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Simple Summary: At the time of diagnosis, most oral squamous cell carcinoma (OSCC) patients are
in the middle or advanced stages, and advanced patients usually have poor prognosis after traditional
therapy. One of the primary causes has been demonstrated to be heterogeneity. However, most of the
current studies on tumor heterogeneity are static, while the development of cancer is dynamic. Thus,
understanding the tumor development process from a dynamic perspective is deeply necessary. Here,
we combined static and dynamic analysis based on single-cell RNA-Seq data to comprehensively
dissect the complex heterogeneity and evolutionary process of OSCC. We pioneered the concept of
pseudo-time score, which is closely related to patient’s prognosis. Finally, we identified candidate
drugs and proposed precision medication strategies to control OSCC in two respects: treatment and
blocking. Our findings offer new insights for clinical practice and could help improve the treatment
of advanced OSCC.

Abstract: At present, most patients with oral squamous cell carcinoma (OSCC) are in the middle
or advanced stages at the time of diagnosis. Advanced OSCC patients have a poor prognosis
after traditional therapy, and the complex heterogeneity of OSCC has been proven to be one of
the main reasons. Single-cell sequencing technology provides a powerful tool for dissecting the
heterogeneity of cancer. However, most of the current studies at the single-cell level are static, while
the development of cancer is a dynamic process. Thus, understanding the development of cancer
from a dynamic perspective and formulating corresponding therapeutic measures for achieving
precise treatment are highly necessary, and this is also one of the main study directions in the field of
oncology. In this study, we combined the static and dynamic analysis methods based on single-cell
RNA-Seq data to comprehensively dissect the complex heterogeneity and evolutionary process of
OSCC. Subsequently, for clinical practice, we revealed the association between cancer heterogeneity
and the prognosis of patients. More importantly, we pioneered the concept of pseudo-time score of
patients, and we quantified the levels of heterogeneity based on the dynamic development process to
evaluate the relationship between the score and the survival status at the same stage, finding that it
is closely related to the prognostic status. The pseudo-time score of patients could not only reflect
the tumor status of patients but also be used as an indicator of the effects of drugs on the patients
so that the medication strategy can be adjusted on time. Finally, we identified candidate drugs and
proposed precision medication strategies to control the condition of OSCC in two respects: treatment
and blocking.

Keywords: single-cell RNA-Seq; oral squamous cell carcinoma; cell trajectory inference; precise
medication; drug discovery
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1. Introduction

Oral squamous cell carcinoma (OSCC) is the most common type of head and neck
squamous cell carcinoma (HNSC), accounting for approximately 95% of cases [1]. At
present, the clinical classification and treatment of OSCC are mainly based on the TNM
staging system of the American Joint Committee on Cancer (AJCC) and the International
Union for Cancer Control (UICC). In general, patients in the early stages (i.e., stages I and
II)—approximately 30–40% of the patients diagnosed—have small tumors without signifi-
cant lymph node involvement. Surgery and radiation therapy can provide effective tumor
control and improve long-term survival in approximately 70–90% of early stage patients [2].
For patients with advanced stages (i.e., stages III and IV), which are characterized by
varying degrees of surrounding tissue invasion, lymph node involvement, and metastatic
spread, it is difficult to eliminate or kill tumors completely via surgery or radiotherapy.
Although systematic treatment with drugs (e.g., platinum, taxanes, antifolates, cetuximab,
etc.) can be conducted for the remission of recurrence and metastasis [2], more than 65% of
these patients have a poor prognosis due to the significant heterogeneity, which appears not
only between individuals but also within the same individual or even the same tissue—that
is, intratumoral heterogeneity [3]. Therefore, conquering advanced OSCC has become
an urgent problem to be solved in the field of HNSC treatment. Although many studies
have been carried out successively, and some progress has been made in the diagnosis and
treatment of OSCC, most advanced patients will still experience recurrence or metastasis
(or both) [2]. Further study of the heterogeneity of advanced OSCC and, accordingly,
exploration of improved therapeutic strategies to perform more precise treatment and
increase the cure rate is highly necessary.

In recent years, the rapid development of single-cell sequencing technology has pro-
vided a powerful tool for basic cancer research. Relative to traditional bulk sequencing
methods, single-cell sequencing takes a single cell as the basic unit and, therefore, provides
much better insight into the heterogeneity between cells. The methods based on single-cell
sequencing bring new opportunities to dissect the intratumoral heterogeneity of tumors
at high resolution. However, in addition to this, there is asynchrony in the development
process of tumor cells in organisms—that is, the cycle states of different cells are not the
same [4]. Bulk-based sequencing is performed on the whole tissue, in which cells with
different cycle states are contained, thus also masking temporal heterogeneity between cells.
Hence, at present, a large number of methods have emerged for single-cell trajectory infer-
ence, which can infer the position of each cell on the pseudo-time axis through algorithms
based on expression profiles, so as to reproduce the trajectory of cell differentiation over
time. The traditional clinical stage can reflect the time status of the development of a tumor;
therefore, single-cell pseudo-time trajectory inference combined with clinical stages can
more clearly analyze the dynamic process of tumor development, so as to more accurately
discover the biological factors that promote tumor evolution and, finally, to promote the
development of clinical treatment.

Therefore, our study emphasized the dynamic development process of OSCC. Un-
supervised clustering based on single-cell transcriptomics was first performed to analyze
the heterogeneity of OSCC. Pseudo-time trajectory inference was subsequently performed
based on the unsupervised clustering results to dissect the complex development trajectory
of OSCC from the early to the late stages. Next, to validate the cell trajectory, an analysis
of receptor–ligand-based cell communication was conducted. At present, the single-cell
field is under the transition from descriptive biology to predictive biology [5]; therefore,
in order to promote the theory in clinical applications, we used bulk RNA-Seq data from
the TCGA HNSC cohort to analyze the effects of different cell cluster compositions on
patients’ survival time. More importantly, we proposed pseudo-time score that can combine
heterogeneity with the pseudo-time occupied by cell clusters and can quantify the status of
patients during cancer development. We also used the external cohort from the ICGC [6]
database to validate the pseudo-time score. Finally, based on the heterogeneity and complex
development trajectory of OSCC, we discovered potential targeted therapeutic drugs that
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can not only personalize the treatment according to the individual’s cell cluster composition
but also block the development and deterioration of OSCC as much as possible in order to
jointly improve the current situation of clinical treatment of advanced OSCC.

2. Results
2.1. High Heterogeneity of OSCC

We first performed quality control on the data by examining the number of cells and
the gene expression levels of all patients; we removed five patients, including 24 cells,
which are represented in red in Figure 1A,B. Next, we extracted 12,000 highly variable
genes from a total of 23,686 genes to perform feature selection and to improve the accuracy
of downstream analysis. Principal component analysis (PCA), which is a widely used
dimensionality-reduction method, was used to process the expression profiles of highly
variant genes. The optimal number of dimensions was determined by the elbow method, as
shown in Figure 1C. Finally, the top 20 principal components were selected for unsupervised
clustering (Figure S1).
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Figure 1. Data preprocessing and unsupervised clustering: (A) Violin plot of gene expression counts.
The x-axis represents the patient ID, while the y-axis represents the sum values of gene expression
counts. The dots represent the cells. Patient IDs that failed quality control are marked in red. (B) Violin
plot of expressed gene numbers. The x-axis represents the patient ID, while the y-axis represents the
number of expressed genes. The dots represent the cells. Patient IDs that failed quality control are
marked in red. (C,D) The results of cell clustering. The dots represent the cells. The x- and y-axes
represent the two dimensionalities of UMAP, respectively. Cells are colored by cluster label in panel
C and by clinical stage in panel D.
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Based on the top 20 principal components, we performed unsupervised clustering on
2176 cancer cells, which were divided into 10 clusters (Figure 1C,D). We found that, with
the progression of the clinical stages, the number of cell clusters also gradually increased,
indicating that there is greater heterogeneity in advanced OSCC (Figure 1D). This could
explain the difficulty of completely curing advanced OSCC with current clinical treatments.

2.2. Different Development Fates of OSCC Cells

To reveal the developmental process of OSCC from the early to the advanced stages,
we performed cell trajectory inference analysis based on pseudo-time for all cells using
Monocle (Figure 2A,C). It is worth noting that the development of OSCC cells did not follow
a single trajectory and was divided into two paths by a branch point. In terms of cell clusters
(Figure 2A), clusters 9 and 5 appeared before the branch point, Path I developed along with
the order of clusters 4, 10, 7, and 3, and Path II developed along with the order of clusters 6
(2), 8, and 1. From the perspective of clinical stages (Figure 2B), the temporal order was
followed by stages I, II, III, and IV, consistent with the actual clinical development progress.
Cells from stages I and II mainly appeared before the branch point, which appeared at
stage III. Cells developed along the two paths and eventually deteriorated into stage IV.
However, the two paths had different deterioration trends. Some cells from the branch
point directly developed into stage IV (Path II), while the other cells remained in stage III
(Path I) for a long time before eventually developing to stage IV. Therefore, identifying the
key genes driving these two paths, with the goal of finding appropriate drugs to prevent the
progression of cancer, would make significant progress in improving the current treatment
of advanced OSCC.
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Figure 2. Cell trajectory inference: (A–C) Cell development trajectory. The dots represent the cells.
The x- and y-axes represent the two dimensionalities of UMAP, respectively. Cells are colored by
cluster label in panel A, by clinical stage in panel B, and by pseudo-time value in panel C. Based
on the pseudo-time, the cell evolution direction could be determined, which was mainly divided
into two paths: Path I (yellow) and Path II (red). (D) Results of cell communication analysis. The
axis represents the four cell clusters near the branch point. The color and the number labeled by this
heatmap were determined by the receptor–ligand pair number between two cell clusters.
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2.3. Characteristic Analysis of Intercellular Communication

In the whole body or a specific tissue, the complex interactive relationships between
cells constitute the cell communication network, which can reflect the tightness of the
connection between different cells. Based on this, we hypothesized that the stronger the
intercellular communication, the closer the connection, and the closer it is in the time series.

Therefore, to verify the accuracy of the cell trajectory inference, we performed receptor–
ligand-based cell communication analysis. Throughout the trajectory, directly connected
cells should tend to interact more tightly, while indirectly connected cells should have a
weaker interaction because they require the transition of the intermediate cells—that is,
there should be a tighter interaction between adjacent cell clusters in the trajectory. Here,
we used CellPhoneDB to perform receptor–ligand-based analysis on cells of four clusters
(4, 5, 6, and 9) near the branch point that separates the two paths in order to reveal their
intercellular interaction relationships. The level of intercellular interactions was measured
by the number of receptor–ligand pairs. As shown in Figure 2D, from the overall point
of view, the tightness of the connection between cell clusters 5-4, 5-6, and 5-9 was much
higher than that between the other cluster pairs, and as expected, these cell clusters were
located adjacent to one another in the pseudo-time trajectory. In addition, we found that
the interaction strength between clusters 4 and 5 was the highest. These two cell clusters
not only were located close to one another in the pseudo-time trajectory but also belonged
to the same stage (III), so the intercellular communication connection between them should
also have been closed. The number of receptor–ligand pairs between clusters 5 and 9 was
the second highest, at 33. These cells were from stages I, II, and III, but they were all located
before the branch point, so the level of communication between them was higher than that
of others after the branch point.

In conclusion, the analysis of intercellular communication based on receptor–ligand
pairs was consistent with the results of cell trajectory based on pseudo-time and, thus,
could further validate the extremely complex landscape during the development of OSCC
cells from the early to the late stages.

2.4. Biological Factors Driving the Two Paths at the Branch Point in the Cell Development Trajectory

In order to further explore the driving factors of the branch point that separated
Paths I and II, we used the BEAM method to perform pseudo-time-based differential
gene expression analysis on four cell clusters (4, 5, 6, and 9) near the branch point. As
a result, we identified 267 genes that showed significant fluctuation in their expression
at the branch point (Figure 3; Table S2). Compared with traditional differential gene
expression analysis, BEAM combines pseudo-time to reflect the continuous changes in
gene expression. Through hierarchical clustering of these genes, all genes were divided
into two gene sets. We found that the majority of these genes showed mutually exclusive
expression characteristics in two directions—that is, high expression characteristics in
Path I but low expression characteristics in Path II, or vice versa—indicating that these
genes regulate two mutually exclusive cell fates. In addition to this, genes in a gene set
of hierarchical clustering usually have co-expression characteristics that may co-regulate
some biological functions.
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Figure 3. Key genes driving the occurrence of the branch point: The heatmap of gene expression
levels during the progression of OSCC. Gene clusters were generated by hierarchical clustering.

Therefore, in order to reveal the biological functions regulated by these genes, we
performed Gene Ontology (GO) enrichment analysis on two gene sets (Figure 4). The
results showed that genes highly expressed in Path I (gene cluster 2) were significantly
enriched mainly in biological processes, such as the cell migration and apoptosis signal
regulation pathways (Figure 4B). The important role of cell migration and apoptosis in the
development and progression of OSCC has been confirmed [1]. Marker genes regulating
the cell cycle, apoptosis, and migration have differential expression in OSCC patients or
are significantly associated with prognosis [1], such as survivin and heat shock proteins
(HSPs) associated with apoptosis. Survivin is a member of the inhibitor of apoptosis
proteins (IAP) family that inhibits capase 3, 7, and 9, and its expression is higher in OSCC
patients than in epithelial dysplasia patients. High expression of heat shock protein 27
(HSP27) is associated with a better prognosis. The expression of urokinase plasminogen
activator receptor (UPAR)—a marker gene associated with cell migration—was negatively
correlated with prognosis [1]. Therefore, the genes highly expressed in Path I suggest
that OSCC cells may have active metastatic characteristics in clinical stage III. The genes
highly expressed in Path II (gene cluster 1) were mainly enriched in biological functions
related to MHC class II in BPs (biological processes), CCs (cellular components), and MFs
(molecular functions) (Figure 4A). MHC is a collective term for a group of genes encoding
major histocompatibility antigens in animals, also known as HLA in humans, which is also
involved in the immune process of the body as an antigen. There is literature confirming
the upregulation of class II molecules of the major histocompatibility complex (MHC)
by keratinocytes in oral squamous cell carcinoma [7]. However, the significance of its
high expression in advanced OSCC is currently unclear. Another study confirmed that
the keratinocyte line expressing MHC II has the characteristics of the absence of CD80
and CD86 in head and neck cancer, which may be a way for tumors to evade immune
surveillance [8].
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Figure 4. GO enrichment analysis of key genes: The results of GO enrichment analysis of gene
clusters 1 and 2 are shown in panels (A,B), respectively. The x-axis represents GO terms, which are
displayed in three colors according to the three types (BPs, CCs, and MFs), while the y-axis represents
-log10(p.adjust). Only the 10 most significant GO terms of each type are shown here.

2.5. Relationship between Prognosis and Heterogeneity of Advanced OSCC

Our findings show that advanced OSCC has more significant heterogeneity than early
OSCC, and it is difficult to characterize this heterogeneity via traditional bulk research.
Therefore, to further dissect the relationship between this heterogeneity and prognosis, we
integrated clinical information and expression profiles from the TCGA database to explore
the prognosis of stage III and IV patients with greater heterogeneity, which would also
indirectly verify the accuracy of our predicted cell clusters.

Since the data from the TCGA database are at the bulk level, we first mapped corre-
sponding cell clusters to bulk expression profiles to infer the cell cluster composition of
each patient. Based on the custom background gene sets (Table S3) derived from differential
expression analysis, CIBERSORT was performed for stage III and IV patients from TCGA
(Table S4). Next, in order to reveal the impact of cell cluster composition on the prognosis
of patients, we performed unsupervised hierarchical clustering based on the results of
CIBERSORT. The patients in stages III and IV were divided into two groups. Each patient
group had similar cell cluster composition, and there were significant differences between
the patient groups (Figure 5A,D). For patients in stage III, including four clusters, group 1
mainly contained cell cluster 7, while group 2 mainly contained cell clusters 5 and 10. For
patients in stage IV, composed of six clusters, group 1 mainly contained cell cluster 6, while
group 2 mainly contained cell cluster 2.

Survival analysis was performed for the two groups of patients in stages III and IV.
The results showed differences in survival time between the two groups (Figure 5B,E),
indicating that different cell compositions could impact prognosis. For patients in stage III,
the survival time of patient group 1 was shorter, while for stage IV, the survival time of
patient group 1 was longer.
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panel A, while patients in stage IV are shown in panel D. (B,E) Survival analysis. The survival curve
is shown above, with the x-axis representing the survival time (days), the y-axis representing the
survival probability, and the censored values indicated by “+” in the curve. The color of the curve is
consistent with panel A (D) and represents two patient groups. Below is the risk table showing the
number (or percentage) of survivors at each time point. The results of patients in stage III are shown
in panel B, while those of patients in stage IV are shown in panel E. (C,F) Survival analysis based
on pseudo-time score for grouping. The color of the curve represents the two patient groups, which
are distinguished by their pseudo-time score. The result of patients in stage III is shown in panel C,
while those of patients in stage IV are shown in panel F.

In order to explore the reason(s) that this heterogeneity has an impact on the survival
time of patients, we constructed pseudo-time score by combining cell trajectory inference
to quantify the temporal status of each patient group. The pseudo-time score considers
both the cell composition of patients and the development order of each cell cluster in the
same clinical stage. The higher the score, the closer the patient is to the advanced stage.
The results showed that, in stage III, Spatient group 1 = 16.35 and Spatient group 2 = 15.19. As for
stage IV, Spatient group 1 = 18.59 and Spatient group 2 = 20.44. According to the survival analysis,
the groups with smaller pseudo-time score tended to have a better prognosis. Therefore, the
difference in prognosis status between patient groups lies in the different cell compositions,
which contribute to the different temporal status during the development of cancer. Our
results also show that even patients at the same clinical stage would have many differences
in cell composition and prognosis.

To further analyze the relationship between the pseudo-time score and patients’ prog-
nosis, we regrouped patients according to their pseudo-time score, and the results showed
that the pseudo-time score could be used as the marker to distinguish survival time in both
stage III and stage IV patients, with p-values of 0.047 and 0.043, respectively, as measured
by the log-rank test. The patient groups with the higher score had the worse prognosis
(Figure 5C,F).

To confirm the above results, the same methods were used to process the dataset
from ICGC, and the cell cluster composition inference of patients was performed using
CIBERSORT based on the same background gene sets. Then, these patients were divided
into two groups based on their pseudo-time score, and survival analysis also illustrated
that the two groups of patients showed significant differences in survival time (p = 0.049,
log-rank test) (Figure S2).

In summary, the pseudo-time score that we constructed has a significant correlation
with prognosis, can be used as a prognostic marker, and is robust across multiple datasets.

2.6. Identification of Candidate Drugs Based on PPI Networks

Transcriptomic analysis at the single-cell level with high resolution is a way to improve
the efficacy of medication by dissecting the diverse cell clusters in the tumor and by
selecting the targeted therapy strategy. In addition, it is also essential to find key genes
with synchronous expression changes during the development of OSCC and to use these
genes as potential targets to discover blockers to slow or even block the deterioration
of OSCC in order to prolong the treatment time in clinical practice and to maximize the
lifespan of patients. Therefore, we performed drug discovery in the following two respects:
(1) searching for drugs to block OSCC progression and (2) searching for cell-cluster-specific
drugs to achieve targeted therapy.

For the first respect, 267 key genes at the branch point revealed by the BEAM anal-
ysis were first used for protein–protein interaction (PPI) network construction using the
STRING [9] database. Cytoscape software was used for network visualization (Figure S3).
There were 218 nodes and 649 edges in the PPI network. We used the cytoHubba [10]
plugin built in Cytoscape to identify the hub genes, and all 12 topological analysis methods
were taken into account to improve the robustness. Then, the expression trends of these
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hub genes with pseudo-time were manually checked, and only genes showing a significant
trend of upregulation in Path II and downregulation in Path I were retained as marker hub
genes. As a result, 15 marker hub genes were identified (Figure 6). Except for ALDH3A1,
CD40, CXCL11, HLA-DRA, and HLA-DRB have been validated by the literature to have
positive relationships between expression and prognosis, so we removed them from candi-
date drug targets, while the others presented malignant characteristics (Table S5). Finally,
using the 10 remaining genes as targets, 195 drugs were extracted from integrated drug–
target relationships, including first-line antitumor drugs, such as cisplatin, fluorouracil,
methotrexate, gemcitabine, p-phenylenediamine, etc. (Table S6, Sheet 1). Among them,
90 drugs were validated based on CCLE experimental data (Table S6, Sheet 2), and 77 of
the remaining 105 drugs were validated based on the literature (Table S6, Sheets 2 and
3). The drugs targeting multiple targets were paid more attention to. Cyclosporine and
valproic acid (VPA) targeted all 10 proteins. In recent years, VPA has been found to be
a histone deacetylase inhibitor (HDACi). Many experimental studies have shown that
VPA can inhibit the growth and proliferation of tumor cells by inducing cell cycle arrest,
apoptosis, and differentiation and by inhibiting tumor angiogenesis and metastasis [11,12].
It is known that the combination of cisplatin (CDDP) and cetuximab (CX) is one of the
standard first-line treatments for OSCC. However, this therapeutic regimen is often associ-
ated with resistance, suggesting that new combinatorial strategies need to be improved.
Federica Iannelli et al. demonstrated that the introduction of VPA to the conventional
treatment for recurrent/metastatic HNSCC represents an innovative and feasible antitumor
strategy that warrants further clinical evaluation [13]. Another study showed VPA acting
as a histone deacetylase inhibitor (HDI) in OSCC cells and normal human keratinocytes
(HKs), potentiating the cytotoxic effect of cisplatin in OSCC cell lines and decreasing the
viability of OSCC cells as compared to HKs [14]. Taken together, these results provide
initial evidence that VPA might be a valuable drug in the development of better therapeutic
regimens for HNSCC.

We performed drug sensitivity predictions at single-cell resolution for these drugs, and
the drug sensitivity of cell clusters was represented by the mean value of drug sensitivity
of the cells in each cluster. According to the pseudo-time trajectory, all cell clusters were
divided at the branch point into Paths I and II. Fifty-three drugs were predicted to have
higher sensitivity in Path II, suggesting that these drugs are more effective at inhibiting
malignant developmental processes (Table S6, Sheet 4). Of these, we found that fulvestrant
simultaneously exhibited the highest drug sensitivity in cell clusters 4, 5, and 6, which
appeared near the branch point and, thus, likely represented an earlier exacerbation pro-
gression (Figure 7A). A study has shown that estrogen can participate in the progression of
precancerous lesions of HNSC by inhibiting apoptosis and by promoting the proliferation
of advanced HNSC cells [15]. Antiestrogen may be beneficial as a chemopreventive agent
for HNSC [15], and fulvestrant is an antiestrogen drug, so our results were consistent with
those of the previous study.

For the second respect, marker genes were first calculated using the SC3 [16] method
for all cell clusters. With manual examination, a total of 459 genes remained after statistical
filtering (Table S7, Sheet 1). These genes showed significant upregulation in specific cell
clusters, so they could be used as essential cell-cluster-specific marker genes for drug
discovery. As described above, the PPI networks of each cell cluster were constructed
(Figure S4), and then, 12 topological methods from cytoHubba were taken into account for
identification of the hub genes. Then, 76 hub genes were filtered (Table S7, Sheet 2), and
478 drugs were ultimately discovered (Table S8). Some of these drugs overlap with the
blocking drugs found in our study and are all first-line anticancer drugs, such as valproic
acid, cisplatin, fluorouracil, methotrexate, temozolomide, etc. Based on CCLE experimental
data, 195 drugs were validated as being effective in HNSC cell lines (Table S9, Sheet 1), and
168 of the remaining 283 drugs were validated through the literature (Table S9, Sheets 1
and 2). Many previous studies have shown that the combined use of certain drugs can
enhance their effects; for example, the combination of curcumin and copper can enhance the
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inhibitory effect on the migration and activity of OSCC cells [17]. Our findings show that
curcumin and copper can be used for blocking the development of OSCC and targeting cell
cluster 1, indicating that the two have the potential for combination, and are consistent with
the results of the previous study. Next, we analyzed the sensitivity of drugs and extracted
drugs that had higher sensitivity in their targeting of cell clusters. Finally, there were
102 drugs, including many drugs that have been proven to be effective for HNSC treatment
(Table S9, Sheet 3). Cell cluster 1 is at the end of the pseudo-time trajectory and, thus,
represents highly advanced OSCC cells. Among the selected drugs, there were 71 drugs
targeting cell cluster 1, including common anticancer drugs, such as paclitaxel, gemcitabine,
carboplatin, decitabine, etc. (Figure 7B). We performed literature validation for all of these
drugs, and 91 of the 102 had been reported in previous studies for cancer treatment or
combined medication. Therefore, the candidate drugs discovered in our study could be of
great significance to changing the current situation of treatment for advanced OSCC.
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3. Methods
3.1. Data and Preprocessing

The single-cell RNA sequencing data of OSCC used in this study were obtained from
the GEO database (GSE103322), with a total of 5902 cells from 15 patients [18] including
all clinical stages. These data were preprocessed using the method described in the article
published by Sidhart V. Puram et al. [18], and all cells were accurately classified into cancer
and non-cancer types. The gene expression did not conform to a normal distribution in
five patients due to the low number of cells, which may have had a bad impact on the
accuracy of the downstream analysis; therefore, these five patients were removed. There
were 2200 cancer cells in total. The detailed information of all patients is shown in Table S1.
Because our study focused on cancer cells, non-cancer cells were removed.

Bulk sequencing data were obtained from the HNSC cohort of the TCGA database
and contained a total of 501 patients.

The dataset used for pseudo-time score validation was obtained from the ICGC
database (ORCA-IN, Sequence-Based Gene Expression).

3.2. Unsupervised Clustering of Cells

We used the R package Seurat v4.0 [19]—a toolkit developed specifically for single-cell
data. First, the R function “VlnPlot” was used to evaluate the gene expression levels of all
cells to ensure that the gene expression level was distributed in an approximately Gaussian
manner in each patient, so as to reduce the impact of individual differences on downstream
analysis. Then, the expression profiles were log-normalized using the R function “Nor-
malizeData”, and 12,000 high variant genes were identified from 23,686 genes using the R
function “FindVariableFeatures”. Genes with high variation can better reflect the biological
similarities and differences between cells, which is conducive to improving the accuracy
of downstream unsupervised clustering. Next, we used the R function “ScaleData” to
scale the expression of highly variant genes in order to balance the weight of genes in the
downstream analysis. Because single-cell data are usually sparser compared with bulk
sequencing and their redundancy is higher, principal component analysis (PCA) is an
important and essential step in single-cell transcriptome analysis. PCA can effectively
remove data noise, extract important information, and improve the accuracy and speed
of downstream analysis. PCA was performed using the R function “RunPCA” on the
expression profiles of highly variable genes, and then, the R function “ElbowPlot”—which
ranks the principal components based on the percentage of variance explained by each
component—was used to determine the optimal dimension number of the data. The
optimal number of principal components would appear near the “elbow” (i.e., the in-
flection point). Unsupervised clustering based on the top 20 principal components was
implemented for all cells using the R function “FindClusters”.

3.3. Trajectory Inference of Cell Development

We used the R package Monocle [20]—a powerful tool for single-cell RNA-Seq data
processing and cell trajectory inference—for analysis. Monocle uses algorithms to learn the
gene expression changes that each cell experiences during a state transition, to mine the
overall trajectory, and then to place each cell at the appropriate location in the trajectory.
In addition, Monocle can combine with UMAP (Uniform Manifold Approximation and
Projection) [21] so as to make the cell trajectory more intuitive. Therefore, all cells were first
embedded by UMAP based on unsupervised clustering results.

The R functions “learn_graph” and “order_cells” were used for the inference of cell tra-
jectory, both of which used default parameter settings. Subsequently, the R function “plot_cells”
was used to visualize the results of cell trajectory inference with the pseudo-time.

3.4. Gene Expression Analysis at the Branch Point of the Trajectory

The BEAM (branch expression analysis modeling) [22] algorithm provided by Monocle
can analyze the pseudo-time-based gene expression changes at the branch point of the
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trajectory, revealing the important genes that drive the occurrence of cell trajectory division.
The threshold was set as q-value < 1× 10−8. This stricter threshold was designed to identify
essential genes more accurately. In addition, only the genes expressed in more than 20% of
cells were retained in order to screen widely expressed genes in cells.

In order to reveal the biological functions of these genes, they were first divided
into two gene sets by hierarchical clustering. The genes in the same gene set would have
co-expression characteristics and may regulate similar biological processes. Thus, Gene
Ontology (GO) [23] enrichment analysis was performed for each gene set separately using
the R package clusterProfiler [24] with the threshold p.adjust < 0.05 and q-value < 0.05.

3.5. Cell Communication Analysis

In order to verify the results of cell trajectory inference and to further determine our
conclusions, receptor–ligand-based cell communication analysis was performed using the
Python package CellPhoneDB [25] for cell clusters adjacent to the branch point. The iteration
parameter was set to 2000. The number of receptor–ligand interaction pairs was visualized
using a heatmap, and a dot plot was used to show pairs with statistical p-values < 0.05 and
mean expression > 0.

3.6. Survival Analysis

In order to reveal the impact of heterogeneity on the survival status of patients, we
downloaded the RNA-Seq data from the HNSC cohort with clinical information of patients
from the TCGA [26] database. CIBERSORT [27] is a linear support-vector regression-based
deconvolution algorithm that enables researchers to perform sample annotation based on
a set of background genes. Hence, the selection of the background gene set would have a
great impact on the accuracy of the downstream analysis. Since the type of expression profile
derived from the TCGA database is at the bulk level, we used the differentially expressed genes
that can represent the characteristics of each cluster separately as a background to infer the
proportion of cell clusters of each bulk sample using the R package CIBERSORT. For stage
III, the threshold for gene background screening was p-value < 0.01 and log2fc > 1.5. Since
patients in stage IV have greater heterogeneity, the threshold was set as p-value < 1 × 10−4

and log2fc > 1.5. This stricter threshold can help identify the genes that represent the
characteristics of each cell cluster more effectively and can improve the accuracy of the
proportion inference. The results of CIBERSORT were subsequently filtered by setting the
threshold as p < 0.05 and correlation > 0.3. The Ward.D algorithm [28] was used to perform
hierarchical clustering to divide patients in stage III and stage IV into two groups. The
survival [29] and survminer [30] R packages were used for survival analysis, plotting of
the Kaplan–Meier curve, and the log-rank statistical test.

3.7. Pseudo-Time Score

Here, we hypothesized that patients in the same stage would also have relatively
early or advanced cancer cells due to the temporal heterogeneity and that cancer cells in
the advanced stage would have more malignant features, leading to a worse prognosis.
Therefore, in order to prove our hypothesis, based on the previous trajectory inference
results, the pseudo-time score was constructed to quantify the temporal status of each
patient. The formula was S = ∑Pi × Ti, where Pi denotes the proportion of cell cluster i of
the patient, while Ti denotes the pseudo-time value of cell cluster i. Pi was calculated using
CIBERSORT. Ti is the average pseudo-time value of each cell from the cell cluster i, which
can be calculated by Monocle. Specifically, for patients in stage III, S = ∑Pi × Ti (i = 4, 5, 7,
or 10), while for patients in stage IV, S = ∑Pi × Ti (i = 1, 2, 3, 6, 8, or 10). As for the patient
groups, the pseudo-time score is the average value of S of each patient from each group.

In order to further reveal the relationship between pseudo-time score and prognosis,
all patients were automatically grouped based on their pseudo-time score using survminer to
perform survival analysis. Similarly, statistical significance was tested using the log-rank method.
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The dataset from the ICGC database was used for further validation. This dataset
contains 40 patients, including a stage II patient, 3 stage III patients, and 36 stage IV patients.
The cell cluster composition of each patient was inferred using CIBERSORT, based on the
same background gene sets as the TCGA data above, and then, the pseudo-time score
of each patient was calculated and the patients were grouped for survival analysis as
described above.

3.8. Drug Discovery

There may often be many cell clusters in a patient under the single-cell resolution.
For such a complex system of multi-cell clusters, we should discover specific drugs for
each cell cluster, so as to select multitarget drugs or drug combinations according to the
heterogeneity of patients for the elimination of all cell clusters of patients—rather than
just the dominant cell cluster, which can often cause drug resistance. Therefore, we first
screened specific drugs for each cell cluster. Secondly, discovering drugs to block or delay
the development of OSCC would also be an idea to effectively improve the cure rate.

The discovery of drug targets is the first step. The marker genes of each cell cluster
were identified using the R package SC3 [16], with the threshold set as p-value < 0.01 and
AUROC (the area under the receiver operating characteristic) >0.8. Then, all marker genes
were manually checked to ensure that they had significantly high expression characteristics
in specific cell clusters. In biomolecular networks, hub nodes often have crucial biological
significance, so we used hub genes in the network as targets to find candidate drugs.
First, we used STRING [9] and selected the default threshold to construct protein–protein
interaction (PPI) networks based on the key genes that drive the occurrence of trajectory
branching from BEAM analysis and cell-cluster-specific marker genes from SC3. The
visualization of PPI networks and further topological analysis were based on Cytoscape [31]
software. To identify hub genes more accurately, we deeply mined the PPI networks based
on 12 topological analysis methods built into the cytoHubba [10] plugin. The hub genes
were defined as the intersection genes of the top 50% of each of the 12 analysis methods
and were used as targets for drug discovery.

Here, we collected 216,428 drug–target relationships including 21,650 human targets
and 2470 approved drugs from seven commonly used data sources: the DrugBank database
(v5.1.9) [32], the Therapeutic Target Database (TTD) [33], the BindingDB database [34],
the PharmGKB database [35], the Drug–Gene Interaction Database (DGIdb, v4.2) [36], the
IUPHAR/BPS Guide to PHARMACOLOGY [37], and the Comparative Toxicogenomics
Database (CTD) [38]. Finally, using the aforementioned genes as targets, we obtained the
preliminary candidate drugs.

3.9. Validation of Candidate Drugs

To validate the candidate drugs identified in our study, we combined experimental
data, computational methods, and previous literature to assess the effectiveness of the
candidate drugs.

The drug sensitivity experimental data and cell line expression profiles were first
obtained from the Cancer Cell Line Encyclopedia (CCLE) [39] database, and all OSCC cell
lines were extracted. In order to validate drug effectiveness from experiments indirectly,
we computed the mean drug sensitivity of all OSCC cell lines for each drug contained in
the CCLE. For drugs that were not included or showed no efficacy in the CCLE, additional
literature validation was performed.

In order to reveal the drug specificity during the development of OSCC and of cell
clusters, we used the R package oncoPredict [40]—a powerful tool for predicting drug
responses based on background data (here, we used drug sensitivity and expression data
from the CCLE)—to calculate the drug sensitivity of each cell. Then, the drug sensitivity of
each cell cluster was defined as the mean drug sensitivity of cells from this cell cluster. We
extracted blocking drugs and cell-specific drugs with high specificity. Drug sensitivity data
from the CCLE were represented using the relative log fold-change (logFC) values of cell
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lines’ viability to DMSO. Therefore, for blocking drugs, the following conditions were used
for screening: (1) The mean logFC in all cells was lower than 0. (2) The mean logFC of cell
clusters located in Path II was lower than that in Path I. For cell-cluster-specific drugs, we
screened by the following criteria: (1) The mean logFC in all cells was lower than 0. (2) The
mean logFC of targeting cell clusters was lower than that of non-targeting cell clusters.

4. Discussion

The effective curing of advanced OSCC has been a clinical challenge because of its
high heterogeneity and metastatic characteristics. Current precision treatment strategies
at the single-cell level only focus on static heterogeneity and do not consider dynamic
characteristics due to tumor cells’ development and evolution. Therefore, our study applied
traditional single-cell transcriptome analysis and dynamic cell trajectory inference theory
to further explore heterogeneity and precise treatment strategies for OSCC.

During the cell clustering analysis, we found that, with the development of tumor
cells, their heterogeneity became greater and greater. This complex heterogeneity reflects
the characteristics of multiple evolutionary modes of tumor cells in the same stage that
have different sensitivities to chemotherapeutic drugs, which is consistent with the fact
that advanced OSCC is difficult to cure. Therefore, we innovatively quantified the drug
sensitivity of specific cell clusters and selected drugs with high sensitivities in those specific
cell clusters.

The cell trajectory inference with pseudo-time reflects the temporal heterogeneity of
OSCC, which forms a complex exacerbation process composed of two paths through a
branch point and gives the temporal characteristics of each cell. We integrated this temporal
characteristic and cell cluster composition of patients to establish the concept of patients’
time score, with significant implications for prognosis—that is, the lower the time score,
the better the prognosis. Based on this, it can be seen that even patients in the same clinical
stage have different temporal status.

In addition, the patient’s response to drug treatment is also dynamic, so RNA-Seq
can be performed at different time points during the treatment to focus on the disease
progression based on our proposed pipeline. If the time score decreases gradually with the
treatment, the prognosis of the patients will be better; otherwise, the medication strategy
needs to be adjusted.

Finally, based on the key genes driving the differentiation of cell development trajec-
tory and the cell-cluster-specific marker genes, we used biomolecular network theory and
topological analysis to mine hub genes with extremely important biological significance,
which were used as targets to find candidate drugs. As a result, there were a total of 167
drugs targeting key genes at the branch point in cell trajectory, which could be used to delay
or block the further progression of OSCC. There were a total of 363 cell-cluster-specific
drugs, which could be used for targeting medication based on patients’ cell composition.
These drugs can be combined to treat patients with multiple cell clusters, but some drugs
(such as artenimol) can also target multiple cell clusters at the same time. We prefer the
latter, so as to maximize the efficiency of the medication while reducing the side effects.
Candidate drugs were validated by both literature and computational methods combined
with experimental data.

In conclusion, our research provides a new pipeline to dissect the complex hetero-
geneity of cancer from a dynamic point of view. More importantly, our study proposes the
concept of patients’ pseudo-time score, which has great clinical value. A series of precision
medicine insights for the clinical treatment practice of OSCC were presented—that is, the
selection of appropriate drugs for tumor control, which aims to not only block or delay the
progression of OSCC but also comprehensively kill various cancer cells. This strategy may
also be adapted for other cancers in the future.

However, due to data limitations, no more in-depth research has been carried out. In
addition, due to the absence of clinical trials, this study has some limitations. As single-cell
spatial sequencing and cell trajectory inference technologies mature, we have reason to



Cancers 2022, 14, 4801 17 of 19

believe that the challenges in completely curing OSCC or other cancers will eventually
be overcome.

5. Conclusions

Our study confirms the complex heterogeneity of OSCC both statically and dynami-
cally. Advanced-stage patients have greater heterogeneity than early stage patients. The
development of OSCC is not a simple pathway, and cell trajectory inference confirms its
complex dynamic landscape, which contains multiple developmental pathways. According
to this, the proposed pseudo-time score is closely related to the patient’s prognosis and has
good prognostic prediction potential, as validated by external datasets. We searched for
candidate drugs for the treatment and blocking of OSCC, most of which were validated in
the literature and via computational methods based on experimental data. In conclusion,
our study comprehensively parses the developmental characteristics of OSCC, offering
new insights into the basic research and clinical treatment of OSCC.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14194801/s1, Figure S1. Principle component selection.
The x-axis represents the number of PC and the y-axis represents the standard deviation. The
optimal number of principal components appears at the inflection point and was marked by a red
arrow. Figure S2: Survival analysis for validation data. The survival curve is shown above, with
the x-axis representing the survival time (days), the y-axis representing the survival probability,
and the censored values are indicated by “+” in the curve. Below is the risk table showing the
number (or percentage) of survivors at each time point. Figure S3. PPI network of key genes of the
branch point. The nodes represent genes and the edges represent interaction relationships. Node
colors represent gene sets, consistent with Figure 3. Figure S4. PPI networks of cell cluster-specific
genes. The nodes represent genes and the edges represent interaction relationships. Node colors
represent the auroc of genes generated by SC3 and the legend is shown below. Table S1: The detailed
information of patients. Table S2: Key genes which promote the occurrence of the branch in cell
trajectory. Table S3: Background genes of stage III for cibersort. Table S4: CIBERSORT result of
patients in stage III. Table S5: literature validation for targets. Table S6: In this table, the drug-target
relationship is represented as 0-1, and 1 represents that the gene is the target of the drug. Table S7:
Marker genes from SC3. Table S8: drug-target-cluster relationships. Table S9: This table shows the
literature validation results of CCLE intersection drugs. Only drugs that have not shown efficacy
(logFC > 0) on OSCC from the experimental data of CCLE were verified, and drugs that already have
been proved effective (logFC < 0) were marked in green color.
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