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Lung cancer remains one of the most common malignancies in the world. Nowadays, the
most common lung cancer is non-small cell lung cancer (NSCLC), namely,
adenocarcinoma, squamous cell carcinoma, and large cell lung carcinoma. Epigenetic
alterations that refer to DNA methylation, histone modifications, and noncoding RNA
expression, are now suggested to drive the genesis and development of NSCLC.
Additionally, inflammation-related tumorigenesis also plays a vital role in cancer
research and efforts have been attempted to reverse such condition. During the
occurrence and development of inflammatory diseases, the immune component of
inflammation may cause epigenetic changes, but it is not always certain whether the
immune component itself or the stimulated host cells cause epigenetic changes.
Moreover, the links between epigenetic alterations and cancer-related inflammation and
their influences on the human cancer are not clear so far. Therefore, the connection
between epigenetic drivers, inflammation, and NSCLC will be summarized. Investigation
on such topic is most likely to shed light on the molecular and immunological mechanisms
of epigenetic and inflammatory factors and promote the application of epigenetics in the
innovative diagnostic and therapeutic strategies for NSCLC.

Keywords: epigenetics, inflammation, NSCLC, immunotherapy, biomarker
INTRODUCTION

Lung cancer is one of the most diagnosed cancers and the frequent cause of cancer-related deaths
(1). It is broadly classified into two groups, namely, small cell lung cancer (SCLC) and non-small cell
lung cancer (NSCLC) (2) (Figure 1). NSCLC is more common lung cancer with ∼85% of all lung
cancer cases than SCLC. It is histologically categorized as squamous cell carcinoma (SCC),
adenocarcinoma, and large-cell carcinoma (3). As is known, tyrosine kinase inhibitors (TKIs)
and immunotherapy have provided considerable survival improvements for lots of patients of
NSCLC. However, the levels of overall survival of NSCLC patients are still relatively low (4).
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Since such therapies could bring immune-associated adverse
reactions and considerable financial requests (5, 6), an urgent
demand emerges for vigorous predictive biomarkers and
combination therapies.

Epigenetic regulatingmolecules are often dysregulated in cancer
and offer a repertoire as promising therapeutic targets (7). Their
contributions of epigenetic variations in the progression of different
cancers could provide advancement of epigenetics-based therapies,
such as targeting the DNA methyltransferases (DNMTs) or
histone-modifying enzymes (8). Durable responses have been
achieved in NSCLC patients who were originally treated with a
DNAmethyltransferase inhibitor (DNMTi) combinedwith interim
histone deacetylase inhibitor (HDACi), followed by the immune
checkpoint therapy (9). Combination epigenetic therapy regimes
mostly use DNMTi in combination with HDACi for the latter can
augment the re-expression of silenced genes regulated by abnormal
gene promoter DNA methylation. The methylation patterns can
offer conditions with molecular causes underlying the clinical
advantage for immune checkpoint blockade (ICB) therapy (10,
11). Despite that first-line single agent ICB exhibited restricted
activity in EGFR mutated NSCLC, the combination of
immunotherapy and targeted agents has gained wide attention in
bothEGFRandALK-positiveNSCLCpatients (12) Simultaneously,
epigeneticmarks led to the detectionof potential cancer biomarkers
for early screening, monitoring, and therapeutic methods of
NSCLC (13).

Additionally, as a major environmental factor causing
carcinogenesis and metastasis of NSCLC, cancer-associated
inflammation and the inflammatory biomarker forecasting the
clinical efficacy of TKIs and prognosis of NSCLC patients also
need to be paid attention (14). Although only 20% of cancers are
connected with chronic inflammation, innate immune cells and
mediators are used to involve in most human malignancies (15,
16). The reason is the induction of inflammatory pathways in
both malignant and pre-malignant cells triggered by oncogenic
alterations. It was indicated that inflammation could result in
Frontiers in Immunology | www.frontiersin.org 2
cancer, while cancer could also lead to inflammation. Notably,
inflammatory regulators mediate levels of enzymes that catalyze
alterations of DNA methylation and histone structure, or change
levels of non-coding RNAs (15).

In this study, we present the research of epigenetic and
inflammatory drivers in prognosis and progression of NSCLC.
The investigation on such topic could help improve the
contributions of epigenetics in the innovative diagnostic and
therapeutic strategies for NSCLC.
EPIGENETICS IN NSCLC

Epigenetic alterations, leading to abnormal gene expression
without related changes in DNA sequence, can be inherited by
cell division (17). Epigenetic regulation, namely, methylation,
phosphorylation, acetylation, and ubiquitination are of
importance in the modulation of gene expression (18). Three
main epigenetic mechanisms involving DNA methylation,
histone modification, and microRNA (miRNA) are mainly
involved. Although it was proposed in 1983, the epigenetics of
human cancer has not been shown in an essential position for
human cancer genetics. But this subject became progressively
noticeable since the developing elucidation of exact epigenetic
mechanisms and their impacts on cancer (19). The beginning
and development of lung cancer result from the interplay of
permanent genetic and dynamic epigenetic alterations (20). It
has been shown that several genes were detected as
hypermethylated and downregulated in NSCLC cell lines under
the action of inhibitors of DNA methylation and histone
deacetylation, with gene expression profiling (21). Besides,
mapping of DNA hypermethylation or hypomethylation
discovered that expression of related target genes was
suppressed or stimulated, respectively, in human NSCLC
tissues (22). Epigenetic mechanisms of genes, especially target
genes that influence the development of NSCLCmight be used to
FIGURE 1 | Schematic diagram of interaction.
April 2022 | Volume 13 | Article 878740

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Yang et al. Epigenetic Alterations in NSCLC
investigate therapeutic possibilities for NSCLC. Epigenetic
alterations referring to DNA methylation, histone modifications,
and non-coding RNA expression driving the genesis and
development of NSCLC will be discussed below.

DNA Methylation
DNA methylation is crucial for normal progress and plays an
essential role in many procedures, namely, transcriptional
regulation, imprinting, and X-chromosome inactivation (23). It
is regulated by three individual DNMTs: DNMT1, DNMT3A,
and DNMT3B (24). As one of the best-studied epigenetic
modifications, DNA methylation primarily occurs in CpG
dinucleotides, where a methyl group is added to the carbon-5
position of cytosine. It is firmly determined as a dynamic balance
in normal physiological conditions, as regulated by DNA
methyltransferases and DNA demethylases, which shows a
vital effect on the regulation of gene expression and the
stabilization of heterochromatin structure (25). It has been
revealed that gene-specific hypermethylation and genome-wide
hypomethylation in the promoter of tumor suppressors are related
to the formation of cancer (19, 26). DNA hypermethylation, a well-
identified epigenetic change commonly at CpG islands (CGIs), is
recognized to lead to the silence of gene expression and contributes
to a reduction of cell growth (27–29). The mechanism underlying
the silencing is stabilizing the structure of chromatinor interrupting
the link between transcription factors and corresponding response
elements of CpG sites (30). CGI hypermethylation leads to target
gene silencing, involving genes with function referred to tumor
suppressing, DNA repair and cell cycle control (20). Studies have
shown thatDNAmethylation contributes to tumorigenesis and can
be a potential tool for cancer detection and diagnosis over the past
decade (31). It has been reported that, alterations of DNA
methylation happen even prior to the emergence of atypical
adenomatoid hyperplasia (AAH) during the progress of lung
adenocarcinoma (LUAD) (32). Besides, several genes that
downregulated in NSCLC by DNA methylation are relevant to
epithelial–mesenchymal-transition (EMT), which is a conserved
process related to decreased cell adhesion and increase of cell
motility (33). Nowadays, methylation related genes have been
generally investigated, incorporating RASSF1A (34), p16 (35),
LRRC3B (36), EGLN2 (37), SETDB1 (38), and so forth.
RASSF1A and p16 made great contribution to the cell cycle
regulation while DNA methylation and expression of LRRC3B
and EGLN2 could regulate hypoxia inducible factor 1A, which
provided an effect on the early-stage NSCLC survival. SETDB1was
important for cell membrane recruitment, phosphorylation, and
Akt activation underlying stimulation of growth factor. ForNSCLC
patients, gene methylation occurrence was reported to reach 96%
(39). Among them, an upregulation of DNA methyltransferases
expression was observed, namely, DNMT1, DNMT3A, and
DNMT3B, which associated with silencing of tumor suppressor
genes (TSGs) such as FHIT, RARb, and CDKN2A (40, 41).
Moreover, numbers of genes, such as CDH13, CDH1, DAPK,
MGMT, p16, RASSF1A, etc., were demonstrated to hold intense
promoterCGIsmethylation in lung cancer, particularly forNSCLC
(42, 43). In these probable TSGs, methylation of RARb was in 40–
Frontiers in Immunology | www.frontiersin.org 3
43% of NSCLC, RASSF1A 30–40%, p16 25–41%,MGMT 16–27%,
and DAPK 16–44% (43, 44). With the incidence and impacts of
DNAmethylation on meaningful target genes of NSCLC, it is vital
to pay attention on such topic.

On the other hand, the incidence of hypomethylation was
found relatively high by high-throughput analysis of genomic
methylation among tumors (45, 46). The DNA hypomethylation
that happened in CpG dinucleotides was the first discovered
epigenetic aberration in cancer cells over almost four decades ago
(47). It was also identified that the extent of DNA
hypomethylation was positively related with progress of cancer
(48), while global hypomethylation (49) and regional promoter
CGIs hypomethylation (50–52) may trigger proto-oncogenes,
loss gene imprinting, and revitalize the transposable elements. It
was shown by high-resolution CpG methylation mapping that
DNA hypomethylation appeared particularly at repetitive
sequences in lung cancers (22), involving SINEs (short
interspersed nuclear elements), LINEs (long interspersed
nuclear elements), LTR (long terminal repeat) elements,
heterochromatin repeats (e.g., satellite DNA), and segmental
duplications in subtelomeric regions (20). For NSCLC,
hypomethylation of LINE-1, a prognostic marker of cancer
progress (53–55) has been identified as a cancer-specific
epigenetic change, especially in squamous cell carcinoma
(SqCC) (56) and often related to genomic instability (57). In
addition, the LINE-1 hypomethylation level was revealed to be
related with clinical progress and survival prognosis of NSCLC
patients (58, 59). Based on the significant position of DNA
methylation, it was noteworthy that ten-eleven translocation
protein 1 (TET1) was found to present the ability to modify
methylcytosine and intend to wipe off DNA methylation (60).
Two other TET genes, namely, TET2 and TET3, were
subsequently identified following sequence homology with
TET1 (61). This family of proteins catalyzed the successive
o x i d a t i o n f r om 5 -me t h y l c y t o s i n e ( 5mC ) t o 5 -
hydroxymethylcytosine (5hmC), then to 5-formylcytosine (5-
fC) and 5-carboxycytosine (5-caC) (62, 63). Intriguingly, the
activity of TET enzymes became a pivotal tumor suppressor
mechanism in cancer. It was shown that all three TET genes were
mutated with reduced expression, and the proteins decreased
activity among different kinds of cancer (64). Once balanced
methylation pattern mediated by proteins like TETs and
cofactors was interrupted, tumor suppressor genes can be
repressed or oncogenes were activated, leading to various types
of cancer. Recently, it was reported that hydroxymethylation
levels were changed in cancer with several gene mutations that
affected hydroxymethylation (23, 65–67). As mentioned,
hydroxymethylation can be regulated by TET proteins and
partly mediated by miRNAs. It is negatively related to cell
proliferation while levels of 5hmC are reduced in growing
tissues and cancer (68, 69).

Comprehensive understanding of the dynamics of DNA
modifications is useful for a better demonstration of epigenetic
regulation in solid tumors including NSCLC. Erasing DNA
methylation can be achieved by DNA replication during cell
division, or through oxidation of the methyl group by enzymes of
April 2022 | Volume 13 | Article 878740
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the TET family (TET1, 2, 3). The above cases indicate that DNA
methylation shows a close connection with cancer and help to
find candidate treating targets for NSCLC.

Histone Modification
Chromatin is formed by genomic DNA along with octamers of
two copies of histone proteins H2A, H2B, H3, and H4. The N-
termini of H3 and H4 histones involves several kinds of
mod ifi ca t i on s , name ly , a c e t y l a t i on , me thy l a t i on ,
phosphorylation, ubiquitination and adenosine diphosphate
(ADP) ribosylation (70–72). Histone acetylation loosens the
bond between DNA and histone proteins thus the unpacked
DNA with high affinity for RNA polymerase II and transcription
factor promotes the transcriptional activation. The dynamic
equilibrium of histone acetylation is maintained by histone
acetyltransferases (HATs) and histone deacetylases (HDACs)
(73). It was found that HDACs overexpress in several cancers
and appeared to have potential as therapeutic targets (18).
HDAC overexpression can lead to TSG silencing or altered
transcription by influencing genes encoding HAT enzymes or
binding elements of HAT and HDAC enzymes, which are
associated with carcinogenesis (13). Similarly, histone
methyltransferases (HMTs) and histone demethylases (KDMs)
regulate the histone methylation dynamically (74). Enhanced
transcription has been reported to be associated with high
degrees of acetylation and trimethylation among histone 3
lysine 4 (H3K4me3), lysine 79 (H3K79me3), and lysine 36
(H3K36me3) (75). Histone modification commonly regulates
gene expression along with DNA methylation in transcription
levels (76).

Histone modifications play a critical role in human NSCLC.
Global modification status of histone H3 and H4 in 408 NSCLC
tissues was evaluated immunohistochemically, with results
indicating that patterns of global histone H3 and H4
modification associated with tumor recrudesce and survival of
NSCLC. Besides, for the squamous cell or large-cell carcinoma
patients, higher degrees of H3K4 dimethylation represent
potential better survival, while for the adenocarcinoma
patients, lower degrees of H3K9 acetylation represent potential
better survival (77). Li et al. (78) used the TCGA and cBioportal
databases to evaluate the expression profile of methyltransferases
and demethylases in NSCLC and found that higher expression of
H3K4 histone demethylases (KDM1A, KDM5A, KDM5B and
KDM5D) was associated with poor overall survival while
p a t i e n t s w i t h l ow exp r e s s i on o f H3K4 h i s t on e
methyltransferases SMYD3 also suffered from worse prognosis.
In addition, high expression of KDM6A and enhancer of zeste
homolog 2 (EZH2), mediators of H3K27 histone methylation
provided poor overall survival prediction. Since methylation of
lysine 27 of histone H3 (H3K27me3) has been demonstrated as a
key regulator of transcriptional gene inhibition that maintains
the normal biological activities (79–81), with whose disorder can
result in various diseases and tumors (81, 82), Leng et al. (83)
examined KDM6A, a member of the mixed-lineage-leukemia
(MLL2) H3K4 methyltransferase complex, that catalyzes
H3K27me2/3 with its JumonjiC (JmjC) domain (84, 85) and
found that expression of KDM6A protein was higher in NSCLC
Frontiers in Immunology | www.frontiersin.org 4
tissues than that in the corresponding paracancer tissues while
high KDM6A expression was positively related to the poor
prognosis of patients. Mechanically, KDM6A colocalized and
collaborated with KMT2B to regulate the transcriptional
network by mediating the cancer pathway containing Wnt
pathway as the major element. It is inferred that histone
modifications and related molecules present in difference in
NSCLC and normal samples that is valuable for relative studies.

Enhancers are cis-regulatory elements that could modulate
type-specific gene expression (86, 87). Enhancers showed certain
histone modifications of H3K4me1 and H3K27ac (88, 89). Loss
of H3K4me1 by the depletion or mutation of histone
methyltransferases MLL3 (KMT2C) and MLL4 (KMT2D)
reversely affected H3K27ac at enhancers and led to
transcriptional inhibition of target genes among mammalian
cells (90–92). Large regulatory elements, called super-
enhancers (SEs), were essential to the maintenance of cancer
cell identity, and promoted oncogenic transcription to which
cancer cells greatly relied on. Yuan and colleagues examined the
H3K27ac landscape in two Chinese patient-derived LUAD cell
lines and successfully discovered SE-associated gene RAI14 as a
novel biomarker (93). Differentially methylated promoters and
enhancers between PD-1 inhibitors responders and non-
responders were finally detected, which may promote the
development of biomarkers and therapeutic strategies for
current anti-PD-1 immunotherapy in NSCLC.

Until now, histone modifying agents for NSCLC have been
developed but its clinical application is still in early stages, which
needs more large-scale clinical trials. Thus, further research on
histone modifications and other factors in NSCLC from the
perspective indicating biomarkers or treating targets would be
meaningful for NSCLC patients.

RNA-Based/Non-Coding RNA
(ncRNAs) Alterations
There are numerous unique non-coding RNA (ncRNA)
sequences spread over cells. Research has changed our previous
opinion of ncRNAs from useless transcriptional products to
functional mediators that regulate cellular procedures
containing transcription, post-transcriptional alterations,
chromatin remodeling and signal transduction (94).
Developments of sequencing technologies have brought
findings of various ncRNA types, such as microRNAs
(miRNAs), transcribed ultraconserved regions (95), circular
RNAs (circRNAs), and long ncRNAs (lncRNAs) that mostly
lack conservation among different species (96). The miRNAs
commonly consisted of 20–22 nucleotides that can bind and act
on mRNA, which regulate gene expression at post-transcription
levels by leading to degradation of mRNA or inhibition of
protein translation (97). It has been reported that miRNAs
have a number of targets among various cancers and affect the
cancerous development by upregulating oncogenes or
downregulating genes of tumor suppressor (98). For example,
miR-196b-5p was reported to enhance cell migration,
proliferation, and tumor growth by affecting the tumor
suppressors, TSPAN12, and GATA6 while increased miR-
196b-5p expression in NSCLC was partly monitored by
April 2022 | Volume 13 | Article 878740
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hypomethylation of its promoter section (99). Moreover, miR-
142-3p was demonstrated to regulate starvation-induced
autophagy of NSCLC cells by directly suppressing HMGB1
and consequently triggering the PI3K/Akt/mTOR pathway. In
addition, overexpression of miR-142-3p can hinder antitumor
drug-caused autophagy and improved chemo-sensitivity of
NSCLC both in vitro and in vivo (100).

On the other hand, as one kind of non-coding RNA, lncRNAs
can regulate gene expression on several stages, namely, the
epigenetic, transcription, and post-transcription levels (101,
102). Linc00673 was validated as an oncogenic lncRNA in
NSCLC and its expression was related to the poor prognosis of
NSCLC while miR-150-5p can target linc00673 and influence its
silencing induced proliferation, migration, invasion, and EMT
suppressing effect in NSCLC (103). LINC01123 was found to
overexpress in 92 paired NSCLC tissues and positively relate to
poor outcomes of patients. Further analysis suggested that
LINC01123 can increase NSCLC cell proliferation together
with aerobic glycolysis by directly interacting with miR-199a-
5p afterwards target and upregulating c-Myc (104). LncRNA
gastric cancer−associated transcript 1 (GACAT1) was
upregulated in NSCLC tissues and associated with survival.
Mechanically, GACAT1 can negatively regulate miR−422a with
YY1 transcription factor as a downstream target (105).
Moreover, Circular RNA hsa_circ_0008305 (circPTK2) and
transcriptional intermediary factor 1 g (TIF1g) were verified
considerably downregulated in NSCLC cells undergoing EMT
and tumor metastasis induced by TGF-b, indicating circPTK2 as
a prospective therapeutic target for advanced NSCLC (106).

Taken together, the above research proposes that epigenetic
alterations of certain functional genes are strongly involved in
NSCLC. Several epigenetic alteration related genes may serve as
promising predictors of prognosis or treatment targets
for NSCLC.
INFLAMMATION IN NSCLC AND IMMUNE
COMPONENT OF INFLAMMATION

The existence of leukocytes within tumors, discovered by Rudolf
Virchow in the 19th century, presented the first potential
connection between inflammation and cancer (107). However,
it was until the past decade that it became clear that there were
potent interactions between inflammation and tumorigenesis
(108). Inflammation is recognized as an essential innate
immune response to disturbed tissue homeostasis. Chronic
inflammatory activities play pivotal roles in all stages of tumor
progress and affect the therapeutic outcomes (109).
Inflammation refers to crosstalk across different immune cells,
inflammatory cells, cytokines, chemokines, and proinflammatory
regulators. It also makes contributions at several levels of tumor
progress, involving initiation, promotion, invasion, malignant
conversion and metastasis (110). For some kinds of cancer,
inflammatory circumstances appear before a malignant
conversion happens. In contrast, for other cancers, an
Frontiers in Immunology | www.frontiersin.org 5
oncogenic conversion generates a microenvironment of
inflammation that fosters the progress of tumors (111).

In addition to that, chronic obstructive pulmonary disease
(COPD) is a syndrome identified as an aberrant local and
systemic inflammatory reaction, which is significantly related
with lung cancer (112, 113). Data showed that impairment of
lung function, the physiological character of COPD, was related
to heightened systemic inflammation markers. Particularly,
forced expiratory volume in one second (FEV1) was reported
to have a reverse association with C-reactive protein, an effective
marker of inflammation (114). Besides, the inflammatory
enzyme cyclooxygenase-2 (COX-2) was found to overexpress
in substantial malignancies (115) and its expression in NSCLC
was related to angiogenesis (116, 117), metastasis (118, 119), and
apoptosis resistance (120), the tumorigenic effects of which were
partly regulated by the metabolite of COX-2, prostaglandin E2
(PGE2) that plentiful within the lung tumor microenvironment
(TME). It was identified that overexpression and following
mutation of the p53 gene that associated with inflammation/
fibrosis-related oxidative DNA damage and restoration may
promote the formation of a pro-tumor environment in patients
suffering from idiopathic pulmonary fibrosis (121). Moreover,
macrophages are omnipresent immune cells that charge many
essential physiological and host protective activities, such as
phagocytosis of pathogen, inflammation regulation, and tissue
mending. Tumor associated macrophages (TAMs) that
encompass a major portion of the leukocyte infiltrate
characteristic of tumor can interplay with cancer cells and
generate plenty of cytokines and growth factors that affect the
regional microenvironment (122). Recently, more and more
evidence appeared to support the opinion that macrophages
influence tumor development by promoting proliferation,
migration, and metastasis of cancer cell, facilitating angiogenesis,
and inhibiting host antitumor immunity. However, there is
substantial discussion concerning the prognostic relativity of
TAMs in NSCLC (122, 123). Although some research
demonstrated that expanded an number of TAMs present a
benefit of survival, others considered it to indicate a poor
consequence. Also, inflammation is regarded as a key promotor
for the cancer development and progression (124). In addition,
platelets that take part in an inflammatory process and make
thrombocytosis become a common symptom in solid tumors
(125). Therefore, neutrophil-to-lymphocyte ratio (NLR) and
platelet-to-lymphocyte ratio (PLR) are well-known prognostic
markers that are related to worse overall survival in several kinds
of tumor containing NSCLC in the pre-immunotherapy period
(126–129).

The adaptive immune response can be divided into two vital
and complementary parts: humoral immunity and cell-mediated
immunity. The CD4 T-helper (TH) lymphocyte is a crucial
component for the two patterns above and can coordinate
differently. However, it could overlap cytokine systems that
affect other effector cells and in turn charge the form of the
inflammatory reaction. CD4+ T helper 17 (Th17) cells, as a novel
subset of the CD4+ helper T cells, are defined as production of
interleukin (IL) 17A (IL-17A) and IL-17F (130). Th17 cells play
April 2022 | Volume 13 | Article 878740

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Yang et al. Epigenetic Alterations in NSCLC
crucial roles in inflammation and the progress of a tumor. The
effects of Th17 cells in COPD-type inflammation-related lung
cancer were confirmed by animal models (131) and the amounts
of IL-17+ cells in NSCLC patients were observed to be positive-
related to smoking conditions with poor survival rates (132). On
the other hand, toll-like receptors (TLRs) were pivotal receptors
that can identify and make a reaction to stimulates via the innate
immune and inflammatory response mechanisms. TLR4 was the
first detected protein of the human toll homolog family that
could be triggered by lipopolysaccharides (LPS) and provoked
proinflammatory cytokines secretion (133) while found to be
expressed in both cells and tissues of lung cancer (134, 135).
Programmed-death ligand 1 (PD-L1) is recognized as an
essential component in the process of immune escape in
NSCLC as PD1/PD-L1 pathway has been proved as a vital
inhibitory mechanism in lung cancer cells. Triggering of the
pathway causes exhaustion of effector T cell and immune escape
(136, 137). Studies also suggest that the expression of TLR4 and
PD-L1 can indicate the prognosis of NSCLC, while TLR4 may
increase expression of PD-L1 via the ERK signaling pathway
(138). Systemic immune-inflammation index (SII) was found
related to poor survival of NSCLC, the prognostic role of which
was presented among NSCLC patients with solid nodules,
adenocarcinoma, and stage I disease (139).

It has been demonstrated that epigenetic modifications could
be triggered by environmental stimuli and it played a vital role in
the transcription of inflammatory gene (140). Theoretically, in
short-lived inflammatory responses, consecutive epigenetic
modifications of pro- and anti-inflammatory molecules can
occur. It gave rise to acute inflammation at initial stages of the
response followed by epigenetic changes that evoke anti-
inflammatory action to end the inflammation (141). In
addition, comprehensive epigenome-wide association studies
(EWAS) via large-scale bioinformatics analysis declared that
several epigenetic marks were associated with different
circulatory inflammation markers (142). Among the
fundamental genes, NF-kB monitored pro- and anti-
inflammatory cytokine expression. During initial inflammatory
responses, epigenetic landscape changes could lead to the
activation of p65, which then gathered to form an activating
complex in inflammatory cells. At later stages, epigenetic re-
programming of p65 promoter ensued corresponding with
chromatin remodeling of the proinflammatory Tnfsf1a and Il1b
genes (143, 144). Subsequently, histone methyltransferases,
DNMTs, and other chromatin modifiers produced a repressor
complex to diminish the inflammatory response (145).

Hence, abnormal epigenetic alterations may aggravate
inflammatory responses and affect the risk of chronic
inflammatory disease (146). A better knowledge of how
inflammation affects epigenetic factors in NSCLC may provide
us novel therapeutic strategies. In fact, molecular mechanisms
beneath inflammation-associated tumorigenesis have been a
vital research area of cancer (147). Researchers revealed
genomic aberrations that can help clarify the cause and
progression of a variety of cancers and might help to improve
current immunotherapy.
Frontiers in Immunology | www.frontiersin.org 6
TUMOR MICROENVIRONMENT

It has been described that tumor grows in a complicated and
dynamic microenvironment, containing stromal cells, innate
cells, endothelial cells, and lymphocytes existing nearby or
within the malignant tumors, interacting with each other and
the malignant cells. Evidence showed that the complex TME
could mediate tumor growth, invasion and metastasis (148).
Recently, the investigation of NSCLCmetastasis has developed to
involve non-cancer cell elements of tumors, the extra-cellular
matrix (ECM) components, and stromal cellular compartment
comprising the tumor-microenvironment (149). The existence of
immune cells, especially the cytotoxic CD8 T cells, within the
TME, has an effect on prognosis of tumor. Other immune cells
are generally related to tumor progression and poor outcomes
involving M2 polarized macrophages, neutrophils, and FOXP3
positive regulatory T cells (150–152). Dieu-Nosjean et al. (153)
found that in lung cancers, tertiary lymphoid structures (TLS)
involving mature dendritic cells (DC), proliferating B cells, T
cells, and follicular DC, presented in the tumor stroma of early-
stage NSCLC. In addition, Ning et al. (154) found that histone
deacetylase 9 (HDAC9) insufficiency was beneficial for tumor
progress via reducing infiltration of CD8+ DCs in the TME.
Compared with wild-type mice, the tumor-infiltrating DCs of
Hdac9−/− mice presented decreased cross-presentation of tumor
antigens and cross-priming of CD8+ T cells. Besides, HDAC9
expression was positively associated with CD8+ cell counts
significantly in the stroma samples of human lung cancer while
lack of HDAC9 reduced inflammation and advocated progress of
tumor by reducing CD8+ DC infiltration in the TME. Recently,
the attention of research on NSCLC drug targets detection has
turned from analyzing autonomous functions of cancer cells
involving the TME (148). One of the main reasons is that cancer
cells involved in both primary tumors and metastatic sites are
implicated in various interplays among autocrine and paracrine
signaling factors, stromal cells, and ECM-components. Primary
tumors must engage blood vessels to promote tumor cell
dissemination (angiogenesis), which contains interactions of
tumor-cell-endothelial cell and the recruitment of blood vessels
by growth factors, namely, CXCL12, FGF, and VEGF-A. Besides,
for lung squamous cell carcinoma (LUSC) and LUAD are two
major subtypes of NSCLC, Seo et al. analyzed 101 LUSCs and 87
LUADs tumor samples and detected that several micro-
environmental factors differentially stimulate immune subtypes
of LUAD or LUSC and the expression of the immune
checkpoint. Particularly, TAMs are vital immune cells having
important impacts on inflammation and TMEs of LUSCs, while
regulatory B cells presented as having immunosuppressive and
tumorigenic roles in LUADs. The cytolytic activity of CD8+ T
cell can be reduced by the profusion of macrophages and B cells
among immune-competent subtypes. Hence, detecting immune
subtypes in NSCLC and their influence on TME may improve
clinical evaluating tools for LUADs and LUSCs patients, which
also benefit the efficacy of immunotherapy for NSCLC (155).
Furthermore, environmental nutrient amounts affect the
metabolism of cancer cells, leading to environment-dependent
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gene essentiality (156, 157). Within TMEs, epigenetic alterations
can act a significant role by influencing inflammatory activities.
For example, DNA demethylation increases the expression of
tumor suppressor gene, thus regaining the tumor prevention
while decreasing pro-inflammatory cytokine expression via the
mediation of ncRNAs or histone modifications, eventually
reducing inflammation infiltration in TME (147).

Since lung cancer is one highly heterogeneous disease, cancer
cells and cells within the TME together decide the progression of
disease and escape from or respond to treatments. To deeply
characterize the lung tumor TME, various single-cell resolutions
were used for better exploration. Single-cell approach could
provide clear visions into the entire tumor ecosystem, namely,
mechanisms of intratumoral and intertumoral heterogeneity and
cell–cell interactions via ligand-receptor signaling (158). Isolated
infiltrating T cells in NSCLC were categorized by their functional
states and dynamics. A subset of regulatory T cells (Tregs) was
reported to correspond to the poor prognosis in LUAD (159).
Tumor-infiltrating myeloid cells (TIMs) containing dendritic,
macrophage, monocyte, and granulocyte cell lineages, were
classified as at least 25 different states by single-cell RNA-
sequencing (scRNA-seq) (160). For mapping the cell type-
specific transcriptome landscape of cancer cells and their TME
in advanced NSCLC, Wu et al. examined 42 tissue biopsy
samples from stage III/IV NSCLC patients by scRNA-seq and
showed the large scale, single cell resolution profiles of advanced
NSCLCs. They found that tumors from different patients present
large heterogeneity in chromosomal structure, cellular
composition, developmental trajectory, intercellular signaling
network , and phenotype dominance (161) . Bet ter
understanding of factors within TME and their function in
NSCLC could help to shed light on the mechanism of NSCLC
development and resistance, and provide more feasible options
for NSCLC therapy.
EPIGENETICS IN THE INNOVATIVE
DIAGNOSTIC AND THERAPEUTIC
STRATEGIES

Innovative Diagnosis
Over the last decade, tissue and/or blood biomarker testing has
become popular in treatment decisions for advanced NSCLC.
Patients were classified into different biomarker-defined
subgroups for targeted and effective therapy, with evidence
indicating superior clinical efficacy and less adverse effects
compared with traditional cytotoxic chemotherapy (162). With
the heterogeneity character of NSCLC and development of
epigenetics, novel feasible epi-biomarkers could help to guide
more precise and individual therapeutic regimen. The detection
of hypermethylation of genes such as CDKN2A, HOXA1, CDX2,
and OPCML independently characterized LUAD from healthy
samples with 67–86% sensitivity and 74–82% specificity while
remarkable DNA methylation was found even in stage I tumor
samples (163). Moreover, it was also reported that the
methylation degree of SFRP1, p16, KLK10, and DAPK in
Frontiers in Immunology | www.frontiersin.org 7
circulating blood of NSCLC has a great difference compared to
normal lung donors and benign lung lesions (164, 165). Hence,
they were recognized as potential innovative markers that benefit
the early-stage lung cancer diagnosis (166). The gene encoding
MLL3 histone methyltransferase, KMT2C, promoter
methylation of which in plasma cell‐free DNA (cfDNA) was
found to can indicate unfortunate results in NSCLC and provide
further assessment as a circulating epigenetic biomarker (167).
Sun et al. (168) reported that epigenetic silencing of lncRNA
SPRY4 intronic transcript 1 (SPRY4-IT1) occurs in NSCLC cells
by direct transcriptional suppression regulated by the Polycomb
group protein EZH2 and patients lacking expression of SPRY4-
IT1 had poor overall survival, which means that SPRY4-IT1 can
be recognized as a useful biomarker for NSCLC prognosis.
Tripartite motif containing 27 (TRIM27) is high-expressed in
NSCLC. The relevance between CpG methylation of TRIM27
and overall survival of NSCLC patients was estimated by
assessing DNA methylation of LUAD and LUSC samples of
613 early-stage NSCLC patients that cg05293407TRIM27

methylation can be a possible LUSC prognosis indicator, and
smoking levels may influence its predictive significance among
different kinds of NSCLC (169). Besides, the mRNA levels of
seven epigenetic regulating genes, EZH2, PCNA, RAD54L,
SUV39H2, TTF2, UHRF1, and WHSC1, were notably different
between NSCLC patients and normal lung tissues (170). The
most enriched GO terms were rhythmic process and DNA
repair. However, lysine degradation pathway was the most
enriched KEGG pathway, which was detected by functional
enrichment analysis of the seven genes. These findings validate
that EZH2, RAD54L, UHRF1, and WHSC1 are prospective
predictive biomarkers to characterize NSCLC patients of high
or low risk. The significance of correct chromatin composition is
highlighted by the signature of ATP-dependent chromatin
remodeling complexes in disease. These are multisubunit
complexes that can move and transfer nucleosomes, thus
mediating transcription. Various elements of the highly
conserved SWI–SNF complex have been linked to cancer, for
example, the ATPase subunits BRM and BRG1 are mutated in
several cancer cell lines and primary tumors, which is correlated
to a poor prognosis of NSCLC patients (171).

On the other hand, HDAC as epigenetic regulators have been
applied clinically for treating hematopoietic malignancies.
Recently, HDACi was recognized as a component mediating
the immune system and its expression was described to foresee
the development of NSCLC patients who received treatment of
immune checkpoint inhibitors (ICIs). Additionally, HDACi
combined with PD-1 inhibitor showed efficacy in inhibiting
tumor growth and provide better TME for cytotoxic T cells in
TC-1 mouse model (172). N6-methyladenosine (m6A) is one of
the most frequent epigenetic alterations in eukaryotic RNA,
which is a reversible process and plays a critical role in various
diseases including cancers. The m6A modification of RNA,
mediated by demethylases, methyltransferases, and m6A-
binding molecules, influences the progress of NSCLC by
affecting the target RNA splicing, translation, decay, and
nuclear export. It has been recommended that the influence of
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m6A modification on the prognosis of NSCLC patients is a
double-edged sword, indicating m6A modification has both
promotive and inhibitory effects on progress of NSCLC (173).
CircRNAs are a class of conserved single-stranded RNA
molecules derived from intronic or exonic sequences by back-
splicing of precursor mRNA, and have been described to have
effects on microRNA sponges, regulators of gene splicing and
transcription, RNA-binding protein sponges, and protein/
peptide translators (174). Increasing evidence shows that
circRNAs can function as predictive biomarkers for NSCLC.
For example, Wang et al. (106) verified that circPTK2
(hsa_circ_0008305) sponged miR-429, thus promoting cell
invasion of NSCLC. Circular RNA circFGFR1 was observed to
have high levels among NSCLC patients, which was associated
with poor NSCLC prognosis (175). LncRNAs were linked to
several cellular activities and alteration of lncRNAs expression
may accelerate development of tumor, involving NSCLC (176).
Evidence indicated that Hox transcript antisense RNA
(HOTAIR) could directly modulate cancer progression and can
be used as a potential prognostic biomarker for NSCLC (177).
Among patients with genotype of GG polymorphism, the
expression level of colon cancer-associated transcript 2
(CCAT2) transcripts was enhanced, demonstrating that
CCAT2 can be a new biomarker for metastasis of cancer (178)
and possibly contributes to cancerogenesis and metastasis as one
of oncogenic lncRNAs (179). There are other lncRNAs that have
been characterized as promising biomarkers of NSCLC such as
LCAL (180), AFAP1-AS1 (181), and linc00673 (103). It was
indicated that immunity condition determined with markers of
DNA methylation was linked to lung cancer prior to the cancer
diagnosis. Thus, a better insight of immunity-related
methylation biomarkers in lung cancer progress could offer
vision to fast and precise diagnosis and treatments (182).
Dysregulated inflammation was known as one of the hallmarks
of cancer and was associated with tumor origination,
development, and metastasis (183–185). Interleukin-1 beta (IL-
1b), a proinflammatory cytokine, associates with NSCLC
progress and was found a higher level in serum of NSCLC
patients than in healthy donors while increased IL-1b in these
patients correlated with poor survival (186).

Therapy
Innovative therapeutic patterns are central for improving the
existing immunotherapy in NSCLC. Studies have shown that
significant functions of epigenetic processed in mediating
immune cell function and regulating antitumor immunity.
Interactions between them have promoted consolidation of
epigenetic therapy and immunotherapy (Figure 1). An
appeal ing method to overcome the restr ict ions of
immunotherapy alone is in demand (187). Several epigenetic
therapies for NSCLC were carried out in clinical trials (Table 1).
Detecting the molecular characteristics of NSCLC subtypes, such
as genetics and epigenetic variation, was critical for choosing the
proper therapy for combination (13) while chemotherapy
resistance was also found to be associated with epigenetic
changes (188). Besides, DNA methylation is a double-sided
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procedure, unlike the changes of genetic information involving
gene mutations or deletions. Hence, in theory, demethylation
treatment on patients with lung cancer or precancerous lesions
might repair the function of certain tumor suppressor genes, thus
reaching the goal of treating or guarding against lung cancer
(166). The hypermethylation of p16, as a tumor suppressor, was
demonstrated to make contribution to the clinical treatment and
may be used as a biomarker for early diagnosis of NSCLC (189,
190). Research explored DNAmethylation markers as a modality
for the early diagnosis of lung cancer and were helpful in the
therapy process (191). Additionally, as has been discussed before,
quite a few HDACi were studied for their anti-tumor efficacy
(192). During radiotherapy, radio-protective autophagy and
histone H4 lysine 20 trimethylation (H4K20me3) were found
to be upregulated after irradiation, regulation of which axis may
be a new approach to improve radiotherapy for NSCLC (193).
Since bromodomain functions as an epigenetic reader element
for acetylated lysine on histone or non-histone molecules, the
bromodomain and extra-terminal (BET) proteins that residing
on vigorous promoter and enhancer regions (194), were
functionally related to transcriptional co-activators that positively
control RNA Pol II-dependent transcription. Plenty of BET
inhibitors (BETi) displayed strong antitumor effects among
several cancer kinds (195–197). Moreover, the fast progress of
target therapies primarily in lung cancer involved certain
oncogenic proteins, especially ALK and EGFR mutations (198–
200). For EGFRmutations, generations ofTKIswere developed and
were used in the treatment of lung cancer (201). Increasing evidence
demonstrated that BETi could synergize with TKIs to improve
antitumor efficacy in a range of cancer types (202–204).

ICIs, especially inhibitors of the PD-1 immune-checkpoint
axis, have modified the treatment of NSCLC during the last
decade (205). Though melanoma was the most responsible solid
tumor toward immunotherapy (185), encouraging outcomes
were accomplished in advanced NSCLC that was one of the
most lethal cancers (185, 206, 207). FDA have approved trials for
melanoma and NSCLC with promising results (208). Studies of
an early phase I/II clinical trial of the combined use of epigenetic
therapy and the HDACi entinostat and the DNMTi azacitidine
(9) have promoted to make the notion of combination therapy of
epigenetic drugs and ICI. One research involved a small quantity
of advanced NSCLC patients taking low-dose epigenetic therapy
enrolled a trial of immune checkpoint therapy. About 20% of the
patients responded well, with no progression for 24 weeks and
the majority reaching high-grade Response Evaluation Criteria
in Solid Tumors (RECIST) criteria responses (206, 209) which
was an overwhelming achievement for immunotherapy in
NSCLC (210). Preclinical data also suggested that agents such
as HDACi could present an exclusive capacity of transforming
TMEs into an immunotherapy-profitable condition (211). Based
on current data from early-stage clinical trials in NSCLC, such
combination may improve tumor reactions to immunotherapy
or recover responses to immunotherapy for those who suffer
from treatment resistance.

Inflammation is linked to the initiation and progress of
cancer. Inflammation has recently been identified as one of the
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promoting signatures of cancer (185). Around 25% of cancers
were related to chronic inflammation by some means (212),
which was linked to lung cancer as a result of constant exposure
to factors in tobacco smoke (213, 214). Besides, the cells in charge
of cancer-related inflammation were inherently steady,
indicating that they are not suffered from the common
occurrence of drug resistance. Thus, targeting inflammation
can be a promising approach for both cancer prevention and
treatment (107). Cisplatin-based chemotherapy remains one of
the standard cares for NSCLC patients. Recrudesce after
chemotherapy-caused dormancy influence the overall survival.
The change of cancer cells undergoing chemotherapy tension
was measured by transcription factors (TFs) via binding sites
primarily buried deep within inaccessible chromatin. Several key
TFs regulated gene expressions during the process of dormancy
and reactivation of lung cancer cells through modifying
promoter accessibility of target genes (215). As one of the most
common oncogenic drivers in NSCLC, KRAS mutations account
for about 25% of LUAC (216, 217). It was reported that co-
appearing genomic variations in the STK11/LKB1 (KL) and
TP53 (KP) tumor suppressor genes modify subgroups of
KRAS-mutant LUAC with distinct biology, immune profiles,
and therapeutic vulnerabilities (218). The effects of STK11/LKB1
alterations on clinical efficacy of PD-1/PD-L1 inhibitors
expanded to PD-L1-positive NSCLC. In Kras-mutant murine
Frontiers in Immunology | www.frontiersin.org 9
LUAC models, Stk11/Lkb1 loss enhanced PD-1/PD-L1 inhibitor
resistance, suggesting alterations of STK11/LKB1 as a key driver
of PD-1 blockade resistance in KRAS-mutant LUAC (219).

Recently, gene therapy using clustered regularly interspaced
short palindromic repeats (CRISPR)-Cas9 technique has
achieved popularity among fields of science principally due to
its high efficacy, versatility, and cost-effectiveness. The CRISPR-
mediated genome editing has been broadly utilized in various cell
types and organisms to specifically edit target genes with sgRNA
recognizing specific sites (220–222). It has been proved that
editing of immune checkpoint genes by CRISPR-Cas9 could
enhance the efficacy of T cell therapy. Lu et al. conducted
treatment of 12 NSCLC patients with PD-1 gene-edited bulk
autologous T cells. The results suggested that both safety and
feasibility of gene editing for cell therapy could be observed
(223). Svensson et al. (224) investigated the tumorigenesis
conditions in the KRAS-LKB1 and KRAS-P53 mouse models
and found that knockout of acetyl Co-A carboxylase in NSCLCs
was detrimental for tumor growth. To explore epigenetic
regulators as novel treating targets for NSCLC, pooled
epigenome-wide CRISPR knockout screens were performed
both in vitro and in vivo . The histone chaperone
nucleophosmin 1 (Npm1) was detected as a prospective
therapeutic target (4). Furthermore, delivering nucleic acid-
based therapeutics to cells has become a promising approach
TABLE 1 | Summary of epigenetic approaches for NSCLC in clinic.

Tumor type Drug Study
size

Developer Highest trial
stage

NSCLC Azacitidine 120 Sidney Kimmel Comprehensive Cancer Center
at Johns Hopkins

Phase 2
Entinostat
Nivolumab

Carcinoma, NSCLC, Lung Cancer, Esophageal, Malignant Pleural
Mesotheliomas

Decitabine (DAC) 85 National Cancer Institute (NCI) Phase 2
Tetrahydrouridine
(THU)
Pembrolizumab

NSCLC Nivolumab oral
decitabine

13 Case Comprehensive Cancer Center Phase 2

Tetrahydrouridine
Carcinoma, NSCLC nab-paclitaxel IV 240 Celgene Phase 2

CC-486
Duravalumab

Lung Cancer Pembrolizumab 28 Memorial Sloan Kettering Cancer Center Phase 1
Guadecitabine
Mocetinostat

Small Cell Carcinoma, Carcinoma, NSCLC, Neuroendocrine Tumors,
Ovarian Epithelial Cancer

RRx-001 213 EpicentRx, Inc. Phase 2
Cisplatin
Etoposide
Carboplatin
Irinotecan
Vinorelbine
Doxil
Gemcitabine
Taxane
Paclitaxel
Nab-Paclitaxel
Pemetrexed

Carcinoma, NSCLC CC-486 100 Celgene Phase 2
Pembrolizumab
Placebo
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to target the genetic cause of various diseases, with the capacity to
regulate protein production. Libraries of ionizable lipid
nanoparticles (LNPs) were designed to encapsulate mRNA,
inhibiting its degradation and facilitate intracellular delivery
(225). Besides, a number of siRNA-encapsulated LNPs have
been applied in the treatment of intractable diseases, namely,
cancer, genetic diseases, and inflammatory neurological disorder
(226). Current powerful CAR T cell engineering methods using
viral delivery vectors could lead to constant CAR expression and
severe adverse reactions. The designed LNPs were utilized to
deliver mRNA to primary human T cells to generate functional
protein expression, indicating the potent possibility of LNPs to
improve mRNA-based CAR T cell engineering methods (227).

Both diagnostic and therapeutic methods are crucial for
timely and effective treatment of NSCLC. More exact research
on mechanisms beneath epigenetic alteration and inflammation
are demanded to provide foundation and recommendation for
future treatment of NSCLC. Research can also utilize superior
gene editing approaches to enhance treatment efficacy.
Epigenetic drugs hold remarkable therapeutic potential to be
optimized and utilized for a broad range of NSCLC patients.
CONCLUSIONS

We elucidated epigenetic alteration and inflammation-related
carcinogenesis from the aspects of gene modulation and cellular
level. The roles that epigenetics and inflammation played in
tumor progression are complex and can be used for biomarker
detection and therapy for NSCLC. The epigenetic therapy has
Frontiers in Immunology | www.frontiersin.org 10
been described by data from preclinical and clinical studies,
providing wide application prospects. With an enhanced
understanding of the exact regulating mechanisms that
underlie the epigenetics and inflammation influenced factors
and target genes of NSCLC, there will be further opportunities to
improve the current prognosis for NSCLC and present a new era
in the approach for treatment development for NSCLC patients
as new anti-tumor drugs or combination with immunotherapy,
chemotherapy or other targeted therapy.
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