNPs shared by SCZ and at least one phenotype of smoking behavior. 
We used the tool snpEff (http://snpeff.sourceforge.net/) to carry out the annotation analysis. Based on the tissue-specific eQTL association 
data from the GTEx database, 933 of 3,483 SNPs have cis-regulatory effects on gene expression with 4,313 SNP-eQTLs pairs in 31 human 
tissues. 
 

http://snpeff.sourceforge.net/
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Supplementary Figure 36. Volcano plot for significant SNP–CpG methylation associations in brain samples. Green represents 

these significant SNP-CpG pairs with negative beta value. Red represents these significant SNP-CpG pairs with positive beta value. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 2, 3, 5, 7. 

 

Supplementary Table 1. Multiple omics datasets used in current study downloaded from public databases. 

Supplementary Table 2. 84 significantly enriched pathways shared between schizophrenia and smoking behaviors. 

Supplementary Table 3. Shared genes between schizophrenia and smoking behaviors. 

Supplementary Table 4. Module-level statistics. 

Statistics 
Modules 

Blue Brown Green Red Turquoise Yellow 

Orbital prefrontal (OFC) 4.93 8.42 8.96 7.57 7.89 8.27 

Dorsolateral prefrontal (DFC) 4.95 8.39 8.95 7.64 7.90 8.23 

Ventrolateral prefrontal (VFC) 4.93 8.40 8.97 7.62 7.90 8.10 

Medial prefrontal (MFC) 4.94 8.36 8.92 7.61 7.88 8.25 

Primary motor (M1C) 4.95 8.37 8.93 7.58 7.87 7.50 

Primary somatosensory (S1C) 4.97 8.36 8.93 7.57 7.87 7.49 

Inferior parietal (IPC) 4.97 8.37 8.93 7.56 7.86 7.49 

Primary auditory (A1C) 4.96 8.37 8.94 7.55 7.86 7.49 

Superior temporal (STC) 4.97 8.36 8.93 7.56 7.86 8.07 

Inferior temporal (ITC) 4.97 8.37 8.91 7.57 7.85 8.07 

Primary visual (V1C) 4.96 8.27 8.89 7.49 7.81 7.48 

Hippocampus (HIP) 4.95 8.20 8.86 7.40 7.80 8.15 

Amygdala (AMY) 4.96 8.23 8.88 7.45 7.80 8.17 

Striatum (STR) 4.94 8.03 8.88 7.27 7.70 7.35 

Thalamus (MD) 4.95 8.09 8.88 7.21 7.67 7.34 

Cerebellum (CBC) 4.93 7.90 8.85 7.04 7.52 7.14 

max(log2(expression)) 4.97 8.42 8.97 7.64 7.90 8.27 

min(log2(expression)) 4.93 7.90 8.85 7.04 7.52 7.14 

max(log2(FC)) 0.05 0.52 0.12 0.60 0.38 1.12 

8-10 weeks (stage2) 4.92 7.59 8.99 7.32 7.66 8.27 

10-13 weeks (stage3) 5.01 8.12 9.16 8.18 7.78 8.08 

13-16 weeks (stage4) 5.01 8.03 9.13 8.21 7.73 8.15 

16-19 weeks (stage5) 4.97 8.22 9.03 8.27 7.77 8.06 

19-24 weeks (stage6) 4.88 7.77 8.91 7.52 7.34 7.34 

24-38 weeks (stage7) 5.13 8.41 9.17 8.56 7.98 8.05 

0-0.5 years (stage8) 5.16 8.58 9.13 8.80 8.07 8.08 

0.5-1 years (stage9) 5.25 8.74 8.97 8.72 7.85 7.78 

1-6 years (stage10) 5.26 8.50 8.69 8.47 7.84 7.73 

6-12 years (stage11) 5.04 8.72 8.98 8.52 7.87 7.70 

12-20 years (stage12) 5.09 8.71 8.84 8.51 7.80 7.71 

20-40 years (stage13) 5.08 8.73 8.94 8.43 7.83 7.67 

40-60 years (stage14) 5.21 8.70 8.91 8.33 7.81 7.64 

60+ years (stage15) 5.19 8.60 8.78 8.24 7.79 7.63 

max(log2(expression)) 5.26 8.74 9.17 8.80 8.07 8.27 

min(log2(expression)) 4.88 7.59 8.69 7.32 7.34 7.34 

max(log2(FC)) 0.38 1.15 0.48 1.47 0.73 0.92 

Note: For both regional expression patterns and temporal expression patterns, we used the method of mean log2(expression) 
of all genes in each module. 
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Supplementary Table 5. 149 coexpression module genes involved in smoking- and SCZ-associated methylation. 

 

Supplementary Table 6. 16 of 34 smoking- and SCZ-associated methylation genes have been reported to be 
associated with SCZ in previous studies. 

Gene 

Name 

Description References 

AKT3 Genetic variation in the AKT3 locus (chr1:243503719–244002945) is a top GWAS signal in 

schizophrenia and pathway analysis identified 50 single nucleotide polymorphisms (SNPs) within 

the AKT3 gene that contribute to four of the top pathways associated with risk for schizophrenia and 

bipolar disorder. AKT3 shows prenatal enrichment during human neocortical development and 

recurrent copy number variations involving the 1q43-44 locus are associated with cortical 

malformations and intellectual disability, implicating an essential role in early brain development. 

[1, 14–17] 

AP2A2 Schizophrenia-based genetic association study shows the involvement of the clathrin-mediated 

endocytosis (CME)-related protein enthoprotein encoded by the clathrin interactor 1 (CLINT1) 

gene. The expression of genes encoding adaptor and clathrin assembly proteins, AP2A2, AP2B1, 

AP180, CLINT1, HIP1, ITSN2, and PICALM, increased relative to the control in SH-SY5Y cells 

incubated with 5–10 µmol/l clozapine for 24–72 h. 

[18] 

CACNA1D The animal model of neonatal lesion in ventral hippocampus (NLVH) is a recognized animal model 

for schizophrenia. NLVH influenced change expressions in various genes involved in Ca2+ 

homeostasis, including Cacna1d, Atp2a2, Adcy2, Ppp3cb, and Ptk2b. 

[19–21] 

CDKN1A Quetiapine is an atypical neuroleptic with a pharmacological profile distinct from classic 

neuroleptics that function primarily via blockade of dopamine D2 receptors. In the United States, 

quetiapine is currently approved for treating patients with schizophrenia, major depression and 

bipolar I disorder. Despite its widespread use, its cellular effects remain elusive. To address possible 

mechanisms, we chronically treated mice with quetiapine, haloperidol or vehicle and examined 

quetiapine-specific gene expression change in the frontal cortex. Through microarray analysis, we 

observed that several groups of genes were differentially expressed upon exposure to quetiapine 

compared with haloperidol or vehicle; among them, Cdkn1a, the gene encoding p21, exhibited the 

greatest fold change relative to haloperidol. The quetiapine-induced downregulation of p21/Cdkn1a 

was confirmed by real-time polymerase chain reaction and in situ hybridization. Consistent with 

single gene-level analyses, functional group analyses also indicated that gene sets associated with 

cell cycle/fate were differentially regulated in the quetiapine-treated group. In cortical cell cultures 

treated with quetiapine, p21/Cdkn1a was significantly downregulated in oligodendrocyte precursor 

cells and neurons, but not in astrocytes. We propose that cell cycle-associated intervention by 

quetiapine in the frontal cortex may underlie a unique efficacy of quetiapine compared with typical 

neuroleptics. 

[12] 

CNTNAP2 Contactin associated protein-like 2 (CNTNAP2) has emerged as a prominent susceptibility gene 

implicated in multiple complex neurodevelopmental disorders, including autism spectrum disorders 

(ASD), intellectual disability (ID), and schizophrenia (SCZ). Based on genomic rearrangements and 

copy number variations, the contactin-associated protein-like 2 gene (CNTNAP2) has been 

implicated in neurodevelopmental disorders such as Gilles de la Tourette syndrome, intellectual 

disability, obsessive compulsive disorder, cortical dysplasia-focal epilepsy syndrome, autism, 

schizophrenia, Pitt-Hopkins syndrome, and attention deficit hyperactivity disorder. 

[22–24] 

GNA12 GNA12 is significantly associated with schizophrenia based on network-assisted investigation of 

combined causal signals from GWAS studies in schizophrenia. 

[25] 

GPSM3 GPSM3 is significantly associated with schizophrenia based on a multi-stage schizophrenia GWAS. [1] 

HRH1 HRH1 is significantly associated with schizophrenia based on genetic association study. [26, 27] 

KCNQ1 Patients with schizophrenia show decreased processing speed on neuropsychological testing and 

decreased white matter integrity as measured by diffusion tensor imaging, two traits shown to be 

both heritable and genetically associated indicating that there may be genes that influence both traits 

as well as schizophrenia disease risk. The potassium channel gene family is a reasonable candidate 

to harbor such a gene given the prominent role potassium channels play in the central nervous 

system in signal transduction, particularly in myelinated axons. KCNQ1 may contribute to the 

shared risk for diminished processing speed, diminished white mater integrity and increased risk of 

[28, 29] 
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schizophrenia. 

MAD1L1 Multiple lines of evidence from genetic association studies indicate MAD1L1 confer risk to 

schizophrenia. 

[1, 30, 31] 

NOS1AP NOS1AP is a protein implicated in schizophrenia. Several independent studies reported linkage of 

schizophrenia to chromosome 1q21–22, containing NOS1AP. Many molecular functional-based and 

genetic-based studies have been identified NOS1AP gene as a schizophrenia susceptibility gene. 

[32–38] 

NOTCH1 The antipsychotic and myelin protective effects of quetiapine are mediated by Notch signaling in a 

mouse model of cuprizone-induced demyelination associated with schizophrenia-like behaviors. 

The Notch pathway might therefore be a novel target for the development of antipsychotic drugs. 

[39] 

PARD3 Based on a genetic-based association study, PARD3 is associated with susceptibility to 

schizophrenia in a Korean population. 

[40] 

RGS12 RGS12 is putative candidate genes for sporadic schizophrenia. [41] 

TNF TNF-α is associated with the deficit syndrome and negative symptoms in patients with chronic 

schizophrenia. 

[42, 43] 

TRIO Disrupted-in-Schizophrenia 1-mediated axon guidance involves TRIO-RAC-PAK small GTPase 

pathway signaling 

[44] 

 

Supplementary Table 7. Differential expressed genes in SCZ patients and controls divided by smoking status. 

Gene Name SCZ VS CTRL Smoking VS Nonsmoking Anova P valuea 

PTPRN2 0.0000518 0.316 0.00142 

ARHGAP25 0.0001 0.0028 0.00026 

ARHGEF3 0.000281 0.11 0.00723 

AKT3 0.00111 0.381 0.0395 

RGS12 0.00202 0.347 0.0058 

SORBS1 0.0134 0.471 0.108 

TIAM2 0.0161 0.954 0.062 

CACNA1D 0.0162 0.403 0.052 

HTT 0.0179 0.259 0.132 

NOTCH1 0.0239 0.301 0.156 

PLEK 0.0256 0.0383 0.043 

RPS6KA2 0.0268 0.815 0.112 

PARD3 0.0296 0.033 0.054 

TRIO 0.0326 0.324 0.147 

CNTNAP2 0.0344 0.062 0.087 

GPSM3 0.0369 0.353 0.0014 

ZMIZ1 0.0708 0.499 0.041 

TBC1D14 0.845 0.0389 0.030 

Note: anova statistical test was used for comparing the significant differences between SCZ patients and controls grouped by 
smoking status. 
 


