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Abstract

Background: The past thirty-five years have seen an intense search for the molecular
mechanisms underlying calcium-induced calcium-release (CICR) in cardiac myocytes,
with voltage clamp (VC) studies being the leading tool employed. Several VC
protocols including lowering of extracellular calcium to affect Ca2+ loading of the
sarcoplasmic reticulum (SR), and administration of blockers caffeine and thapsigargin
have been utilized to probe the phenomena surrounding SR Ca2+ release. Here, we
develop a deterministic mathematical model of a rat ventricular myocyte under VC
conditions, to better understand mechanisms underlying the response of an isolated
cell to calcium perturbation. Motivation for the study was to pinpoint key control
variables influencing CICR and examine the role of CICR in the context of a
physiological control system regulating cytosolic Ca2+ concentration ([Ca2+]myo).

Methods: The cell model consists of an electrical-equivalent model for the cell
membrane and a fluid-compartment model describing the flux of ionic species
between the extracellular and several intracellular compartments (cell cytosol, SR and
the dyadic coupling unit (DCU), in which resides the mechanistic basis of CICR). The
DCU is described as a controller-actuator mechanism, internally stabilized by negative
feedback control of the unit’s two diametrically-opposed Ca2+ channels (trigger-
channel and release-channel). It releases Ca2+ flux into the cyto-plasm and is in
turn enclosed within a negative feedback loop involving the SERCA pump,
regulating [Ca2+]myo.

Results: Our model reproduces measured VC data published by several laboratories,
and generates graded Ca2+ release at high Ca2+ gain in a homeostatically-controlled
environment where [Ca2+]myo is precisely regulated. We elucidate the importance of
the DCU elements in this process, particularly the role of the ryanodine receptor in
controlling SR Ca2+ release, its activation by trigger Ca2+, and its refractory
characteristics mediated by the luminal SR Ca2+ sensor. Proper functioning of the
DCU, sodium-calcium exchangers and SERCA pump are important in achieving
negative feedback control and hence Ca2+ homeostasis.

Conclusions: We examine the role of the above Ca2+ regulating mechanisms in
handling various types of induced disturbances in Ca2+ levels by quantifying cellular
Ca2+ balance. Our model provides biophysically-based explanations of phenomena
associated with CICR generating useful and testable hypotheses.
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Background
Contraction of cardiac muscle is triggered by a transient rise in intracellular Ca2+ con-

centration [Ca2+]myo. Sarcolemmal (SL) membrane depolarization triggers Ca2+ influx

from the extracellular medium by opening dihydropyridine (DHP)-sensitive L-type

Ca2+ channels. Following diffusion across a small sub-membrane dyadic space, this

influx activates ryanodine receptors (RyRs) controlling ryanodine-sensitive Ca2+ release

channels in the junctional portion of the sarcoplasmic reticulum (jSR). Fabiato and

Fabiato [1] named the process calcium-induced calcium release (CICR). Ca2+ subse-

quently diffuses from the dyadic space into the cytosol. Ultimately, intracellular Ca2+

concentration [Ca2+]myo is returned to resting levels by combination of: (a) Ca2+ buf-

fering in the dyadic space and cytosol; (b) sequestration of Ca2+ by sarcoplasmic/endo-

plasmic reticulum Ca2+-ATPase (SERCA)-type calcium pumps lining the longitudinal

portion of the sarcoplasmic reticulum (LSR); and (c) Ca2+ extrusion from the cytosol

by Na+/Ca2+ exchangers and Ca2+-ATPase pumps on the sarcolemmal membrane.

CICR in cardiac muscle exhibits both graded behavior and a high gain. Graded beha-

vior refers to the obser-vation that SR Ca2+ release is proportional to the influx of trigger

Ca2+ [2], whereas high gain indicates that the SL trigger current elicits a high SR Ca2+

release flux. Graded Ca2+ release with high gain is somewhat paradoxical according to

Stern [3], in that the positive feedback inherent in such high-gain systems tend to pro-

duce regenerative, nearly all-or-none release rather than graded release. Several determi-

nistic models have been developed to explain excitation-contraction (E-C) coupling

[4,5], but none of them can explain the mechanism of graded release at high gain over a

wide range of values for sarcolemmal Ca2+ current. Stern [3] proposed that such a gra-

dation paradox might be explained if the stimulus for Ca2+ release by RyRs were actually

the local nanodomains of [Ca2+] generated by nearby L-type channels, rather than the

global cytosolic [Ca2+]myo. According to this hypothesis, graded control of macroscopic

SR Ca2+ release can be achieved by graded statistical recruitment of individual, autono-

mous, all-or-none stochastic release events [6]. In these studies, a distributed differential

model of high order that included dynamic interactions between large numbers of indi-

vidual channels was used to demonstrate this concept. However, rather large amounts of

computation time are required with distributed stochastic models of this type. Addi-

tional models have sought to characterize the Ca2+ release complex, including several

[7-9] based on the stochastic release process adopted by Stern et al. These statistical

models have solved the graded release problem, however, they too are complicated and

computationally very expensive. Other models based on the simplified local control

model of CICR developed by Hinch et al. [10] sought to adopt a lower order description

of the E-C coupling process [11,12] by making an approximation of rapid equilibrium in

the dyadic space. The latency from onset of Ca2+ entry via the ICa,L channel to triggered

SR Ca2+ release is known to increase with decrease in the magnitude of ICa,L,TT [13], the

modeling of which is made possible by considering Ca2+ diffusion in the dyadic medium.

These models [11,12] also approximate the SR as a single volume compartment with no

distinction between junctional versus the longitudinal (network) SR compartments.

However, recent work [14] points towards the important role of the Ca2+ refilling rate

from the network to junctional SR in controlling RyR release termination via the luminal

sensor. Shiferaw et al. [15] developed a computationally tractable model of Ca2+ cycling

to represent the release of calcium from the SR as a sum of spatially localized events
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that correspond to Ca2+ sparks, assuming the recruitment rate of Ca2+ sparks is directly

proportional to the whole-cell ICa,L current. This assumption overlooks the complex cal-

modulin mediated interaction (calcium dependent facilitation (CDF) and calcium depen-

dent inactivation (CDI)) of the ICa,L channel with calcium in its vicinity. It also demands

a large amount of computation.

Numerically, distributed as well as statistical models tend to be computationally

expensive due to the in-herent repetition involved in the computation. In a spatially

distributed model, simultaneous solution for dynamics in identical compartments dis-

tributed in space would amount to a large computational cost. In statistical models

inference is drawn based on multiple runs of identical events which translate into a

prolonged simulation time. Hence, these models are cumbersome to implement, parti-

cularly in larger multiple-cell simulations. Consequently, we consider a deterministic

approach to the characterization of CICR. Specifically, we develop a lumped model of

the Ca2+ release complex that includes: (a) a sub-sarcolemmal dyadic cleft space separ-

ating the SL and jSR membranes; (b) a single DHP-sensitive Ca2+ channel on the SL

membrane; and (c) a single equivalent Ry-sensitive channel arranged symmetrically on

the opposing jSR membrane that represents the output of a local cluster of Ry-sensitive

channels facing the DHP-sensitive channel. Based on morphological data compiled by

Bers [16], we further assume that each ventricular cell contains 10,000 of these dyadic

Ca2+ release units, and that they are associated with the fraction of the SL membrane

that is coupled with the jSR. That is, we partition the sarcolemma into free and dyadi-

cally coupled SL membrane, and associate each with a different fluid compartment: the

cell cytosolic medium in the case of the free SL membrane, and the dyadic cleft space

medium in the case of the dyadic-coupled fraction. In a sense, we build on Stern’s [3]

local domain concept by considering the aforementioned local nanodomains identical,

but focusing on the nonlinear dynamics of the two different types of Ca2+ channel in

the dyadic coupling unit. Our deterministic model although is very descriptive, is com-

putationally tractable and has a run time of 21 sec (including recording of 73 variables

of type double on a data file) for 1 cycle of 4 Hz voltage clamp stimulation.

Methods
Experimental Methods

Rat ventricular myocytes were prepared from 200-300 g male Sprague Dawley rats by

dissociation with collagenase, as previously described [17]. All experiments were per-

formed under conventional whole cell recording conditions with a List EPC-7 patch

clamp, recording fluorescence from nearly the entire cell, as described by Fan and

Palade [17]. Recordings from an individual cell were rarely extended beyond 10 min in

order to reduce as much as possible both escape of dye from the cell and Ca2+ current

rundown. External solution in the bath was normal Tyrode (1 mM Ca2+) with Cs+ sub-

stituted for K+ for purposes of blocking inward rectifier K+ currents. The internal solu-

tion in the pipette contained Cs aspartate supplemented with 20 mM CsCl, 3 mM

Na2ATP , 3.5 mM MgCl2 and 5 mM HEPES. Holding potential used was -40 mV.

Computational Aspects

All simulations and analysis were performed on a 2.8 GHz Intel® Core™2 Duo CPU-

based computer using Microsoft Windows XP operating system. To find the

Krishna et al. Theoretical Biology and Medical Modelling 2010, 7:43
http://www.tbiomed.com/content/7/1/43

Page 3 of 66



parameters involved in the 6 state Markovian model for ICa,L, a non-linear least-

squares method [18] was used to obtain the solution of the system of non-linear ordin-

ary differential equations. Specifically, we have employed an algorithm given by Lau

[19]. The numerical integration scheme used to solve the full set of forty two 1st-order

differential equations describing the dynamic model was the Merson-modified Runge-

Kutta 4th-order method [20,21] with a conservative fixed time step, chosen small

enough to allow the local truncation error to be of fourth order. The explicit finite dif-

ference scheme was used to numerically solve the Laplacian equations of Ca2+ diffu-

sion in the cleft space. Detailed numerical methods are similar to those presented by

Smith et al. [22]. The results were visualized using Matlab by Mathworks and Origin

by Microcal Software.

Model Development

Our objective was to develop a model of the rat ventricular cell which could be used to

explain Ca2+ signaling at the nanoscale level of the dyad and integrate the contribu-

tions of many dyads to produce a Ca2+ transient and continuous Ca2+ balance at the

whole-cell level. Therefore, we start with a broad discussion of the elements of the

DCU and its Ca2+ supply (the jSR), and continue with a progressively more detailed

description of the whole cell model. It is important to note that all Ca2+ concentra-

tions discussed in the model pertain to unbound Ca2+ unless specified.

Membrane Classification

We assume that a continuous membrane barrier exists between the cytoplasm and the

external bathing medium (Figure 1A; Figure 2), which consists of two components: a

surface sarcolemma (SL) (MFreeSL in Figure 3) free of any sub-membrane contact with

the junctional sarcoplasmic reticulum (jSR) and the remnant membrane (MJunctionalSL

in Figure 3) that does make contact with the jSR via a dyadic space (nanodomain) (Fig-

ure 1A). These membrane components have the same basic plasma membrane, but dif-

fer in content with regard to total membrane surface area, type and distribution of

transmembrane ion channels, ATPase pumps and exchangers, as well as their func-

tional coupling with a dyadic space. Ultrastructural information from several cardiac

preparations including the rat ventricular cell has been compiled by Bers [16], which

can be used to estimate the percentage of the cell membrane in contact with a dyadic

space, for either the free surface plasmalemma or for the transverse tubule (TT) which

brings the extracellular medium to the plasma membrane of the dyadic coupling unit.

Thus, the bounding membrane is divided into two lumped parts (free and coupled)

based on the existence of sub-membrane coupling to a dyadic space (Table 1). A por-

tion of membrane could be part of a transverse tubular membrane, but if there is no

dyadic coupling involved, that membrane would be classified as belonging to the free

surface plasmalemma. Another portion of membrane might be part of the bounding

outer surface of the cylindrical cell and yet have submembrane coupling to a dyadic

space. In this case, it would be classified as belonging to the coupled category. Table 2

gives values for volumes of the fluid compartments (shown in Figure 3) assumed for

the rat ventricular cell, which are largely based on measured data from rat ventricular

myocytes [16].
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Channel and Exchanger Distribution

Recent research has also shown that besides L-type Ca2+ channels, Na+/Ca+ exchanger

activity is also found predominantly in the T-tubules of rat ventricular myocytes [23].

Our model configuration reflects this finding in that the tubular fraction of ICa,L ,INaCa
and INaCs channels facing a unitary dyadic space are denoted as iCa,L,TT (source of trig-

ger Ca2+ into a unitary dyad), iNaCa,TT and iNaCs,TT respectively (Figure 2). The free

sarcolemmal component of these same channels are denoted as ICa,L,SL, INaCa,SL and

INaCs,SL respectively. ICa,L,TT is the total current entering through L-type Ca2+ channels

via all the dyadic units (Ndyad). We define the total L-type current ICa,L as the combi-

nation of ICa,L,TT and ICa,L,SL (i.e., ICa,L = ICa,L,TT + ICa,L,SL). ICa,L in our model is mostly

(90%) from the L-type Ca2+ current in the T-tubules, since Kawai et al. [24], found L-

type current to be highly concentrated (9-fold) in the T-tubules (ICa,L,TT) vs. the cell

surface sarcolemma (ICa,L,SL) of rat ventricular myocytes. We described the ICa,L chan-

nel using a 6-state Markovian model as shown in Figure 4A. The distribution of INaCa
and INaCs correspond to that of ICa,L channel in order to ensure Ca2+ and Na+ ion

balance.

Since our study is focused on voltage clamp testing of Ca2+ transients in rat ventri-

cular cells, we assume that the majority of Na+ and K+ channels are blocked by either

the holding potential used (-40 mV) or appropriate blocking agents. Thus, these chan-

nels are not modeled, and we assume that only the dihy-dropyridine (DHP) -sensitive

Figure 1 Cellular fluid compartments. Figure 1: Cellular fluid compartments. (a) Model configuration
showing dyadic space, jSR, LSR, cytoplasm and SL; (b) Inset provides a more detailed description of the
dyadic space showing the coupling of the two types of Ca2+ channels (trigger and Ca2+ release channels)
via the dyadic fluid medium. Only one representative dyadic coupling unit is shown, however the whole
model contains such 10,000 identical units lumped together.
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Ca2+ channels, the electrogenic pumps, Na+/Ca+ exchangers and Na+/Cs+ pumps

expressed in the free and/or coupled SL membranes contribute to the voltage clamp

response. Table 3 provides values for various parameters used to model the ion trans-

port across the sarcolemmal membrane.

The SR Fluid Compartment

The SR is an intracellular organelle that consists of two lumped fluid compartments

(the jSR and LSR) that communicate (Figure 1A; Figure 3). Like the sarcolemma, the

bounding membranes of the jSR and LSR are differentiated regarding their ionic cur-

rent content and degree of coupling with the sarcolemma. With regard to ionic cur-

rents, the LSR membrane has a thapsigargin-sensitive SERCA pump for pumping Ca2+

into the LSR lumen against a concentration gradient. In contrast, the jSR membrane

contains an outwardly directed ryanodine (Ry)-sensitive channel for Ca2+ release from

the jSR to the dyadic space. The jSR fluid compartment contains the Ca2+ binding pro-

tein calsequestin as well as the proteins triadin and junctin, which interact with the

ryanodine receptor (RyR) and calsequestrin. This co-located configuration of the RyR

receptor, along with the proteins calsequestrin, triadin and junctin which exist on the

luminal side of the jSR membrane, constitutes a jSR Ca2+ release regulating mechan-

ism called the luminal sensor (Figure 4B; Figure 5). The protein-protein interaction

between them plays an important role in regulating the open-state of the RyR Ca2+

release channel [25]. A six-state Markovian scheme (Appendix A1, Equations 87-92) is

used to describe the dynamics of this interaction and it is called the SR luminal Ca2+

Figure 2 Electrical equivalent circuit for the plasma membrane of a rat ventricular cell. Figure 2: Cm,

TT : membrane capacitance of the junctional SL membrane coupled with the dyadic space; Cm,SL:
membrane capacitance of the uncoupled free SL membrane; Currents through the uncoupled free SL
membrane are (a) ICa,L,SL: L-type calcium current, (b) INa,SL: sodium current through the DHPR channel, (c) ICs,
SL: cesium current through the DHPR channel, (d) INaCa,SL: sodium-calcium exchanger current, (e) INaCs,SL:
sodium-cesium exchanger current, (f) IPMCA: calcium pump current, (g) INa,b : background sodium current;
Currents through the junctional SL membrane coupled with a dyadic space are (h) ICa,L,TT : L-type calcium
current; (i) INa,TT : sodium current through the DHPR channel, (j) ICs,TT : cesium current through the DHPR
channel, (k) INaCa,TT : sodium-calcium exchanger current, (l) INaCs,TT : sodium-cesium exchanger current; Vo:
potential in external medium; Vi: intracellular potential; The coupling resistance between the surface
sarcolemma and the transverse tubules being very small is neglected in our model hence Vm: common
transmembrane potential across both uncoupled and coupled membranes.
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sensor. Figure 4B shows a functional diagram of the luminal sensor and its output state

is shown connected to the four-state RyR model. Specifically, the sensor adjusts Ca2+

dependent rate functions within the ryanodine receptor model, which affects the open

probability Po of the SR Ca2+ release channel.

With regard to coupling, the DHP and Ry-sensitive Ca2+ channels are assumed to be

located on opposite sides of the small dyadic fluid space (nanodomain) as shown in

Figure 6, and coupled functionally by a CICR mechanism. The dyadic space is assumed

to be in fluid communication with the cell cytoplasm via a restricted diffusion region.

In contrast, the LSR is not functionally coupled to the sarcolemma, but rather is in

contact with the cytoplasm via the SERCA pump (as shown in Figure 3). Table 4 pro-

vides values for parameters used to model the intracellular ion transport.

The Dyadic Coupling Unit (DCU)

In describing this functional unit it is necessary to provide progressively more detailed

descriptions of the component elements of the individual dyad, particularly the geome-

trically opposed DHP and Ry-sensitive Ca2+ channels, as well as the geometry and

Figure 3 Fluid compartment model. Figure 3: Representative fluid compartment model, showing
membrane surface area separating different compartments. MFreeSL: free SL membrane; MJunctionalSL:
junctional SL membrane; MjSR: junctional SR membrane; MLSR: Longitudinal SR membrane.

Table 1 Surface area of various plasma membranes in the cell

Variable Description Value

AExt.SL Surface area of external SL 11.4 × 103 μm2

ATT Surface area of T-tubule 5.52 × 103 μm2

ATotSL Surface area of total SL (including external SL and T-tubule) 16.9 × 103 μm2 (*)

AJunctExt.SL Surface area of junctional external SL 0.846 × 103 μm2

AJunctTT Surface area of junctional T-tubule 2.54 × 103 μm2

ATotJunct Surface area of total junctional plasma membrane 3.39 × 103 μm2

AJunctSR Surface area of junctional SR 6.99 × 103 μm2

ALongSR Surface area of longitudinal SR 36.8 × 103 μm2

ATotSR Surface area of total SR 43.8 × 103 μm2

*Electrical capacitance of the cell membrane = 169 pF (using 1 μF/cm2).

Table 1: Surface area of various plasma membranes in the cell. All the above parameters are derived from Bers [16].
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buffering properties of the small dyadic space. As will be shown, we have described the

dynamics of both types of Ca2+ channels using Markovian state models (Figure 4)

which include features such as Ca2+ mediated channel inactivation, a graded CICR

process with a “calcium gain” of approximately 6-7, and two-dimensional Ca2+ diffu-

sion within the dyadic space. Crank [26] discusses diffusion problems in a two-phase

heterogeneous medium and shows that diffusion through a system of barriers (RyR

feet structures in the dyadic cleft space) can be approximated by diffusion in the same

region without barriers but with a reduced effective diffusion coefficient. We hence

take this approach in modeling the Ca2+ diffusion by solving the 2-D Laplacian

Table 2 Parameters used to model sub-cellular morphology

Parameter Definition Value References

Ndyad Number of dyadic units 10000 [8]‡

Vmyo Myoplasmic volume 5.3581 × 10-2 nL [16]†

VLSR Longitudinal SR volume 1.1776 × 10-3 nL [16]*

VjSR
N dyad
∑ Total junctional SR volume 1.104 × 10-4 nL [16]*

Δr Step size in the ‘r’ direction 10 nm Numerical solution†

d Diameter of the cylindrical cleft space in the ‘r’ direction 400 nm [119,8,120,121,6]‡

Δz Step size in the ‘z’ direction 0.76 nm Numerical solution†

h Length of the cylindrical cleft space in the ‘z’ direction 15.2 nm [119,8,120,121,6]‡

Vcleft Volume of a unit dyadic space 1.91 × 10-9 nL –

Table 2: Parameters used to model sub-cellular morphology. Adopted (*), derived (†) or estimated (‡) from the cited sources.

Figure 4 Calcium channel dynamics. Figure 4: Calcium channel dynamics. (a) Markovian model
describing the DHP-sensitive Ca2+ channel, and (b) Markovian model of the Ry-sensitive Ca2+ channel and
the luminal SR Ca2+ sensor. Input from the luminal SR Ca2+ sensor modulates the rate constants in the
model of Ry-sensitive channel exercising the indirect bias of luminal [Ca2+]jSR on the RyR receptor.
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equation Appendix A3 (Equations 147-150) in the DCU without explicitly accounting

for local potential fields. The DHP-sensitive iCa,L,TT channel brings in trigger Ca2+ (0.1

pA which is of the same order as measured by Wang et. al. [13]) causing a sparklet (a

local increase in Ca2+ concentration at the mouth of the channel). This trigger Ca2+

causes a release from a cluster of opposing RyR channels, causing a spark. This com-

bined release from a cluster of RyR channels causing a spark is represented as the

release from a unitary RyR channel (iRyR) in our model (shown in Figure 6). The char-

acteristics of elemental Ca2+ release from a unitary RyR channel in our model agrees

with data in terms of amplitude which is of the order of 3 pA (reported by Cheng

et al. [27] and Blatter et al. [28]) and duration (full duration at half maximum

(FDHM)) which is of the order of 50 ms (reported by Zima et al. [14]).

The single DCU in our model represents the lumped activity of a large number of

individual dyads (e.g. 10,000), and it is charged with the task of forming the cytosolic

Ca2+ transient (hence mechanical contraction) each beat of the cardiac muscle cell. In

response to tonic application of voltage clamp pulses, the DCU strongly depends on an

adequate supply of Ca2+ from the SR. The measurements of Diaz et al. [29] show that,

although trigger current may be supplied regularly by tonic voltage clamp pulses, there

is an inherent steady-state dependence of the magnitude of Ca2+ release on the parti-

cular value of SR Ca2+ content (i.e., there is a relationship between SR Ca2+ content

Table 3 Parameters used to model ion transport across the sarcolemmal membrane

Parameter Definition Value References

F Faraday’s constant 96485 coul · mol-1 –

R Ideal gas constant 8314 mJ · mol-1 · K-1 –

T Absolute temperature 290 K Measured

[Ca2+]o Extracellular Ca2+ concentration 1.0 mM Measured

[Na+]o Extracellular Na+ concentration 140.0 mM Measured

[Cs+]o Extracellular Cs+ concentration 3.0 mM Measured

ZNa, ZCs Valence of Na+ and Cs+ ions 1.0 –

ZCa, ZBa Valence of Ca2+ and Ba2+ ions 2.0 –

PCa Permeability of L-Type calcium channel to Ca2+ 6.7367 × 10-9 μL · s-1 [30]*

PNa Permeability of L-Type calcium channel to Na+ 8.0355 × 10-11 μL · s-1 [30]*

PCs Permeability of L-Type calcium channel to Cs+ 6.2088 × 10-11 μL · s-1 [30]*

KmAllo Dissociation constant for allosteric Ca2+ activation 125 × 10-6 mM [85]*

KmCao Dissociation constant for extracellular Ca2+ 1.14 mM [85]*

KmCai Dissociation constant for intracellular Ca2+ 0.0036 mM [122]*

KmNao Dissociation constant for extracellular Na+ 87.5 mM [83]*

KmNai Dissociation constant for intracellular Na+ 12.3 mM [85]*

Vmax Maximum Na+/Ca+ exchange current 776.2392 pA [85]*

kmpca Half saturation constant for the SL Ca2+ pump 0.5 μM [30]*

I PMCA Maximum sarcolemmal Ca2+ pump current 1.15 pA [30]*

Kmcs Dissociation constant for extracellular Cs+ 1.5 × 103 μM [94,92,88,74]‡

Kmna Dissociation constant for intracellular Na+ 2.14 × 105 μM [94,92,88,74]‡

I NaCs Maximum Na+/Cs+ pump current 147.3 pA [94,92,88,74]‡

GNab Maximum background Na+ current conductance 0.00141 nS [30]*

Ra Mean access resistance of the tubular system 20.0 kΩ [123]*

Table 3: Parameters used to model the transmembrane currents ICa,L , INaCa, IPMCA, INaCs and the background sodium
current INa,b. Adopted (*) or estimated (‡) from the cited sources.
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and peak [Ca2+]myo ; Figure 4 Diaz et al. [29]). This plot gives us a glimpse of the

input-output relationship of the dyadic coupling unit and indicates that SR Ca2+ con-

tent is an important controlling variable for the CICR process implemented by the

DCU model.

L-Type Ca2+ Current

A multiple state characterization of ICa,L in rat ventricular myocytes has been reported

previously by our group [30]. The gating scheme used in this ICa,L model has an addi-

tional high voltage state C6dhpr as shown in Figure 4A which is introduced to repro-

duce ICa,L tail currents. Upon voltage-dependent activation, the channel achieves the

primary open state O2dhpr. The degree of opening is enhanced in the presence of acti-

vated calmodulin-dependent kinase (CaMKIIact) [31-33] which is known as Ca2

+-dependent facilitation (CDF). CaMKII has been shown to tether to the ICa,L channel

[34] functioning as a Ca2+ signalling sensor for facilitation. The open probability of the

ICa,L channel is also increased in the presence of activated calcineurin (CaNact) [35].

These two effects are modeled as shown in Figure 4A, where kdhpr
12 is a function of

Figure 5 Schematic of the CICR subsystem. Figure 5: Schematic of the CICR subsystem. The dyadic
coupling unit comprises of a DHP-sensitive Ca2+ channel opposing a Ry-sensitive Ca2+ channel. The
transmembrane proteins triadin and junction along with calsequestrin mediate the interaction between the
luminal Ca2+ and the RyR thus regulating the release of Ca2+ flux from the jSR into the dyadic space.
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both CaMKIIact and CaNact besides voltage. The gating scheme features two different

pathways for inactivation of the open state. The pathway O2dhpr ↔ C5dhpr accounts for

voltage-dependent inactivation, whereas the pathway O2dhpr ↔ C4dhpr ↔ C5dhpr with

Ca2+-calmodulin (Ca4CaM) dependent rate constant kdhpr
24 accounts for the fast and

slow phases of Ca2+-dependent inactivation (CDI) [36]. Transitions to the closed state

via both the inactivation pathways are suppressed in the presence of CaMKIIact and

CaNact to allow CDF. A 2-state Markovian model allows Ca2+ mediated interaction

between calmodulin and the ICa,L channel. As shown in Figure 4A, state S2dhpr, which

denotes Ca4CaM bound to the IQ-motif of the ICa,L channel, modulates calmodulin

dependent Ca2+-induced inactivation. This is in agreement with the findings of Nikolai

M. Soldatov [37]. Our approach to modeling the effects of the proteins CaM, CaMKII,

and CaN on the ICa,L channel was based on the premise that they are co-localized with

the channel itself [35]. Most of the beat-to-beat modulation is produced by CaM and

CaMKII, whereas CaN is constitutively active in the dyad [38]. Tables 5, 6 and 7 pro-

vide values for the rate constants used to model Ca2+/CaM binding, CaM buffering,

Ca2+/CaM/CaMKII as well as Ca2+/CaM/CaN interactions.

Figure 6 Schematic of the Dyadic nanodomain. Figure 6: Schematic of the LCC-RyR coupling. The
dyadic cleft allows Ca2+ signaling between a DHP-sensitive Ca2+ channel opposing a cluster of Ry-sensitive
Ca2+ channels (represented as the release channel iRyR in our model). The trigger sparklet due to Ca2+

entering via DHP-sensitive iCa,L,TT channel causes a spark as a result of release from a cluster of opposing
RyR channels. The large amount of Ca2+ released subsequently diffuses into the cytosol.
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Our previous study [30] was focused on the characterization of the ICa,L channel under

conditions of low [Ca2+] in the dyadic space and myoplasm. In fact, Ca2+- release from

the jSR was blocked by administering a relatively high dose of ryanodine (20 μM) in all

experiments. Therefore, to study the additional influence of SR Ca2+ release on ICa,L, we

modified the original ICa,L model to better characterize the process of Ca2+-dependent

inactivation. In the modified ICa,L model, majority of the structure for the 6-state dynamic

scheme remains the same, however changes have been made to the voltage-dependent

inactivation rate function ( kdhpr
25 ), and the Ca4CaM dependent inactivation rate function

( kdhpr
24 ). The specific formulas for the Markovian state equations and the modified kdhpr

25

and kdhpr
24 functions used in this study are given in Appendix A1 (Equations 4-50). Our

adjustments consist of reducing the contribution from voltage-dependent inactivation pro-

cess and strengthening the Ca4CaM-dependent inactivation process. The rate constants

kdhpr
36 and kdhpr

63 are constructed in order to provide a re-excitation window during the

return of the clamp voltage to the resting potential. With these adjustments, the Marko-

vian state description for ICa,L can provide good fits to measured ICa,L data under both test

conditions (presence and absence of ryanodine -sensitive Ca2+ release) as well as produce

tail currents during repolarization from large clamp voltages (≥ 40 mv).

Calcium Buffering in the Dyadic Space

Previous modeling work by Post et al. [39], and Post and Langer [40] considered the

effect of Ca2+ binding sites on the inner sarcolemmal leaflet. Following these authors,

we included low-affinity (kd = 1.1 mM) and high-affinity (kd = 1.3 μM) Ca2+ binding

sites on SL wall boundary of cylindrical dyadic space. The presence of these membrane

Table 4 Parameters used to model intracellular ion transport

Parameter Definition Value References

k PLB
12 rate of PLBdp phosphorylation 6800 s-1 [77]*

k PLB
21 rate of PLBp dephosphorylation 1000 s-1 [77]*

Kcyt,serca Maximal binding/release rate of Ca2+ from cytosol to SERCA 6250 s-1 [77]*

Kserca,sr Maximal binding/release rate of Ca2+ from SERCA to LSR 6.25 s-1 [77]*

SERCAtot Total amount of SERCA 47.0 μM [77]*

PSR Phospholamban to SERCA ratio 1.0 [77]*

PKAact Relative regulatory activity of PKA 0.1 [77]†

τtr Time const. for transfer of Ca2+ from LSR to jSR 7.0 × 10-3 s [30]‡

τNa Time const. for transfer of Na+ from dyad to myoplasm 1.0 × 10-3 s [30]‡

τCs Time const. for transfer of Cs+ from dyad to myoplasm 6.0 × 10-3 s [30]‡

Pryr Permeability of the RyR channel 1.714 × 10-7 μL · s-1 [27,28,13]‡

DCa Diffusion constant for Ca2+ in the dyadic space 100.0 μm2s-1 [119]*

Nh Density of high-affinity Ca2+ binding sites 200.0 μM [119]‡

Nl Density of low-affinity Ca2+ binding sites 16.0 μM [119]‡

Kl Half-saturation value of low-affinity Ca2+ binding site 1100.0 μM [119]*

Kh Half-saturation value of high-affinity Ca2+ binding site 13.0 μM [119]*

[Mg2+]myo Intracellular Mg2+ concentration 634 μM [124]*

[fluo3]tot total concentration of indicator dye 100.0 μM Measured

k fluo3
+ association rate of Ca2+ binding to dye fluo-3 80 μM -1 · s-1 [125]*

k fluo3
− dissociation rate of Ca2+ binding to dye fluo-3 90 s-1 [125]*

Table 4 Parameters used to model the intracellular ion transport Icyt,serca, Iserca.sr, Itr, IRyR, and Ca2+ diffusion/buffering.
Adopted (*), derived (†) or estimated (‡) from the cited sources.
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bound sarcolemmal Ca2+ binding sites in our model has significant physiological impli-

cations, in that it prevents local dyadic Ca2+ concentration near the “mouth” of DHP-

sensitive ICa,L channel from becoming excessively high. Allowing such a condition to

occur can cause a reversal of the ICa,L current, which does not occur physically during

normal jSR release. Addition of these SL Ca2+ binding sites does not significantly slow

the build-up of Ca2+ within the dyadic space, nor is the Ca2+-induced Ca2+ release

mechanism affected [41].

Ca2+ Release Channel

The gating characteristics of the Ry-sensitive release channel are not only modulated by

the dyadic Ca2+ concentration at its mouth but also the jSR Ca2+ concentration via the

luminal sensor. Several RyR gating schemes have been deduced from isolated RyR cur-

rents measured in lipid bilayers, including: (1) the 4-state scheme developed by Keizer

and Levine [42] with 4 Ca2+ binding for activation and 3 Ca2+ binding for inactivation

to explain the “adaptation” of the RyR observed by Gyorke and Fill [43]; (2) the 6-state

scheme suggested by Zahradnikova and Zahradnik [44], which allowed opening the RyR

channel upon binding of a single calcium ion; and (3) the Markov model proposed by

Keizer and Smith [45], which can be dynamically switched among the six, five and four-

state representations during the simulation as Ca2+ levels vary. Stern et al. [6] demon-

strated that none of these schemes yielded stable local control of SR release, even with

extensive adjustment of parameters. Stern et al. [6] further reported that all schemes

resulted in models that manifested local instability, as indicated by failure of release to

terminate after activation, or global instability caused by spontaneous activation by rest-

ing [Ca2+]myo. Since many of the kinetic gating schemes derived from lipid bi-layer data

fail to support stable E-C coupling in simulations, he concluded that the RyR gating pro-

cess in situ may differ considerably from that in bi-layers.

Our gating scheme is patterned after the release channel used in the model of Stern,

Pizarro and Rios [46] (Figure 4B), where the channel is assumed to have four states:

rest (closed), activated (open), inactivated (closed) and refractory (closed). The activa-

tion gate is opened by the simultaneous, cooperative binding of two Ca2+ ions, whereas

inactivation depends on the binding of a single Ca2+ ion. Four additional features have

been built into our model: (a) the crucial role of the luminal SR Ca2+ sensor (Figure 5)

in assisting the inactivation of the RyR channel is modeled via the dependence of all

Table 5 Rate constants used to model Ca/CaM binding and CaM buffering

Rate Constant Value Rate Constant Value

kCM
02 4.8387‡ k B

CM
42 kCM

42

kCM
20 10.0* k Bon

CM
0 3.5 × 10-4‡

kCM
24 3.4722‡ k Boff

CM
0 1.4 × 10-6‡

kCM
42 500.0* k Bon

CM
2 k Bon

CM
0

k B
CM
02 kCM

02 k Boff
CM
2 k Boff

CM
0

k B
CM
20 kCM

20 /100 k Bon
CM
4 k Bon

CM
0

k B
CM
24 kCM

24 k Boff
CM
4 k Boff

CM
0

Table 5: Rate constants used to model Ca/CaM binding and CaM buffering. Adopted (*) or estimated (‡) from
Saucerman et. al. [38].
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the rate constants in the 4-state RyR model, on the degree of interaction between the

RyR and the proteins triadin and junctin (Figure 4B); (b) CaMKIIact dependent

enhancement in RyR release [47-50] is modeled via the rate functions k ryr
12 , k ryr

41 , k ryr
43

and k ryr
32 ; (c) a stronger Ca2+ dependent inactivation of the RyR channel (at a fixed

depolarization level), is adopted to reflect recent observations that the inactivation of

the RyR depends on the high local Ca2+ concentration consequential to their own Ca2+

release [51]; and (d) inactivation of the RyR at different depolarization levels is made

dependent on local Ca2+ concentration (i.e., [Ca2+]ryr at the “mouth” of the RyR channel

on the dyadic side) as per Wier et al. [52] and Zucchi et al. [53]. Our initial studies

indicated that the repriming rate ( k ryr
32 ) in the RyR gating scheme of Stern et al. [46]

was quite large, which can lead to a saturated open probability of the Ca2+ release chan-

nel. This occurs during the later phase of channel inactivation, where the large value of

k ryr
32 tends to reactivate the channel, resulting in saturated Ca2+ release. Therefore, we

utilized a value of k ryr
32 that is 10% of that used by Stern et al. [46], and further assumed

that the unitary permeation flux of the jSR release channel is proportional to jSR luminal

Ca2+ concentration ([Ca2+]jSR). The specific equations for the Ca2+ release model are

given in Appendix A1 (Equations 73-92).

Luminal RyR sensor

The RyR Ca2+ release is modulated by a multi-molecular Ca2+ signalling complex

which is localized to the junctional SR [54-56]. This complex consists of the ryanodine

Table 6 Rate constants used to model Ca/CaM/CaMKII interactions

Rate Constant Value Rate Constant Value

kPP1 1.72 kCK
32 2.2

kmPP1 11.5 kCK
45 3.35 × 10-3

kCK
21 65.67164 kCK

54 3.4722

kCK
12 328.3582 kCK

46 2.2 × 10-3

kCK
13 3.4722 kCK

64 65.67164

kCK
31 3.35 kCK

56 328.3582

kCK
23 65.67164 kCK

65 65.67164

Table 6: Rate constants used to model Ca/CaM/CaMKII interactions. All the above parameters are adopted from
Saucerman et. al. [38].

Table 7 Rate constants used to model Ca/CaM/CaN interactions

Rate Constant Value Rate Constant Value

kCaon
CN 2.0 k on

CN
0 46.0

kCaoff
CN 1.0 k off

CN
0 537.966

kCN
02 4.8387 k on

CN
2 46.0

kCN
20 0.0606 k off

CN
2 3.2604

kCN
24 3.4722 k on

CN
4 46.0

kCN
42 0.199362 k off

CN
4 1.3 × 10-3

Table 7: Rate constants used to model Ca/CaM/CaN interactions. All the above parameters are adopted from Saucerman
et. al. [38].
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receptor (RyR) which functions as a Ca2+ conducting pore [57,58], calsequestrin (CS)

which acts as the Ca2+ binding protein [59,60], and the junctional SR transmembrane

proteins triadin [61] and junctin [62]. It was known previously that the proteins triadin

and junctin anchor calsequestrin to the ryanodine sensitive receptor [61]. More

recently, it has been observed that the protein-protein interactions between triadin, cal-

sequestrin and RyR modulate sarcoplasmic reticulum calcium-release in cardiac myo-

cytes [25]. Triadin and junctin are structurally homologous proteins [63], but the

functional differences in their roles are unclear at present. Therefore we have refrained

from modeling these proteins separately with unique roles, and will hereafter only

mention triadin. The RyR model proposed by Shannon et al. [64] takes a heuristic

approach towards free SR Ca2+ concentration dependent luminal control of the RyR

channel. Our detailed biophysical model of the luminal sensor is strongly based on the

recent findings of Terentyev et al. [25] which uncovers complex [Ca2+]jSR) dependent,

CS mediated mechanistic interaction of the protein triadin with the RyR channel.

The triadin protein facilitates SR Ca2+ release by sensitizing the RyR to activation by

the trigger current ICa,L,TT . This is incorporated in our model by allowing the rate

constants in the 4-state Markovian model for the RyR (Figure 4B-ii) channel to be

functions of the activated state A1ls, which represents the degree of binding between

triadin and RyR, in the 6-state model for the luminal sensor (Figure 4B-i).The degree

of triadin assisted anchoring of CS to the RyR channel [61,62] is denoted by the state

I2ls. Triadin is also known to exist in a form bound to CS alone [25] denoted by the

state I3ls and in its free unbound form represented as I4ls in the model. CS which is

known to exist in a Ca2+ bound form modeled by B6ls also modulates SR Ca2+ release

by influencing the open probability of the RyR channel [65-67], via interactions with

Triadin [54,66,25]. The degree of unbound CS is denoted by B5ls in the model.

During the diastolic period the relatively large concentration of available free Ca2+ in

the SR results in most of the CS being bound to Ca2+, decreasing the degree of inter-

action between CS and triadin. This enables a strong interaction between the available

unbound triadin and the RyR channel increasing its propensity for trigger Ca2+

induced SR release. Our model incorporates this property by facilitating movement of

states towards A1ls and B6ls in the presence of large SR Ca2+ concentration. Following

SR Ca2+ release, a reduced luminal Ca2+ concentration in the jSR causes an increase

in the amount of free calsequestrin (B5ls in the model) available to bind with triadin.

This results in a decrease in the extent of interaction between triadin and RyR (A1ls in

the model), thus inhibiting the RyR channel and leading to robust termination of SR

Ca2+ release in cardiac myocytes [66]. This release termination mechanism is incorpo-

rated in our combined RyR-Luminal sensor model (Figure 4B and Appendix A1, Equa-

tions 73-92).

Due to the lack of in-vivo measurements on individual state transitions, the rate con-

stants in our novel luminal sensor model (Table 8) are chosen such that (i) the triadin

mediated sensitization of the RyR channel (via A1ls) provides adequate peak RyR

release which translates into the upstroke velocity of the cytosolic Ca2+ transient; (ii)

the luminal sensor mediated RyR channel inactivation (via A1ls) causes timely release

termination resulting in a cytosolic Ca2+ transient duration, physiological for a rat ven-

tricular myocyte; (iii) the rate of post-release RyR recovery results in appropriate chan-

nel refractory characteristics. In the case of channels where there is an interaction

Krishna et al. Theoretical Biology and Medical Modelling 2010, 7:43
http://www.tbiomed.com/content/7/1/43

Page 15 of 66



between ion flow (which is not at equilibrium) and its gating mechanism the micro-

scopic reversibility criteria does not hold true [68,69]. The RyR channel which is solely

modulated by [Ca2+] (both on the dyadic side ([Ca2+]ryr) as well as the luminal side

([Ca2+]jSR)) experiences a strong interaction of Ca2+ flow through itself and its gating

mechanism described as [Ca2+]ryr induced self-inhibition and the luminal sensor

induced inactivation. Hence, the rate constants of the luminal sensor model (Figure

4B-i) are not constrained by microscopic reversibility criteria. However, a stability con-

straint in the form of, the sum of probabilities of all possible states corresponding to

triadin (A1ls, I2ls, I3ls, I4ls) and CS (I2ls, I3ls, B5ls, B6ls) being equal to one is explicitly

imposed Appendix A1, Equations 87-88) on the model of the luminal sensor in order

to avoid run-off.

Ca2+ Buffering in Myoplasm and SR

Ca2+ buffers play an important role in sequestering a fraction of the total Ca2+ released

during E-C coupling and contraction. These buffers include: (a) calmodulin (CaM),

which is assumed to be uniformly distributed in the myoplasm and dyadic space; (b)

troponin in the bulk myoplasm; and (c) calsequestrin (CS) in the jSR. The dyadic

space has been shown to be accessible to calmodulin (CaM), but mostly inaccessible to

fluorescent dyes [70,71]. Therefore, we consider the dyadic space filled with calmodu-

lin, but not fluo-3. This provides a more direct calcium communication pathway

between the DHP and Ry receptors. The rate constants for Ca2+ binding to calmodulin

were based on a model from [22], whereas those for Ca2+ binding to troponin were

taken from Potter and Zott [72]. Rate constants used to describe Ca2+ binding to calse-

questrin were based on the study of Cannell and Allen [73], whereas those for Ca2+

binding to troponin-Mg complex were adopted from Lindblad et al. [74].

It is well recognized that fluorescent indicator dyes introduced into the cytosol also

act as Ca2+ buffers [22], even at submillimolar concentrations [51]. In our simulations,

we have used 100μM fluo-3. We assume that the quantity observed experimentally as

a “calcium concentration” signal is actually the calcium complexed with fluo-3, or

[CaF3]. The differential equation describing the change in [CaF3] with time is given in

Appendix A2 (Eq. 138) which follows from Shannon et al. [75].

Ca2+-Uptake

Cytosolic Ca2+ is pumped into the LSR (Figure 1A) by a Ca2+-ATPase, which lowers

[Ca2+]myo and helps to induce relaxation in cardiac muscle. The transport reaction

involves two Ca2+ ions and one ATP molecule [76], and it is represented by the

description given for Icyt,serca and Iserca,sr in Appendix A1 (Equations 51-63). The model

used for the uptake pump is adopted from Koivumaki et al. [77] and takes into

account both the forward flux of Ca2+ from the cytosol to the LSR lumen and the

backward flux from the LSR to the cytosol along with the Ca2+ buffering action of the

SERCA protein. The phospholamban (PLB) to SERCA ratio has been fixed to 1.0,

assuming almost equal availability of both the proteins. CaMKIIact affects the SERCA

pump via direct phosphorylation assisting in enhancement of SR Ca2+ transport by

increasing the pumping rate [78] and indirectly via phosphorylation of PLB [79] reliev-

ing the inhibition caused by PLB on the SERCA pump in turn increasing the sensitivity

of the pump for Ca2+ uptake. These two effects are modeled by allowing the rate
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constants for Ca2++ binding to/release from the SERCA pump as well as the rate con-

stant for phosphorylation of PLB to be a function of CaMKIIact in the cytosol. The

activating role of CaN in modulating the SERCA pump [80,81] is accounted for in our

model by allowing the rate constant for phosphorylation of PLB to be dependent on

available CaNact in the cytosol. The relative regulatory role of the enzyme protein

kinase A(PKA) is fixed at 0.1, as its modulatory effect is beyond the scope of this

study. The current Icyt,serca dictates the transport of Ca2+ between the cytosol and the

SERCA protein. Similarly, the current Iserca,sr dictates the transport of Ca2+ between

the SERCA protein and the LSR. The difference in these Ca2+ currents accounts for

the Ca2+ buffered by the SERCA protein. The jSR is subsequently refilled by Ca2+ dif-

fusion from the LSR. The differential equations describing the Ca2+ balance and parti-

cularly the transfer between two separate SR compartments (jSR and LSR) are

provided in Appendix A1 (Eq. 72).

Ca2+-Extrusion via Sarcolemmal Ca2+ Pump

Although the sarcolemmal Ca2+-pump has a high affinity for [Ca2+]myo, its transport

rate is far too slow for it to be an important factor in Ca2+ fluxes during the cardiac

cycle. It might, however be more important in long-term extrusion of Ca2+ by the cell.

Our model of the plasma membrane Ca2+ ATPase pump current is adopted from Sun

et al. [30]. We have used a constant value of half activation constant kmpca = 0.5μM in

our model on the basis of measurements by Caroni et al [82].

Ca2+-Extrusion via Na+/Ca2+ Exchanger

In mammalian cardiac cells, it is generally accepted that the Na+/Ca2+ exchanger has a

stoichiometry of 3Na+:1Ca2+ [83]. INaCa (again, the combination of INaCa,TT and INaCa,

SL) is important in removing Ca2+ during twitch relaxation, in competition with Iup.

A simple thermodynamic Na+/Ca2+ exchanger current model [84] may be sufficient to

predict the direction of Ca2+ transport by Na+/Ca2+ exchange and the driving force,

however the amplitude is subject to kinetic limitations (depending on substrate con-

centrations). A more comprehensive Na+/Ca2+ exchanger current equation [85] is

adopted in our model, which includes factors for allosteric Ca2+ activation and the

transport for Na+ and Ca2+ inside and out. The maximal flux through the exchanger

Vmax is estimated to ensure that the Ca2+ ion transport (which is voltage dependent)

via the Na+/Ca2+ exchanger matches the influx of Ca2+ via the ICa,L channel [86,87],

maintaining whole cell Ca2+ homeostasis.

Table 8 Parameters used in the luminal sensor model

Rate Constant Value Rate Constant Value

k ls
12 88.16 k ls

23 57.9

k ls
21 4.1 k ls

32 2.42

k ls
14 0.5 k ls

35 150.3

k ls
41 85.7 k ls

53 25.5

k ls
42 2.98 k ls

52 88.16

k ls
43 25.5 k ls

56 1.2

k ls
34 150.3 k ls

65 401.7

Table 8: Static rate constants used in the model for the luminal sensor.
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Na+/Cs+ Pump

The Na+/K+ pump, helps in maintaining homeostasis of the intracellular Na+ ion con-

centration. ATPase activity powers the pump, as it generates an outward Na+ flux and

an inward K+ flux with a Na+ to K+ stoichiometry of 3 to 2 [88]. However, in our

experimental protocol, external solution in the bath was normal Tyrode (1 mM Ca2+)

with Cs+ substituted for K+ in order to block the inward rectifier K+ current. The

internal solution in the pipette contained Cesium aspartate supplemented with 20 mM

CsCl, 3 mM Na2ATP , 3.5 mM MgCl2 and 5 mM HEPES.

Activation of the electrogenic sodium pump in mammalian non-myelinated nerve

fibres [89], skeletal muscle [90] and rat brain cells [91] by Cs+ is reported in the litera-

ture. It is observed that the late effects of reducing extracellular K+ concentration ([K+]o)

to 0 mM in mammalian cardiac muscle can be prevented by including appropriate

concentrations of other activator cations of the Na+/K+ pump such as Cs+ in the 0 mM

[K+]o bathing solution [92]. Monovalent cations (including Cs+) were also added to

K+ free bathing solution to reactivate the sodium pump in guinea-pig ventricular myo-

cytes [93]. The effectiveness of Cs+ as an external cation in activating the electrogenic

sodium pump is known to be lesser than potassium [92].

We have represented INaCs in our model by the expression for Na+/K+ pump formu-

lated by Linblad et al. [74] replacing K+ ion concentrations with the Cs+ ion concentra-

tion. While ensuring whole cell Na+ ion balance, the peak Na+/Cs+ pump current is

modified to be one-sixth to account for the decreased potency of the cation Cs+ in

activating the pump. The voltage-dependence of INaCs is adopted from the data on

Na+/K+ pump from Hansen et al. [94].

Results
The DCU is a fundamental element in the mechanism of CICR. The sequence of

events resulting in CICR is triggered by the Ca2+ entering through the ICa,L channel.

The characteristics of this channel are hence examined in detail to understand its vol-

tage and Ca2+ dependent behavior. The ability of the ICa,L channel to facilitate graded

RyR release is noted. The high gain associated with RyR release is quantified. This is

followed by a study of the properties of the RyR channel with a particular emphasis on

its inactivation mechanism. The Ca2+ mediated interaction between these channels is

investigated in detail. This is followed by an effort to understand the role of [Ca2+]jSR
in CICR. In particular, the relationship of the peak cytosolic calcium transient and the

SR Ca2+ content is examined. The effect of modulatory agents like caffeine and thapsi-

gargin on SR release/uptake is studied to understand the significance of these mechan-

isms in facilitating a normal CICR.

L-type Ca2+ current (ICa,L)

The L-type DHP-sensitive Ca2+ channel has a key role in initiating CICR. Hence a

thorough analysis of its activation and inactivation mechanisms is considered here.

Though the activation of the ICa,L channel is solely voltage dependent once activated,

the inactivation of the channel is influenced not only by the trans-membrane voltage

but also the Ca2+ concentration in the vicinity of the channel [95]. The relative con-

tribution of the voltage-dependent and Ca2+-dependent inactivation pathways in the

ICa,L channel model can be studied by selectively blocking each pathway in the model.
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Figure 7 shows the model-generated waveform for ICa,L under three conditions; (i) con-

trol case with both voltage and calcium dependent in-activation pathways intact; (ii)

ryanodine applied to allow only the voltage-dependent inactivation and the Ca2+-

dependent inactivation via ICa,L self-inhibition in the absence of RyR release; and (iii)

Ca2+ substituted with Ba2+ to facilitate only the voltage-dependent inactivation path-

way and block all Ca2+ dependent inactivation pathways (k24dhpr set to zero). The pro-

tocol used in case (i) was a 50 ms pulse with clamp voltages ranging from 10 mv to 40

mv in steps of 10 mv from a holding potential of -40 mV. In case (ii) and (iii) the

pulse duration was increased to 200 ms to replicate the data.

Measured data obtained using the same voltage clamp pulse under all three condi-

tions (Control, Ryan-odine application and Barium substitution) is shown for compari-

son (data obtained from Dr. Palade’s lab was pre-processed to eliminate transients

produced by changing clamp voltage in order to obtain model fits using a non-linear

least-squares method [18]). The degree of ICa,L channel opening is known to be

enhanced in the presence of CaMKIIact [33] which is known as Ca2+-dependent facili-

tation (CDF). According to Bers et al. [33] the positive regulation of the channel by

CaMKIIact requires Ca2+ influx (it is not seen when Ba2+ is the charge carrier as in

Figure 7D and is more strongly apparent when local Ca2+ influx is amplified by SR

Ca2+ release as in Figure 7A). Increase in CaMKIIact seems to play an important func-

tion in enhancing ICa,L peak amplitude [96], suggesting a critical role for Ca2+-depen-

dent facilitation. Our model generated results also indicate that a stronger CDF (in

Figure 7A) in the presence of RyR Ca2+ release causes an enhancement in ICa,L peak

amplitude (compare the model fits to data in Figure 7A (presence of RyR release) with

Figure 7B (no RyR release) and Figure 7C (Ca2+ substituted by Ba2+)). It is important

to note that the peak of the ICa,L current is reached after the RyR open probability

reaches its maximum value owing to the faster dynamics of the RyR channel. Our

simulations indicate that following the inward current peak, Ca2+-dependent inactiva-

tion (CDI) is much faster and dominates the response for the duration of voltage

clamp (30 ms <t <80 ms). In addition, a comparison of Figs. 7A and 7B shows that,

Ca2+-dependent inactivation (CDI) caused by Ca2+ release from Ry-sensitive channels

is much more significant than the self-inhibition produced by Ca2+ influx via ICa,L
itself. The graded behavior of the cytosolic Ca2+ transient is shown in Figure 7C. Vol-

tage dependent inactivation (VDI) is relatively slow compared with CDI and is best

seen in Figure 7D where all Ca2+ inactivation effects have been blocked by Ba2+ substi-

tution for Ca2+. Under RyR blockade (Figure 7B), the relatively slow VDI has its major

effect during the late phase of the long voltage clamp pulse (e.g., beyond 100 ms) and

in a time range where CDI is relatively constant. Quantitative analysis of movement of

states (during the depolarizing pulse duration of 50ms) via different pathways in the

six state Markovian model shows that 68.24% of the total inactivation of ICa,L,TT is via

the calcium dependent O2dhpr-C4dhpr pathway, owing to the large Ca2+ concentration

which the channel is exposed to in the dyad. In contrast, only 19.21% of the total inac-

tivation of ICa,L,SL is via the calcium dependent O2dhpr-C4dhpr pathway, because of the

low cytoplasmic Ca2+ concentration in the vicinity of the channel. Considering the

total ICa,L current (ICa,L,TT + ICa,L,SL), around 63.34% of the ICa,L channel inactivation is

via the Ca2+ dependent pathway.
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Figure 8A shows a comparison of model generated and experimentally obtained ICa,L
data (obtained from Dr. Palade’s lab and pre-processed to eliminate transients pro-

duced by changing clamp voltage in order to obtain model fits using a non-linear

least-squares method [18]) from a rat ventricular myocyte (different from the cell used

to obtain data in Figure 7) at negative (-30 mv ≤ v ≤ 0 mv) clamp voltages. The corre-

sponding graded behavior of the cytosolic Ca2+ transient is shown in Figure 8C. Figure

8B shows the well known [52] bell-shaped dependence of the peak [Ca2+]myo on the

clamp voltage.

Figure 9 shows model generated normalized ICa,L obtained by a voltage clamp to 10

mv from a holding potential of -40 mv using the following protocols. Case 1: Normal

release is allowed where, following CICR, a strong Ca2+ dependent inactivation inhibits

the ICa,L current as seen in the plot numbered 1 (data obtained from Dr. Palade’s lab).

Case 2: Ryanodine applied to block RyR release; Ca2+ entering via the ICa,L channel

causes Ca2+ induced inactivation, although the magnitude of inhibition is far less than

in the control case. Case 3: Ba2+ substitution for Ca2+ to completely suppress the Ca2+

inactivation mechanism; the only inactivation pathway present is the slow voltage

dependent pathway [97], which causes substantially reduced recovery compared to

cases 1 and 2. Besides the inactivation, it can be seen from Figure 9 that the rate of

channel activation, which is evident in the slope of the individual plots during the

Figure 7 ICa,L & [Ca2+]myo - comparison of model generated and experimental data in the positive
voltage range. Figure 7: Model generated and experimentally obtained data from a rat ventricular
myocyte clamped to voltages between 10 and 40 mv in steps of 10 mv. The holding potential used is -40
mv. Data is obtained from Dr. Philip. T. Palade’s lab. (A) ICa,L in the presence of Ca2+ release from the Ry-
sensitive channel. The pulse duration used is 50 ms. (B) ICa,L with Ryanodine administered to block RyR
release. The pulse duration used is 200 ms. (C) Global cytosolic calcium transients [Ca2+]myo in the presence
of RyR release. The pulse duration used is 50 ms (D) ICa,L using Barium as the charge carrier in the absence
of RyR. The pulse duration used is 200 ms. Solid traces are the model-generated results and dotted lines
represent the data.
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Figure 8 ICa,L & [Ca2+]myo - comparison of model generated and experimental data in the negative
voltage range. Figure 8: Model generated and experimentally obtained data from a rat ventricular
myocyte clamped to voltages between -30 and 0 mv in steps of 10 mv. The holding potential used is -40
mv. Data is obtained from Dr. Philip. T. Palade’s lab. (A) ICa,L invoked by negative clamp voltages in the
range of -30 mv to 0 mv in steps of 10 mv. The pulse duration used is 100 ms. (B) Peak ICa,L dependance
on clamp voltage. (C) Global cytosolic calcium transients [Ca2+]myo at negative (-30 mv ≤ v ≤ 0 mv) clamp
voltages. The pulse duration used is 100 ms (D) Peak cytosolic calcium transients ([Ca2+]myo ) dependence
on clamp voltages. Solid traces are the model-generated results and dotted lines represent the data.

Figure 9 ICa,L inactivation pathways. Figure 9: ICa,L inactivation pathways. Voltage clamp protocol used is
a 50 ms step pulse to 10 mv from a holding potential of -40 mv. Both model generated results and the
data are normalized for easy comparison (1) Control case where both voltage and calcium dependent
inactivation pathways are intact. Solid trace is the model-generated result and the dotted line represents
the data obtained from Dr. Philip. T. Palade’s lab; (2) voltage-dependent inactivation exists however Ca2+-
dependent inactivation is only via ICa,L self-inhibition without RyR release; (3) Only voltage-dependent
inactivation pathway preserved by blocking all Ca2+ dependent pathways.
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initial activation phase, is faster in the presence of RyR Ca2+ release (a result of

enhanced CDF in the presence of elevated Ca2+ levels). This highlights the important

role of Ca2+ in regulating ICa,L channel opening and thus controlling the amount of

extracellular Ca2+ entering the cell.

ICa,L,TT - dependent Graded SR-release

One of the most important characteristics of the CICR mechanism is the modulation

of the RyR Ca2+ release based on the amount of trigger calcium delivered via the

DHPR channel. The voltage-controlled ICa,L channel is the link between the extracellu-

lar excitation and the intracellular Ca2+ release. As shown in Figure 10A, our model

reproduces graded release. It is important to note that the onset of the Ca2+ transient

is also modulated based on the magnitude of the trigger calcium available to initiate

release, as shown in Figure 10A-iii. This is due to the fact that the rate of increase in

the open probability of the Ry-sensitive Ca2+ release channel is controlled by the

amount of trigger Ca2+ present at the ‘mouth’ of this channel, which in-turn is graded

by the amount of trigger Ca2+ entering the DCU by means of the DHP-sensitive ICa,L,

TT channel. This mechanism is incorporated in our model by allowing the rate con-

stants in the 4-state Markovian model of the Ry-sensitive Ca2+ release channel (Figure

4) to be [Ca2+]ryr dependent. Small changes in iCa,L,TT cause modulation of pre-release

[Ca2+]ryr, which dictates the propensity of the RyR channel for a Ca2+ release. The

pre-release values of the rate constants in the 4-state Markovian model of the RyR

channel (nonlinear dependence on [Ca2+]ryr as shown in Appendix A1, Equations 79-

84) along with the diastolic [Ca2+]jSR (which is kept constant in Figure 10) set the peak

RyR open probability achieved by the RyR channel as well as the peak [Ca2+]myo. The

use-dependent adaptation of the RyR channel [13] is reflected in its non-linear

response to trigger Ca2+. As shown in Figures 10B-iii, iv, the delay in the onset of cyto-

solic Ca2+ transient closely follows the modulation of the onset of RyR release. Though

occurring in separate compartments, the peak of cytosolic Ca2+ transient also tracks

the maximum value attained by the open probability of the Ry-sensitive Ca2+ release

channel. Here, the clamp voltage was held constant at 10 mv to avoid the interference

of voltage dependent Ca2+ transport via the Na+/Ca2+ exchanger which is co-located

[98] with the ICa,L channel in the dyad and the scaling down of ICa,L,TT corresponds to

a fast flicker block of the channels by dihydropyridine.

The slow rising foot that precedes the rapid upstroke (trace at position 0 in Figure

10B-i and B-ii) is the contribution from a single sparklet (Figure 6), which is the result

of Ca2+ release from a single iCa,L,TT channel in our model (0.1 pA), which is of the

same order as reported by Wang et. al. [13] bringing trigger Ca2+ into a unitary dyad.

This L-type Ca2+ channel (LCC) triggers release from a cluster of RyR channels caus-

ing a Ca2+ spark (Figure 6), which results in the rapid increase in [Ca2+]dyad that fol-

lows the foot (shown in Figure 10B-i and B-ii). As shown in Figure 10B, the latency

from the onset of the sparklet foot to the triggered Ca2+ spark increases with decrease

in the magnitude of iCa,L,TT [13]. The SR Ca2+ release flux underlying a typical Ca2+

spark corresponds to approximately 2 pA [27,28,13]. From RyR single channel conduc-

tance measurements in lipid bilayer studies [99], a Ca2+ spark translates into a release

from around 4 RyR channels (also reported by Blatter et. al. [28]). This single Ca2+

spark corresponds to a unitary RyR release (2 pA) in our model. Our model does not
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attempt to reproduce the stochastic kinetics of the single channel LCC-RyR coupling;

however it mimics accurately the average behavior of this stochastic process which is

the net Ca2+ release flux into the cytosol causing the Ca2+ transient. This on/off sto-

chastic nature of the coupling was used earlier to explain the release termination via

stochastic attrition. However, it is now known [25] that the luminal sensor plays a fun-

damental role in an active extinguishing mechanism [51] that effects a robust [Ca2+]jSR

Figure 10 Graded CICR. Figure 10: SR calcium release graded by the trigger current ICa,L,TT . (A) - (i)
Decreasing trigger current ICa,L,TT (ii) With decreasing trigger current, RyR open probability shows a graded
decrease in its peak as well as an increasing delay in its onset (iii) Cytosolic calcium transient follows the
trend shown by the RyR release channel (a graded decrease in peak and increasing delay in onset) (iv) RyR
open probability vs [Ca2+]ryr for increasing trigger current ICa,L,TT . (B)- (i)Concentration profile in the dyad as
a result of RyR release caused by a largest trigger current (see part A(i)) (ii)Concentration profile in the dyad
as a result of RyR release caused by a smallest trigger current (see part A(i)) (iii) With decreasing trigger
current, RyR open probability shows a graded decrease in its peak as well as an increasing delay in its
onset (shown on an expanded time scale) (iv)Difference in concentration between the mouth of the DHP
and Ry-sensitive Ca2+ channels. (Inset shows the cross-over when this difference becomes negative
indicating trigger current dependent latency involved in release).
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- dependent closure of the RyR channel. This mechanism for inactivation of the Ry-

sensitive Ca2+ release channel is accounted for in our model.

Cytosolic Ca2+ transient is also graded by the duration of the ICa,L,TT trigger current

controlled by the voltage clamp pulse duration. Our model also shows that triggered

release can be prematurely stopped by rapid repolarization [100-102]. The effect of

depolarization duration on the time course of the cytosolic Ca2+ transient is indicated

in Figure 11 where the duration of the voltage clamp pulse is decreased from 80 ms to

5 ms (while keeping the clamp voltage constant at 10 mv) resulting in premature stop-

page of release and thus a decrease in peak cytosolic Ca2+ transient. This effect is a

combined result of (i) the modulation of release due to pulse duration dependent

change in the amount of trigger Ca2+ entering the dyadic coupling unit (DCU) and (ii)

the pulse duration dependent change in the relative role of the Na+/Ca2+ exchanger

co-located in the DCU.

High Gain of Ca2+ Release

Besides the graded release, an extremely valuable characteristic of the CICR process is

the high gain associ-ated with it. A small amount of Ca2+ entering the DCU via the

ICa,L,TT channel causes a large release of Ca2+ from the sarcoplasmic stores via the Ry-

sensitive Ca2+ release channel on the jSR lumen that interacts with the DCU. This

high gain is essential in producing physiological cytosolic Ca2+ transients when 10000

of these DCU’s operate in tandem. Two different definitions of the gain or amplifica-

tion factor due to CICR have been adopted in our model simulations, namely the

ratio of:

1. average integrated RyR flux to average integrated DHPR flux [7]; and

2. the peak Ca2+ transient in the presence of CICR to the peak calcium transient in

its absence, con-tributed by the trigger calcium alone [3].

Thus, criterion (1) measures calcium gain observed in the dyadic space, whereas cri-

terion (2) measures gain observed in the cytosolic space.

With regard to the dyadic space, Figure 12A shows the Ca2+ flux through DHPR and

RyRs, respectively. Figure 12B shows cytosolic calcium transients under conditions of

ryanodine blockade and with RyR Ca2+ release. Based on our measurements, there is

approximately a 2 ms delay from the onset of the DHPR influx to the initiation of the

RyR release flux.

At a clamp voltage of 10 mv, criterion (1) applied to our simulation yields an inte-

grated flux ratio of 6.39, whereas a gain of 5.75 is calculated using criterion (2). By

either method, a CICR amplification factor of approximately 6 is calculated, which is

similar to that reported by Stern [3]. This result is also consistent with gain calcula-

tions from the measured data of Fan and Palade [17] on rat ventricular cells. They esti-

mated a gain of approximately 7 using comparisons of the rates of rise of Ca2+

transients in the presence and absence of ryanodine. The model generated results are

obtained by using a voltage clamp protocol of a 50 ms step pulse to 10 mv from a

holding potential of -40 mv.

The inset in Figure 12A shows the voltage dependence of CICR gain formulated

using criterion (1). Our model shows a decline in gain as the clamp voltage is
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increased from -30 mv to 20 mv [52,103]. However, any further increase in clamp vol-

tage results in a small increase in gain (Figure 1C, Altamirano et al. [104]). It is impor-

tant to note that, with increasing clamp voltage, the decreased ability of the Na+/Ca2+

exchanger (which is co-located [98] in the dyad) to extrude Ca2+ partially compensates

for the declining trigger current, in facilitating SR release and hence assists in increas-

ing CICR gain.

RyR Refractory Characteristics

Given the fact that the CICR mechanism has a high gain associated with it, it could be

prone to unstable behavior if not for the refractory characteristics of the Ry-sensitive

release channel [105]. It is now known [25] that the luminal sensor plays a fundamen-

tal role in an active extinguishing mechanism [51] effecting a [Ca2+]jSR dependent

robust closure of the RyR channel which is accounted for in our model. The RyR

release fails to become regenerative due to the role of the luminal sensor which after a

release occurs, forces the RyR channel into an absolute refractory state followed by a

relative refractory state as shown in Figure 13C. When the RyR channel is in the abso-

lute refractory period, [Ca2+]ryr drops to a level much below what is caused by a spark-

let (trigger Ca2+) hence it robustly avoids re-excitation. This extremely critical

refractory feature of the channel enabled by the RyR luminal sensor acts as a protective

mechanism against premature Ca2+ release in the wake of a secondary excitation that

Figure 11 Effect of depolarization duration on [Ca2+]myo. Figure 11: The effect of changing the
duration of depolarizing pulses Tpd on the time course of the [Ca2+]myo transient. Voltage clamp protocol
used is a step pulse to 10 mv from a holding potential of -40 mv. Normalized [Ca2+]myo transient
corresponding to depolarizing pulses of 5, 10, 20, and 80 ms duration. This model-generated result shows
similarity to data in Figure 2, Cannell et al. [100] showing pulse-duration dependent changes in cytosolic
Ca2+ concentration.
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occurs before jSR can be filled back to the control level. The refractory nature of the

channel is caused by the [Ca2+]jSR dependent inhibition induced by the protein triadin

from the luminal side of the RyR channel. This restraining lock on the RyR channel

assists in reloading the jSR.

A dual stimulus protocol (S1-S2) was employed to study RyR refractoriness. The RyR

channel was stimulated initially by stimulus trigger current S1, followed after an inter-

val (T2 in Figure 13A) by an identical stimulus current S2. Each of the two stimuli

directed into the dyadic coupling unit is the dyadic component (ICa,L,TT ) of trace 1

(ICa,L evoked by a 10 mv clamp pulse) in Figure 7A with a peak amplitude of 6.657

pA/pF and a duration (T1 in Figure 13A) of 50 ms. The stimuli S1 & S2 were kept

identical to delineate the effects of RyR refractoriness on CICR. The time interval

between the two stimuli (T2) was gradually reduced from 250 ms to 50 ms in steps of

25 ms to observe the effects of partial recovery of the RyR channel.

As seen in Figure 13, the decrease in interval between stimuli causes partial recovery

of [Ca2+] level in the jSR which manifests in increasing levels of unbound version of

the protein calsequestrin, which tends to bind with triadin. As more triadin binds to

calsequestrin, there is less left to bind to the luminal side of RyR to activate the chan-

nel for CICR. This signaling sequence mediated by the luminal sensor via the interac-

tion of proteins calsequestrin and triadin, allows only a partial SR Ca2+ release based

on the degree of SR Ca2+ content recovery. This is an important feature that helps

Figure 12 CICR Ca2+ gain. Figure 12: High gain associated with CICR. Voltage clamp protocol used is a 50
ms step pulse to 10 mv from a holding potential of -40 mv. (A) Gain formulation by comparison of Ca2+

flux through the DHP sensitive and RyR sensitive Ca2+ channels. The voltage dependence of gain
measured using this method is shown in the inset. (B) Gain formulation by comparison of cytosolic calcium
transient formed in the presence and absence of RyR Ca2+ release.
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restore the jSR Ca2+ content at the end of every cycle. The RyR channel in our model

has an absolute refractory period of 75 ms and a relative refractory period of 250 ms

(Figure 13C). These results are consistent with the refractory period measurements by

Sobie et al [106] on rat ventricular myocytes. When the RyR channel is in the absolute

refractory period, [Ca2+]RyR drops to a level much below what is caused by a sparklet

(trigger Ca2+) and hence robustly avoids re-excitation. However, when the RyR channel

is in the relative refractory period, a partial release (Figure 13C) is possible, despite the

RyR receptors affinity for release being low.

Figures 14A and 14B show the steady state [Ca2+]myo and [Ca2+]jSR predicted by the

model, with and without a functioning luminal sensor, respectively. The stimulation

protocol used is a pulse train of amplitude (-40 mv to 10 mv), duration (50 ms) and

frequency of 4.0 Hz which is applied for a period of 2.5 sec. The value of the luminal

control of the RyR channel in allowing adequate SR filling can be seen in Figure 14

where, in the presence of the luminal sensor the cell maintains a normal cytosolic

Ca2+ transient (Figure 14A-i). This is made possible due to sufficient SR filling (Figure

14A-ii) as a result of RyR refractoriness. However, inactivation of the RyR channel is

also known to depend on the high local Ca2+ concentration consequential to its own

Figure 13 RyR refractory characteristics. Figure 13: RyR refractory characteristics. (A) The stimulation
protocol comprises of two consecutive stimuli S1 & S2, both of which are identical to the dyadic
component (ICa,L,TT ) of trace 1 (ICa,L evoked by a 10 mv clamp pulse) in Figure 7A with a peak amplitude of
6.657 pA/pF and a duration (T1) of 50 ms. These are applied with their separation in time (T2) increasing
from 50ms to 250 ms in steps of 25 ms. (B) The RyR sensitive Ca2+ release channel shows refractory
characteristics with an absolute refractory period of 50 ms and a relative refractory period of 250 ms. (C)
The corresponding [Ca2+]jSR traces reflect partial RyR recovery. (D) Cytosolic calcium transient recovers
completely after 250 ms. The dotted line indicates lack of RyR release when T2 = 75 ms due to insufficient
RyR recovery.
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Ca2+ release [51]. The lack of a luminal sensor forces the RyR channel to solely rely on

Ca2+ dependent inactivation mechanism. The resulting inadequate RyR inactivation

depletes diastolic [Ca2+]jSR level (Figure 14B-ii) causing the cytosolic Ca2+ transient to

diminish to new lowered steady state values (shown in Figure 14B-i). The absence of

the luminal sensor is modeled by setting the value of the luminal sensing variable (‘var’

in the model) to a level consistent with it’s normal value under 4 Hz, voltage clamp

stimulation. This mimics the case where the luminal sensor is insensitive to changes in

[Ca2+]jSR and hence non-functional. It is important to note that the decrease (37.07%)

in diastolic SR level (as indicated in Figure 14B-ii) is due to the lack of a luminal con-

trol on the RyR channel resulting in a reduced rate of RyR recovery which in turn

reflects in a compromised SR filling rate. Hence, the presence of a luminal sensor

which monitors the SR Ca2+ content, is key to long term Ca2+ stability in the cell.

CICR modulation by the jSR Ca2+ content

From the refractory characteristics of the RyR channel, it is evident that the RyR

release is strongly dependent on the jSR Ca2+ content. In fact, the SR Ca2+ release

through the RyR channel depends on: (a) the amount of trigger Ca2+ entering by

means of the ICa,L,TT channel (b) the concentration gradient of Ca2+ between the jSR

and the mouth of the RyR channel in the dyadic space and (c) the open probability of

the RyR channel modulated by the interaction between the luminal sensor and the

Figure 14 Role of Luminal sensor. Figure 14: Application of a train of voltage clamp pulses (amplitude
-40 to 10 mV; duration 50 ms) for a period of 2.5 sec. Pulse repetition rate is 4.0 Hz. Luminal sensor is
intact in A and removed in B. Both A and B are steady state responses to voltage clamp stimulation. A-(i)
[Ca2+]myo transients with normal amplitude. A-(ii) Sustained SR filling due to robust RyR inactivation. B-(i)
Diminishing [Ca2+]myo transients indicate poor SR filling. B-(ii) Lowered [Ca2+]jSR levels indicating inadequate
refilling of SR stores due to lack of RyR refractoriness.
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RyR protein. The SR Ca2+ released also inactivates the trigger current ICa,L,TT (as

shown in Figure 7), hence causing an indirect self-inhibition of RyR release.

Figure 15 shows a phase plot of RyR open probability (O2ryr) versus the Ca2+ con-

centration at the mouth of the RyR channel in the dyadic space [Ca2+]ryr constructed

from model-generated data for a pulse of amplitude -40 mv to 10 mv and a duration

of 50 ms. The pre-release diastolic [Ca2+]jSR is 918 μM. Following excitation by the

trigger current during phase A, the RyR channel begins to open, allowing Ca2+ flux

into the dyad and elevating [Ca2+]ryr at the mouth of the RyR channel. The rate of

opening of the channel is Ca2+ dependent; hence as [Ca2+]ryr increases, RyR open

probability increases first slowly and then ever more rapidly. With this onrush of Ca2+,

[Ca2+]ryr rapidly equilibrates with the [Ca2+]jSR, reducing and eventually abolishing the

concentration gradient across the channel. [Ca2+]ryr soon reaches its maximum value

(T1 in Figure 15) and begins to track the decrease in [Ca2+]jSR, there being no further

significant concentration gradient existing between [Ca2+]jSR and [Ca2+]ryr at the

mouth of the RyR channel. During phase B, the rate of rise in RyR open probability

decreases due to decreasing [Ca2+]ryr and the onset of self-inhibition due to the large

values of Ca2+ concentration at the mouth forcing the RyR open probability to attain

its maximum value (T2 in Figure 15). This is followed by phase C, where the RyR

open probability begins to decrease slowly, initiating channel recovery due to decreas-

ing overall [Ca2+]dyad levels as a result of (a) Ca2+ fluxing out of the dyad into the

cytosol, (b) lack of a drive from SR release due to drastically diminished Ca2+ gradient

Figure 15 Ryanodine receptor open probability. Figure 15: RyR open probability modulation by
concentration at the mouth. The pre-release diastolic [Ca2+]jSR is 918 μM. The stimulation protocol used is
a pulse of amplitude (-40 mv to 10 mv) and duration (50 ms). Phase A - As a result of excitation by the
trigger current, [Ca2+]ryr initially increases rapidly with a small accompanying rise in RyR open probability
followed by steeper increase to peak [Ca2+]ryr with a large increase in RyR open probability.; Phase B - RyR
open probability increases to its maximum value at a declining rate reflecting a falling [Ca2+]ryr level and
onset of Ca2+ induced self-inhibition; Phase C - Decreasing Ca2+dyad and continued Ca2+ induced self-
inhibition, begins the channel recovery process; Phase D - Decreasing [Ca2+]jSR forces a strong RyR
inactivation via the luminal sensor hence robustly closing the channel.
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at the mouth of the RyR channel and (c) continued Ca2+ induced self-inhibition.

Decreasing levels of free Ca2+ in the jSR force a strong RyR inactivation via the lumi-

nal sensor (beginning at T4 and continuing throughout phase D; Figure 15), which in

turn causes a sharp decline in RyR open probability. The minimum value of [Ca2+]jSR
occurs at T5, and the channel is ultimately closed at T6 (Figure 15). The luminal sen-

sor mediated inactivation assists in robust [Ca2+]jSR recovery.

Cytosolic peak [Ca2+] dependence on SR Ca2+ content

Figure 16A shows three characteristic regions in the plot of the peak [Ca2+]myo vs

[Ca2+]jSR. In Region I, where the jSR load is small, two things occur: (a) RyR release is

reduced, as is the basal intracellular Ca2+ concentration, and (b) Ca2+ dependent inac-

tivation of the ICa,L,TT channel is reduced due to the lowered dyadic Ca2+ concentra-

tion, which allows for greater Ca2+ entry into the dyadic space via the ICa,L channel.

This increase in trigger current results only in a very small increase in Ca2+ release,

because of the inhibition of the Ry-sensitive channel caused by the luminal sensor in

Figure 16 Peak [Ca2+]myo vs [Ca2+]jSR. Figure 16: (A) Relation between the peak of the cytosolic Ca2+

transient and the diastolic [Ca2+]jSR. Region I: The peak RyR open probability is very small owing to the low
SR Ca2+ content. This causes the peak Ca2+ transient to be very small. Region II: Increasing SR Ca2+ content
causes an increase in the peak RyR open probability and hence in the peak of the cytosolic Ca2+ transient.
Region III: A large rapid increase in the peak Ca2+myo is observed due to the large RyR Ca2+ release
associated with the high SR Ca2+ content and saturation of RyR open probability. This model-generated
result shows similarity to data in Figure 4, Diaz et al. [29].(B) Dependence of RyR open probability (O2RyR)
on diastolic Ca2+ jSR. Increasing pre-release diastolic Ca2+jSR results in increasing peak O2RyR. However,
owing to the low SR Ca2+ levels the peak open probability is very small. The stimulation protocol used is a
pulse of amplitude -40 mv to 10 mv with a duration of 50 ms. (C) Dependence of RyR open probability
(O2 RyR) on diastolic Ca2+jSR. Increasing diastolic Ca2+jSR results in a linearly increasing peak O2RyR. In the
open probability saturation region the increase in peak cytosolic Ca2+ transient is sustained by increasing
the area contained by each loop as seen in traces numbered 5 to 1. The progress in time occurs along the
arrow indicated on trace 1. The stimulation protocol used is a pulse of amplitude -40 mv to 10 mv with a
duration of 50 ms.
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response to low SR Ca2+ content. Thus, these factors cumulatively result in only a

small linear increase in the peak [Ca2+]myo with increasing SR Ca2+ content in

Region I. The behavior in Region I corresponds to traces 7-1 in Figure 16B (shows

phase plots of O2ryr vs [Ca2+]ryr for different steady state [Ca2+]jSR concentrations),

where the peak RyR open probability shows very small gradual increase with increasing

levels of diastolic pre-release [Ca2+]jSR for a constant trigger Ca2+ input via ICa,L. The

steady state diastolic [Ca2+]jSR levels being low, the maximum RyR open probability

values attained are low. Although the peak [Ca2+]ryr does not increase substantially as

the diastolic [Ca2+]jSR levels increase from 317μM to 673μM, the area enclosed by the

[Ca2+]ryr - O2ryr loop (which indicates the amount of SR Ca2+ released into the dyad)

increases exponentially due to increasing peak RyR open probability combined with the

increasing difference between rate of activation and inactivation with rate of activation

increasing faster than the rate of channel inactivation. In Region II of Figure 16A,

increasing SR Ca2+ content begins to translate into a substantial increase in peak [Ca2+]

myo. This is because increasing diastolic [Ca2+]jSR causes a significant increase in the

peak RyR open probability, as shown in Figure 16C, which translates into a commensu-

rate increase in the peak of the cytosolic Ca2+ transient. The inhibiting role of the lumi-

nal sensor is relieved with building [Ca2+]jSR levels. The nonlinearity observed between

the diastolic [Ca2+]jSR levels 673μM (Figure 16B) and 734μM (Figure 16C) at the transi-

tion between Regions I and II corresponds to the existence of a threshold characteristic

for RyR release [107,108]. As the diastolic [Ca2+]jSR levels increase beyond 734μM, the

area enclosed by the [Ca2+]ryr - O2ryr loop increases substantially reaching a maximum

value at [Ca2+]jSR level of 948μM not only due to a significant increase in both peak

[Ca2+]ryr and peak O2ryr but also due to a rapid increase in rate of RyR activation result-

ing in a much larger difference in rate of activation and inactivation. Region III exhibits

a large rapid increase in peak [Ca2+]myo due to the large RyR Ca2+ release associated

with the high SR Ca2+ content. However, it is important to note that this is not a result

of increasing peak RyR open probability, which begins to plateau for steady state [Ca2+]

jSR values larger than 850μM (traces 6-1 in Figure 16C). The continuing rapid increase

in peak cytosolic Ca2+ concentration in region III is a combined result of: (a) increased

release owing to large SR Ca2+ content; (b) large values for saturated RyR open probabil-

ity supported by an increase in the area contained by each loop as seen in traces 6-1 of

Figure 16C; and (c) saturated operation of the SERCA pump which acts as a predomi-

nant buffer in restoring the Ca2+ concentration levels in the cytosol after RyR release

[77]. As the diastolic [Ca2+]jSR levels increase beyond 948μM, the area enclosed by the

[Ca2+]ryr - O2ryr loop begins to decrease despite increasing peak [Ca2+]ryr due to satura-

tion of the peak RyR open probability and increasing rate of RyR channel inactivation

due to large values of local Ca2+ concentration ([Ca2+]ryr) assisting in faster recovery

[51]. This model generated relationship between the peak [Ca2+]myo and the pre-release

[Ca2+]jSR agrees with Figure 4 in Diaz et. al. [29].

As seen in traces 1-10 of Figure 16C, during the initial activation of a RyR channel

(linear region of phase A in Figure 15), at any specific [Ca2+]ryr the RyR open probabil-

ity takes a lower value despite a higher steady state diastolic [Ca2+]jSR level. This

decreasing slope with increasing diastolic, pre-release [Ca2+]jSR reflects a faster rate of

rise in [Ca2+]ryr for a larger pre-release SR content with a very small accompanying

increase in the RyR open probability.
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Ca2+ Release and its Effect on ICa,L
Caffeine

Adachi-Akahane et al. [71] investigated ICa,L-induced Ca2+ release in rat ventricular

myocytes in the presence and absence of caffeine, which altered [Ca2+]myo. Using their

protocols and data as a guide, we modeled the effect of caffeine on jSR Ca2+ release

and its subsequent effect on ICa,L . Specifically, a Boltzman relationship was adopted to

simulate the binding of caffeine to the ryanodine receptor increasing channel conduc-

tance, which in turn enhances jSR Ca2+ release. The process is assumed to be dose-

dependent, with an open probability of 0.5 at a caffeine concentration of 5 mM

(Appendix A1, Eq. 86).

Figures 17A and 17B show model-generated [Ca2+]myo responses in myocytes dia-

lyzed with 2 mM Fura-2, where a simple voltage clamp pulse (-40 mV to 0 mV) is

applied in the presence and absence of caffeine. ICa,L waveforms associated with these

two protocols are shown in Figure 17C. In protocol A, conducted at normal rest levels

of [Ca2+]myo (10 nM), the depolarizing test pulse to 0 mV from the holding potential

of -40 mV for 0.1 sec fully activates ICa,L , which in turn triggers a rapid but small

amplitude Ca2+ transient (a rise from 30 nM to 95 nM as shown in Figure 17A. Proto-

col B starts with an application of 5 mM caffeine for a period of 1.0 sec (open state

probability of RyR channel is 0.5), followed by the same depolarizing test pulse applied

at 1.0 sec. The conditioning caffeine pulse induces a [Ca2+]myo transient rising from a

resting value of 30 nM to a peak value of 110 nM (Figure 17B, first peak -note the dif-

ferent timescale). The short depolarizing pulse activates ICa,L, which triggers a much

Figure 17 Effects of the application of caffeine. Figure 17: Model-simulated effects of the application of
caffeine on ICa,L,TT and [Ca2+]i in a cell dialyzed with 2 mM Fura-2. Changes in [Ca2+]myo resulting from: (A)
application of a simple depolarizing pulse from -40 mV to 0 mV, and (B) the same depolarizing pulse
following pre-exposure to caffeine (5 mM). Panel (C) compares the ICa,L waveforms associated with these
protocols. This model-generated result shows similarity to data in Figure 3, Adachi-Akahane et al. [71].
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smaller [Ca2+]myo transient via CICR (30 nM, Figure 17B, second peak). This ICa,L-

evoked Ca2+ transient in response to the voltage pulse is smaller in amplitude than

control (Figure 17A), due to: (a) reduction in RyR release due to depletion in [Ca2+]jSR
([Ca2+]jSR drops from 1.25 mM to 0.25 mM with caffeine application).; and (b) the

strong competing role of the luminal RyR sensor in inactivating the RyR channel in

response to the post-caffeine, low SR content. The ICa,L-inactivation characteristics

undergo a change as shown in Figure 17C, where trace B inactivates more slowly com-

pared to the control ICa,L (trace 1). After exposure to caffeine, the overall amplitude of

[Ca2+]dhp during release does not increase as much as in the control case, since jSR

Ca2+ release is reduced. Consequently, Ca2+ dependent inactivation (during release) of

ICa,L after caffeine application is not as strong as that in the control case. However, the

baseline level of Ca2+ concentration at the mouth of the DHP channel ([Ca2+]dhp) is

elevated following caffeine application, causing sustained inactivation resulting in the

crossover of the current trace in Figure 17C. This is consistent with the observation of

Cens et al. [41], that Ca2+ induced inactivation is a result of calmodulin mediated sen-

sing of the local Ca2+ concentration.

Thapsigargin

Analogous to the experimental protocol of Adachi-Akahane et al. [71] dealing with

thapsigargin blockade of the SERCA pump (their Figure 9), we apply a series of voltage

pulses (-40 mV to 0 mV, duration 0.1 sec, frequency 0.05 Hz) to our cell model, modi-

fied by blockade of the SERCA pump and addition of 2 mM Fura-2. Figure 18 shows

that when Ca2+ uptake is blocked, SR Ca2+ content declines, as does the jSR Ca2+

release with each voltage pulse (Figure 18A). Considerable time is consumed after thapsi-

gargin application, before SR Ca2+ content is finally exhausted (8-10 beats at 0.05 Hz;

Figure 18A). As the magnitude of the [Ca2+]myo transient decreases, the [Ca2+]dhp depen-

dent inactivation of ICa,L slows (Figure 18B), resulting in an enhanced peak.

For a given clamp amplitude, a decrease in jSR Ca2+ content decreases Ca2+ release,

producing decreased Ca2+ concentration at the dyadic side of the DHP-sensitive chan-

nel. Consequently, a smaller amount of calcium-calmodulin complex (Ca4CaM) is acti-

vated, leading to a lower degree of Ca2+ dependent inactivation. Thus, ICa,L peak is

enhanced, as shown in Figure 18B, increasing the area under the waveform, corre-

sponding to an increased amount of Ca2+ entering the cell. This inverse relationship

between jSR Ca2+ content and the amount of trigger Ca2+ entering the dyadic space

for a given clamp voltage is the essence of the feedback mechanism maintaining the

efficacy of CICR. This mechanism is operational even in the presence of high concen-

trations of cytoplasmic Ca2+-buffers, since the small dimensions of the dyadic space

allow jSR released Ca2+ to reach its destination (i.e., the DHP receptor) before being

captured by the buffers [109].

Effect of modulation of [Ca2+]o
Increase in [Ca2+]o causes an increase in entry of extracellular Ca2+ into the cell via

the ICa,L channel. This results in an increase in SR Ca2+ content, as shown in Figure

19B. Aided by an increase in trigger Ca2+ as well as a larger SR Ca2+ content, the RyR

release is enhanced. This increase in SR release assisted by impaired Na+/Ca2+

exchange due to elevated [Ca2+]o manifests in an increase in the peak Ca2+ concentra-

tion levels in the cytosol, as shown in Figure 19A. Similarly, a decrease in extracellular
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Ca2+ levels causes a decrease in trigger Ca2+ available to cause CICR, which results in

a decrease in peak [Ca2+] levels in the cytosol, as shown in Figure 19C. Reduced Ca2+

entry into the cell via ICa,L, translating into decreased availability of post-release Ca2+

in the cytosol, causes reduction in SR filling via the bi-directional SERCA pump. The

corresponding drop in the SR Ca2+ content is evident in Figure 19D. Although, our

model-generated results show similarity to data in Figure 2, Diaz et al. [110], our result

Figure 18 Effects of the application of Thapsigargin. Figure 18: In rat ventricular myocytes dialyzed
with 2 mM Fura-2, thapsigargin gradually abolishes [Ca2+]myo transients and decreases the rate of
inactivation of ICa,L. This result is generated by the model, in response to a pulse train of amplitude (-40
mV to 0 mV), duration (0.1 sec) and frequency of 0.05 Hz. (A) Time course of the effect of thapsigargin on
Δ[Ca2+]i. (B) L-type Ca2+ currents at the times indicated in (A). This model-generated result shows similarity
to data in Figure 11, Adachi-Akahane et al. [71]
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in Figure 19D does not confirm an increase in SR Ca2+ content with a decrease in

[Ca2+]o as reported in Figure 2B, Diaz et al. [110]. On the contrary, they agree with the

data in Figure 5, Diaz et al. 1997 which shows a decrease in free diastolic steady-state

SR Ca2+ content with decrease in [Ca2+]o in cells not showing spontaneous release. In

this study, we have attempted to isolate the effects of changes in [Ca2+]o on intracellu-

lar Ca2+ levels by ensuring that there are no voltage dependent effects on Ca2+ trans-

port via the ICa,L channel, Na+/Ca2+ exchanger or the plasma membrane Ca2+ ATPase

pump. The simulation protocol used in our study (reproduced from Diaz et al. [110]),

is a pulse train of amplitude (-40 mv to 0 mv), duration (100 ms) and a frequency of

0.5 Hz. However, it is important to note that, for any constant extracellular Ca2+ con-

centration, in response to a voltage clamp pulse train, increasing clamp potential (>10

mv) results in a decrease in steady state SR Ca2+ content as a result of the dominating

effect of reduced Ca2+ entry via the ICa,L channel despite a decrease in net Ca2+ extru-

sion via the Na+/Ca2+ exchanger per cycle.

Calcium balance under conditions of repetitive stimulation

Our model exhibits long term Ca2+ stability. Analogous to the experimental protocols

of Negretti el al. [111], we studied the dynamic aspects of the calcium balance in the

cell model by subjecting it to repetitive voltage clamps of different durations. For stable

Figure 19 Effects of modulating [Ca2+]o. Figure 19: The effects of changing external Ca2+ concentration
on cytoplasmic Ca2+ and SR Ca2+ content. The stimulation protocol used is a pulse train of amplitude (-40
mv to 0 mv), duration (100 ms) and frequency of 0.5 Hz. (A) Following sudden rise in [Ca2+]o the
instantaneous increase in [Ca2+]myo occurs due to more Ca entry, followed by a gradual staircase rise due
to the the change in SR content; (B) Changes in [Ca2+]myo forced by a sudden decrease in [Ca2+]o; (C)
Changes in [Ca2+]jSR due to increased [Ca2+]o; (D) Changes in [Ca2+]jSR due to reduced [Ca2+]o. This model-
generated result shows similarity to data in Figure 2, Diaz et al. [110].
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steady-state operation, Ca2+ entry into the cytosol via ICa,L must exactly balance Ca2+

efflux. Changing the rate or pattern of stimulation can have significant effects on the

cell’s cytosolic Ca2+ balance and subsequent contractile response [16]. To demonstrate

Ca2+ balance in our model, long (Figure 20A) or short (Figure 20B, C and 20D) voltage

clamp pulses were applied at a selected repetition frequency, and the resultant changes

in [Ca2+]myo were correlated with sarcolemmal and SR Ca2+ fluxes. Analogous to the

protocol of Negretti et al. [111], pulse trains were applied from a holding potential of

-40 mV to +10 mV, with durations of either 800 ms (long-pulse) or 100 ms (short-

pulse) at a frequency of 0.33 Hz, for a total test duration of 2 minutes (40 pulses). In

analyzing the Ca2+ balance, the amount of electric charge Q transferred per pulse was

calculated according to the equation: I t dt( )∫0

T
, where I(t) can be ICa,L , INaCa, IPMCA,

Iryr, Icyt,serca, and T is 1 cycle duration (3 ms for 0.33 Hz stimulation).

Numerical integration was carried out with respect to steady-state levels, hence only

activating currents and leakage currents were considered (background Ca2+ current is

neglected). The results of the Ca2+ balance are presented in a manner where relative

Ca2+ fluxes can be easily compared. We note that in evaluating the integral of the

combined exchanger current INaCa, the integral is multiplied by a factor of 2 to

account for the fact that the exchanger stoichiometry is 3Na+ per Ca2+ (the exchanger

Figure 20 Long term Ca2+ stability during repetitive stimulation. Figure 20: The stimulation protocol
used is a pulse train of amplitude (-40 mv to 10 mv) and frequency of 0.33 Hz.(A) Integrals of external and
internal Ca2+ currents on stimulation with repetitive long pulses (800 ms); (B) Percentage of changes in
[Ca2+]myo peak magnitude and cumulative SR Ca2+ loss on stimulation with repetitive short pulses (100 ms);
(C) Integrals of external Ca2+ currents with short-pulse stimulations (100 ms); (D) Integrals of internal Ca2+

currents with short-pulse stimulations (100 ms). This model-generated result shows similarity to data in
Figure 3 and Figure 5, Negretti et al. [111].
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transports 1 net charge per Ca2+, whereas all other Ca2+ currents transport 2 charges

per Ca2+).

Long-pulse protocol

During repetitive long-pulse (800 ms) stimulation, transient Ca2+ fluxes cross the sar-

colemmal and SR membranes in both directions (inward (into the cytoplasm) and out-

ward). However, [Ca2+]myo returns to control levels by the end of the long-pulse

stimulation protocol. The long-pulse stimulation protocol thus serves as a means of

studying the steady-state balance of Ca2+ influx and efflux to and from the cytoplasm,

under control conditions. In contrast, this Ca2+ balance is not present in the short-

pulse protocol, and [Ca2+]myo is elevated at pulse termination. Our long-pulse simula-

tions show that: (1) the magnitude of individual Ca2+ transients do not change during

the 40 pulse sequence; (2) the peak calcium release current (Iryr) has a constant magni-

tude; and (3) the occupancy of the calsequestrin Ca2+ buffer in the jSR compartment is

reduced by 15% as a result of Ca2+ release during each cycle. Although Ca2+ fluxes

cross the sarcolemma and SR membranes in either direction, the integral of each of

these currents (indicating charge transfer) over the pulse repetition interval is a con-

stant. Figure 20A shows this well, in that, the charge transfer for each model current

(large or small) is a constant, indicating no net loss of Ca2+ nor consecutive-pulse Ca2

+ depletion (or augmentation) in the jSR compartment under the long-pulse protocol.

In Figure 20, we refer to Ca2+ influx and efflux through the bounding cell membrane

(sarcolemma (SL) and T-tubule) as “external fluxes” (i.e., ICa,L, INaCa, and IPMCA),

whereas SR membrane Ca2+ fluxes (Iryr, Icyt,serca) are called “internal fluxes.” By con-

vention, inward fluxes are negative (e.g. ICa,L) and outward positive (e.g., INaCa and

IPMCA). Figure 20A shows that the integrated external fluxes sum to zero. The average

Ca2+ charge entering the cell via ICa,L is 603.28 pC (pico-coulomb), and the sum of

averaged Ca2+ charges extruded from the cell via INaCa and IPMCA is 603.28 pC (602.2

pC by INaCa and 1.08 pC by IPMCA. Figure 20A also shows the magnitudes of the inte-

grated internal fluxes, which sum to zero as well. In calculating inward and outward

Ca2+ fluxes relative to the SR lumen, we consider an inward flux (e.g., Icyt,serca) negative

and an outward flux positive (e.g., Iryr). The integral of Iryr is 751.8 pC, compared with

integral of the ICa,L trigger current (603.28 pC). The calcium gain of CICR calculated

in this way is low owing to the increased entry of Ca2+ via the trigger current ICa,L
for a prolonged duration of 800 ms compared to 50 ms previously. The integral of SR

Ca2+ uptake is 751.8 pC. These two internal component currents yield flat integral

values during long-pulse stimulations and sum to zero.

Short-pulse protocol

Decreasing the length of the depolarizing pulse to 100 ms (short pulse) has a pro-

nounced effect on the recovery of contraction (Figure 20B, C and 20D). Compared

with the relatively flat amplitude of [Ca2+]myo observed with stimulation by long pulses,

short pulse stimulation produces a negative staircase (Figure 20B) in agreement with

the data (Negretti et al. [111]), wherein the peak magnitude decays exponentially to a

steady state level of 60% of the initial value. Figure 20B also shows that the model pre-

dicts a similar exponential decay in jSR Ca2+ concentration [Ca2+]jSR. Both of these

indicators show a net loss of Ca2+ from the cell. Figure 20C and 20D show the transi-

ent charge movements associated with the external and internal Ca2+ currents respec-

tively during application of the short-pulse train, which are indicative of an elevated
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Ca2+ load and resultant Ca2+ imbalance when the pulse train is first applied. Balance is

achieved, but at new lower values of [Ca2+]myo and [Ca2+]jSR . For convenient compari-

son, all internal fluxes are made positive and all external fluxes negative. Figure 20C

shows that INaCa plays a significant role in forming the transient response seen in the

short-pulse protocol in extrusion of excess Ca2+ load on the cell. The decreasing

amplitude of the Ca2+ transient causes a decreased LSR uptake current (Icyt,serca),

which in turn causes a decrease in [Ca2+]jSR resulting in decreased release (Iryr). With

successive pulses, Icyt,serca and Iryr decline further, mirroring the exponential decline in

INaCa toward balance. At steady state, the external and internal fluxes reach the new

equilibrium, where the sum of the integrals of external currents and the sum of the

integrals of internal currents are zero.

Long-term calcium stability at higher pacing rates

Most VC experiments on cardiac cells are usually conducted at low stimulation rates.

Our simulations of typical VC experiments at these low rates all exhibit long term cal-

cium stability (Figures 17, 18, 19 and 20). However, our model can also exhibit sus-

tained calcium balance at higher pacing rates. Figure 14A shows steady state cytosolic

Ca2+ transients in response to a repetitive 4 Hz (which is more physiological for a rat

ventricular myocyte) voltage clamp stimulation lasting for 2.5 seconds. The sustained

peak and basal Ca2+ levels of [Ca2+]myo over this prolonged time frame are indicative

of long tern Ca2+ stability in the model. The corresponding [Ca2+]jSR profile over 2.5

seconds is also shown in Figure 14A, which indicates sustained SR filling owing to the

luminal sensor mediated control of the RyR channel. The stimulation protocol used is

a pulse train of amplitude (-40 mv to 10 mv), duration (50 ms) and frequency of 4.0

Hz. Tables 9 and 10 provide values for the initial conditions used in our model.

Secondary [Ca2+]myo transients induced by “tail currents”

Our voltage clamp simulations have dealt with clamp voltages in the range -30 mV ≤

V ≤ 40 mV. Some experimental studies [100,2,112] however have employed even larger

clamp voltages (40 mV ≤ V ≤ 60 mV) to explore the high voltage behavior of the

DHP-sensitive calcium channel. Such large clamp voltages elicit a brief Ca2+ influx

called a “tail current”, which has been shown to trigger RyR release and hence cause

contraction during repolarization [100,2]. The secondary Ca2+ transient induced by the

“tail current” is a critical argument in favor of CICR as these “tail currents” are not

observed in skeletal muscle where the membrane potential directly controls SR Ca2+

release [112]. Our model reproduces this secondary Ca2+ transient observed during the

return to resting potential from a large clamp voltage (≥ 40 mV). Figure 21A shows a

cartoon depicting the voltage clamp stimulation protocol used in our study where a

pulse of amplitude (-40 mV to +50 mV) is employed with the pulse duration (Tp; Fig-

ure 21A) increasing from 50 ms (trace 1) to 200 ms (trace 7) in steps of 25 ms. The

clamp potential transition time (Tt) is fixed at 1 ms. The peak of the “tail current” at

the end of the pulse is 25 times larger than the peak of the ICa,L current observed at

the beginning of the pulse. This is in agreement with model generated VC data

reported by Geenstein et al.([8]; Figure 8). Figure 21B shows that, with an increase in

clamp pulse duration, there is a corresponding increase in the peak of the trail current

(see traces 1-7) until the effect ultimately saturates. Corresponding to this increase in

peak ICa,L tail current, there is an increase in the open probability of the RyR Ca2+
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channel, with RyR Ca2+ release indicated by the corresponding decrease in [Ca2+]jSR
(panel C) and increase in [Ca2+]myo (panel D). We note from Figure 21C that for a

shorter 50 ms VC pulse, there is no RyR Ca2+ release although an ICa,L tail current is

produced. This tail current produced with the 50 ms pulse slightly augments the

[Ca2+]myo transient just after its peak (trace 1, panel E), but there is no corresponding

decrease in the [Ca2+]jSR transient (trace 1, panel D) indicating no RyR Ca2+ release.

Table 9 Initial Conditions

State variable Definition Initial Value

[Ca2+] myo Ca2+ concentration in the myoplasm 8.1027 × 10-5 mM

[Ca2+]jSR Ca2+ concentration in jSR 1.2677 mM

[Ca2+]LSR Ca2+ concentration in LSR 1.3346 mM

[Na+]myo Na+ concentration in myoplasm 16.746 mM

[Na+]dyad Na+ concentration in dyadic space 16.321 mM

[Cs+]myo Cs+ concentration in myoplasm 140.2154 mM

[Cs+]dyad Cs+ concentration in dyadic space 140.2157 mM

Oc Fractional occupancy of Calmodulin by Ca2+ 0.033091

Otc Fractional occupancy of Troponin by Ca2+ 0.016049

Otmgc Fractional occupancy of Troponin by Mg2+ and Ca2+ 0.321764

Otmgmg Fractional occupancy of Troponin by Mg2+ 0.598385

[CaF 3] Concentration of Fluo3-Ca2+ complex 21.88721 μM

C1ryr Closed (resting) state of RyR channel 0.9990953

O2ryr Open (activated) state of RyR channel 1.03668 × 10-9

C3ryr Inactivated state of RyR channel 9.38711 × 10-13

C1dhpr Closed (resting) state of DHPR sensitive Ca2+ channel 0.1673614

O2dhpr Open (activated) state of DHPR sensitive Ca2+ channel 1.499173 × 10-3

O3dhpr Open (activated) state of DHPR sensitive Ca2+ channel 3.300291 × 10-3

C4dhpr Closed (resting) state of DHPR sensitive Ca2+ channel 7.478058 × 10-8

C6dhpr Closed (resting) state of DHPR sensitive Ca2+ channel 7.478058 × 10-8

A1ls Fraction of Tr/J bound to RyR 0.6709816

I2ls Fraction of Tr/J bound to RyR and Calsequestrin 0.155258

I3ls Fraction of Tr/J bound only to Calsequestrin 0.0623695

B6ls Fraction Calsequestrin bound to Ca2+ 0.619346

[Ca2+]serca Ca bound to the serca protein 36.0637 × 10-5μM

S2dhpr Fraction of IQ Motif bound to Ca4CaM 6.816729 × 10-2

PLBdp Fraction of unphosphorylated Phospholamban 7.684160 × 10-2

Ca2CaM 2 Ca2+ ions bound to C-terminus of CaM 34.56529

Ca4CaM 4 Ca2+ ions bound to C & N terminus of CaM 8.635052 × 10-2

CaMB Buffered CaM 7.563836 × 10-2

Ca2CaMB Buffered Ca2CaM 2.035086

Ca4CaMB Buffered Ca 4CaM 1.288455 × 10-6

Ca4CaN CaN bound to 4 Ca 2+ ions 2.606246 × 10-4μM

CaMCaN CaN bound to CaM 4.348535 × 10-3μM

Ca2CaMCaN CaN bound to 2 Ca2+ ions and CaM 1.419613 × 10-1μM

Ca4CaMCaN CaN bound to 4 Ca2+ ions and CaM 3.473412μM

[Ca2+]dyad Ca2+ concentration in the dyadic space 9.012 × 10-5 mM

Table 9: Initial conditions used for the state vector in order to solve the linearized system of ordinary differential
equations.
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At the end of this short pulse (50 ms), the RyR channel is in fact in its absolute refrac-

tory period. The small secondary increase in [Ca2+]myo transient as seen in data corre-

sponding to trace 4 of Figure 7C is a result of the large Ca2+ influx via the ICa,L “tail

current”. During this phase, the Na+/Ca2+ exchanger is biased to extrude Ca2+ out of

the dyad, and hence cannot be responsible for this secondary rise in the cytosolic Ca2+

transient. As pulse duration is increased beyond 100 ms the “tail current” causes a

Table 10 Initial Conditions

State variable Definition Initial Value

P1 Fraction of inactive dephosphorylated CaMKII in Ca2CaM bound state 5.527608 × 10-1

P3 Fraction of active dephosphorylated CaMKII in Ca4CaM bound state 3.661260 × 10-1

P6 Fraction of active Thr287-autophosphorylated but CaM autonomous CaMKII 1.314410 × 10-3

P5 Fraction of active Thr287-autophosphorylated but Ca2CaM bound CaMKII 6.277911 × 10-7

P4 Fraction of active Thr287-autophosphorylated but Ca4CaM trapped CaMKII 9.121920 × 10-8

Table 10: Initial conditions used for the state vector in order to solve the linearized system of ordinary differential
equations.

Figure 21 Secondary [Ca2+]myo transients induced by “tail currents”. Figure 21: The stimulation
protocol used is a pulse of amplitude (-40 mv to +50 mv) with pulse duration Tp increasing from 50 ms
(trace 1) to 200 ms (trace 7) in steps of 25 ms. (A) A cartoon depicting the voltage clamp stimulus protocol
where, pulse duration (Tp) is varied to obtain traces 1-7 and the clamp potential transition time (Tt) fixed at
1 ms. (B) ICa,L tail currents elicited during repolarization from +50 mv to -40 mv. (C) Open probability of the
RyR channel indicating gradual recovery from the refractory period (D) [Ca2+]jSR traces show increase in RyR
release with increasing pulse duration as a result of adequate RyR channel recovery. (E) Cytosolic calcium
transients indicate secondary RyR release caused by tail currents.
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gradual increase in RyR open probability (traces 3-7 in Figure 21) indicating progres-

sive recovery from the refractory period. Minimum value of [Ca2+]jSR in traces 3-7 of

Figure 21D show increase in SR Ca2+ release with increasing pulse duration as a result

of adequate RyR channel recovery and increasing ICa,L “tail current”. Cytosolic Ca2+

transients shown in Figure 21E indicate “tail current” induced secondary RyR release

for pulse duration ≥ 100 ms. It has also been previously reported [113] that recruit-

ment of an additional population of previously ‘silent’ Ca2+ channels could cause facili-

tation of tail currents at increasingly large clamp voltages with a time-dependence

associated with the recruitment process. Our model not only accounts for the contri-

bution of the already open channels (in states O2dhpr &O3dhpr) to the tail current dur-

ing repolarization but also allows for the voltage- and time-dependent recruitment of

‘silent’ Ca2+ channels modeled using a high voltage state C6dhpr. This study proves to

be an adjunct to the study presented in Figure 13 in establishing the refractory nature

of the RyR channel.

Cytosolic Buffering

In our model, cytosolic buffering is attributed to several factors including: (a) calmodu-

lin (CaM); (b) the Ca2+-specific (Tc) troponin binding site; (c) the Ca2+ - Mg2+ compe-

titive troponin binding site; and (d) the fluorescent indicator dye Fluo3 used to detect

changes in [Ca2+]myo. The effects of the component buffers in helping to maintain a

low [Ca2+]myo are shown in Figure 22 in terms of occupancy functions, such as OC

Figure 22 Occupancy of Ca2+ buffers. Figure 22: Contributions of fractional occupancy of Ca2+ buffers in
SR and cytoplasm. Transfer from Oc and Otc to Otmgc occurs as a result of the pulse stimulation. Otmgmg is
shown as a dotted line as it does not reflect Ca2+ binding. The corresponding [Ca2+]myo is overlayed (note
the different axis)
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(fractional occupancy of calmodulin by Ca2+), Otc (fractional occupancy of troponin-Ca

sites by Ca2+), Otmgc (fractional ocupancy of troponin-Mg sites by Ca2+), Otmgmg (frac-

tional occupancy of troponin-Mg sites by Mg2+) in the cytosol, and Ocalse (fractional

occupancy of calsequestrin by Ca2+) in the jSR Ca2+ release compartment. Figure 22

shows that when the Ry-sensitive Ca2+ release channel is triggered, the jSR releases

Ca2+ and the occupancy Ocalse in the jSR, declines from 68% to 37%. Ca2+ release from

the jSR induces fast Ca2+ binding by calmodulin and troponin in the cytosol, as repre-

sented by the increases of Oc (0.29) and Otc (0.16) in Figure 22. Interactions between

Ca2+ and the troponin-Mg sites result in an increase in occupancy of these sites by

Ca2+ (Otmgc), and a decrease in occupancy by Mg2+ (Otmgmg).

Discussion
It is well-established that mammalian cardiac excitation-contraction coupling is

mediated by calcium-induced calcium release (CICR). We have developed a compre-

hensive mechanistic model of CICR under voltage clamp conditions in the rat ventri-

cular myocyte, which includes electrical equivalent circuit models for both the free

sarcolemma and that portion involving junctional transmission, as well as, fluid com-

partment models for several fluid media within the cell (dyadic cleft space, longitudinal

sarcoplasmic reticulum (LSR or Ca2+ uptake compartment), junctional sarcoplasmic

reticulum (jSR or release compartment), and the cytosolic fluid compartment). An

external bathing medium completes our fluid compartment description of the cell Fig-

ure 1. The multiple component model is referred to as the “whole-cell model” (Figures

1 and 2). We have probed the mechanisms regulating Ca2+ in the cell. In particular,

we have focused on the dyadic mechanisms effecting CICR.

The dyadic controller is a finely tuned coupling device consisting of two opposed

Ca2+ channels separated by a small dyadic space (Figure 1B): the sarcolemmal DHP-

sensitive “trigger” channel and the Ry-sensitive jSR Ca2+ release channel. The trigger

channel is voltage-activated and is driven in our simulations by a voltage clamp

pulse which opens the channels, admitting Ca2+ influx (trigger current) to the dyadic

space. After diffusion within the dyadic space, trigger Ca2+ affects the Ca2+ depen-

dent open probability of the jSR Ca2+ release channel over a small range of Ca2+

concentrations. Clamp voltage magnitude strongly affects the ICa,L current and hence

the amount of Ca2+ delivered to the dyadic space, but the range over which the

Ca2+ concentration at the mouth of the Ca2+ release channel changes (in the

absence of RyR release) is quite small (23.42μM to 8.82μM for a change in VC from

10 mv to 40 mv). The RyR-mediated Ca2+ release is activated by trigger current, but

the release itself is affected by the concentration gradient between the jSR and the

dyadic space, and the temporal and refractory properties of the ryanodine receptor

(Figure 13). The four-state RyR model is informed regarding supply Ca2+ content by

the jSR luminal sensor, a novel feature in our model which characterizes the impor-

tant protein-protein interactions between calsequesterin, triadin/junctin and the RyR

receptor. Triadin/junctin strongly regulates the sensitivity of RyR to trigger Ca2+.

Hence the luminal sensor, which is a key element responsible for robust post-release

RyR inactivation and refractoriness of the Ry-sensitive Ca2+ release channel, is criti-

cal in providing realistic fits to cytosolic Ca2+ transients and an adequate refilling

time for the SR Ca2+ stores. Ca2+ release is thus graded with Ca2+ concentration at
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the mouth of Ca2+ channel in a very sensitive manner with a gain of approximately

7, as is shown in Figure 12.

The sarcolemmal portion of the dyadic membrane defining the dyadic space contains

voltage-sensitive Ca2+ channels and deals with changes in the external environment of

the ventricular cell (e.g., membrane response to changes in transmembrane potential

and chemical signaling agents). It integrates these various stimuli and delivers a trigger

current to the small dyadic space. In contrast, the jSR membrane lining the opposite

boundary of the dyadic space is concerned with the adequacy of Ca2+ release in CICR.

It contains Ry-sensitive Ca2+ channels that require a Ca2+ concentration gradient

directed across the channel and into the dyadic space for their operation. Thus, jSR

Ca2+ concentration must be maintained within an acceptable range so that calcium is

always available for ready release. The relationship between jSR Ca2+ content and peak

[Ca2+]myo is shown in Figure 16A. The LSR compartment connects the jSR compart-

ment with the cytosolic compartment. It feeds make-up calcium to the jSR, by using a

SERCA pump to actively draw in Ca2+ from the myoplasm. Pumping rate is controlled

by the cytosolic Ca2+ concentration [Ca2+]myo as well as the LSR Ca2+ concentration

[Ca2+]LSR as part of a mechanism for replenishing and maintaining jSR Ca2+ stores.

Our model also incorporates the Ca2+ induced CaM mediated effects of CaMKII and

CaN on targets such as the DHP-sensitive ICa,L channel, Ry-sensitive Ca2+ release

channel, as well as the SR Ca2+ ATPase pump. Provision for the effects of phospho-

lamban on SERCA has also been included.

The voltage-gated and chemically gated channels of the dyad are tightly coupled by

feedback mechanisms that involve Ca2+ signaling. Although physically separated, the

voltage-sensitive Ca2+ channel (Figure 9) as well as the Ry-sensitive release channel

(Phase C in Figure 15) are inhibited by increased Ca2+ levels in the dyadic space [53].

In earlier models which lacked the luminal sensor, RyR self-inhibition by dyadic Ca2+

was the only mechanism besides stochastic attrition (both of which are inadequate in

effecting a robust RyR channel closure) that was given the role of initiating RyR recov-

ery. This has been tested in our model by artificially clamping all the variables (includ-

ing concentration at the mouth of the RyR channel) to the levels reached at T2 in

Figure 15 despite which the RyR open probability, begins to decline in phase C of Fig-

ure 15 showing the self-inhibitory role of high dyadic Ca2+ concentration. Our model

predicts (data not shown) that this Ca2+ signaling continues even in the presence of

high concentrations of Ca2+ buffering agents in the cytosol (in agreement with the

data of Adachi-Akahane et al. [71] and Diaz et al. [110]). Tight coupling between the

DHP and Ry-sensitive Ca2+ channels within the dyadic space thus preserves the

mechanism of CICR under these extreme conditions.

Regulation of cytosolic Ca2+ concentration [Ca2+]myo is evident at the cellular level. It

is affected strongly by the voltage and [Ca2+]myo-dependent properties of the sarcolem-

mal currents INaCa and ICa,L, as well as the [Ca2+]myo-dependent properties of the

IPMCA and SERCA pumps. We demonstrate a model-generated whole-cell Ca2+ bal-

ance, which shows the importance of the Na+/Ca+ exchanger in extruding the Ca2+

that has entered the cell under normal activity, and also any excess that might occur

when cytosolic Ca2+ levels rise. The variety of experiments emulated in this study

demonstrates quantification of Ca2+ balances for all external and internal Ca2+ fluxes

and shows that the model has long-term stability in regulating cytosolic Ca2+, as

Krishna et al. Theoretical Biology and Medical Modelling 2010, 7:43
http://www.tbiomed.com/content/7/1/43

Page 43 of 66



shown in the 120-sec duration experiments of Negretti et al. (Figure 20) at a

pulse repetition rate of 0.33 Hz., and the faster paced stimulation at 4 Hz shown in

Figure 14A.

We have examined the dyadic component of the ICa,L with regard to its Ca2+

-dependent inactivation as a function of jSR Ca2+ content (Figure 17C). Trigger cur-

rent is voltage-dependent and therefore parameterized by clamp pulse amplitude (Fig-

ure 7A). In addition, its inactivation is Ca2+ dependent, especially during Ca2+ release.

At a constant depolarizing voltage pulse, the pre-release jSR Ca2+ content dictates the

peak of the cytosolic Ca2+ transient (Figure 16A), by controlling peak Ca2+ concentra-

tion in individual dyads. As jSR Ca2+ content increases, so does the peak dyadic Ca2+

concentration, and the amount of sarcolemmal Ca2+ influx declines due to greater

Ca2+ dependent inactivation. This autoregulatory feedback mechanism helps to estab-

lish a stable operating point for jSR Ca2+ content. Transient increases in jSR Ca2+ con-

tent bring about increases in Ca2+ release, but reflexly, decrease sarcolemmal Ca2+

influx via ICa,L. Coupled with other dyadic and extra-dyadic mechanisms (INaCa) that

decrease [Ca2+]myo and hence Ca2+-uptake via the SERCA pump, jSR Ca2+ content

decreases. For decreases in jSR Ca2+ content, the opposite occurs, so that regardless of

the sign of the perturbation in jSR Ca2+ content, it tends to stay constant in the

steady-state. This is an important feature of the dyadic mechanism that preserves the

integrity of CICR. The gain of this feedback system about the operating point is visua-

lized as the slope of the peak Ca2+ transient vs SR Ca2+ content characteristic (Figure

16A) for a given voltage pulse level. Observing this figure, we note that there is a linear

operating range beyond which the system gain increases dramatically. Our model

results also show that a decrease of jSR Ca2+ content (simulated either by a decrease

of Ca2+ uptake into the LSR by thapsigargin or an increase of Ca2+ leak out of the jSR

by caffeine) decreases systolic [Ca2+]myo, and hence the model might serve as a useful

adjunct in a study of heart failure, where decreased contractility as a result of dimin-

ished Ca2+ transients are commonly observed [114].

Model Limitations

(a) This model of a rat ventricular myocyte is limited to Ca2+ related channel,

exchanger and pumps (ICa,L, INaCa, IPMCA and SERCA pump), while lacking exclu-

sive Na+ or K+ related channels and transporters and is based on data at positive

potentials in the range 10 mV ≤ V ≤ 40 mV. It is aimed at mimicking voltage

clamp conditions where channels other than calcium are blocked, and it cannot be

used to study experiments involving the generation of action potentials. However,

its focus on the Ca2+ dynamics allows one to comprehend more clearly the impor-

tant role of Ca2+ signalling pathways and feedback control systems in maintaining

whole cell homeostasis over a prolonged period of time.

(b) A single dyadic space in our model has one representative, lumped DHP-sensitive

and Ry-sensitive Ca2+ channel, on opposing sarcolemmal and SR surfaces respec-

tively. This simplified configuration does not conform to detailed structural informa-

tion regarding the geometrical relationships between DHP and RyR-sensitive Ca2+

channels [115,55,116] and thus cannot be used to draw conclusions about this part

of the EC coupling process. However, our lumped abstraction forms a functional

model of the dyadic coupling unit that can produce accurate predictions of cytosolic
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Ca2+ transients. The effectiveness of this model is further demonstrated by its ability

to accurately characterize the interaction between the DHP and Ry-sensitive Ca2+

channels, including pulse duration dependent termination of release (Figure 11), Ca2

+ dependent inactivation of ICa,L (Figures 7, 9), as well as the wide variety of whole-

cell voltage clamp protocols (Figures 17, 18, 19 and 20).

(c) Although our model provides secondary Ca2+ tail transients elicited by ICa,L “tail

currents” (Figure 21), this aspect of the model has not been verified extensively due

to paucity of measured VC data showing tail transients over the high voltage range

(40 ≤ V ≤ 60) in rat ventricular myocytes. Our ICa,L tail currents are in general

agreement with model generated data at a clamp voltage of 50 mV reported by

Greenstein et al. ([8]; Figure 8). The restitution time for the RyR channel in rat

ventricular myocytes is believed to be at least 25 ms [117] and as fast as 150 ms

[118] indicating the wide range of values reported in the literature. We demon-

strate model-generated RyR refractoriness by changing the duration of the simu-

lated VC pulse and obtain RyR recovery characteristics that are consistent with

measured data for Ca2+ spark restitution in rat ventricular myocytes reported by

Sobie et al. [106]. However, our results on this important phenomena, particularly

the onset of tail transients with increasing inter-stimuli interval are preliminary and

further modeling investigations would benefit considerably from the availability of

additional measured data.

Conclusion
We have developed a mathematical model of Ca2+ dynamics under voltage clamp

conditions in the rat ventricular myocyte, which is based solidly on experimental

data and includes the most extensive description available of a novel feature, namely

the luminal Ca2+ sensor in the junctional SR which models the protein-protein inter-

action between triadin/junctin, calsequestrin and the RyR channel. The luminal sen-

sor imparts the much needed refractoriness to the Ry-sensitive Ca2+ release channel.

This element is critical in providing realistic fits to cytosolic Ca2+ transients and an

adequate refilling time for the SR Ca2+ stores. Our voltage-clamp simulations

demonstrate graded Ca2+ transients with sufficient gain, as well as quantification of

Ca2+ balances for all external and internal Ca2+ fluxes. Our model of the dyadic cou-

pling unit (DCU) provides mechanistic explanations of the major input-output rela-

tionship for CICR (Figure 16), as well as its modulation by trigger current (clamp

voltage). The variety of experiments emulated in this study demonstrates that the

model has long-term stability in regulating cytosolic Ca2+, as shown in the 120-sec

duration experiments of Negretti et al. (Figure 20) at a pulse repetition rate of 0.33

Hz., and the faster (physiological) paced stimulation at 4 Hz shown in Figure 14A. It

also provides biophysically based insights into the molecular mechanisms underlying

whole-cell responses to the wide variety of testing approaches used in voltage clamp

studies of myocytes that have appeared in the literature over the past two decades

(Figures 17, 18, 19 and 20). Thus, the model serves as a platform for the predictive

modeling of VC investigations in a number of areas. These include new hypotheses

with regards to the under-expression of triadin/junctin resulting in a malfunctioning

luminal sensor, which could affect long-term calcium stability of the cell (Figure
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14B), and/or changes in the refractoriness of the RyR Ca2+ channel (Figures 13 and

21) affecting the integrity of CICR under a variety of conditions. These are funda-

mental issues that would benefit from a better mechanistic understanding of

deranged calcium signalling in the rat ventricluar myocyte. This study is aimed at

providing an initial step towards this goal.

Appendix
Below is the complete set of equations used in the model.

A1 - Equations for currents in the model

L-Type Ca2+ current

Ca2+ current through the DHP-sensitive ICa,L channel
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Cs+ current through the DHP-sensitive ICa,L channel
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where kCs = 0.5 and [Ca2+]dhp, [Na
+]dhp, [Cs

+]dhp are Concentrations at the mouth of

the DHP-sensitive Ca2+ channel.

The corresponding unitary currents iCa,L, iNa, iCs are obtained by dividing the above

net channel currents by the number of dyadic units, Ndyad.

Gating scheme for the 2-state Markovian model used to allow Ca2+ mediated inter-

action of the DHP-sensitive ICa,L channel and calmodilin:

S Sdhpr dhpr1 1 2= − (4)
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dS
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ks S ks Sdhpr dhpr

dhpr
dhpr

dhpr

2
1 212 21= − (5)

Expressions for the rate constants:
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Gating scheme for the 6-state Markovian model for the DHP-sensitive L-type Ca2+

release channel:
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The open state O3dhpr accounts for the increased tail current produced as the result

of a large depolarization. Expressions for rate constants:

kdhpr
42 1000 0= . (14)

kdhpr
45 600000 0= . (15)
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• Case 2: With Ryanodine applied (no RyR release)
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• Case 3: With Ca2+ substituted with Ba2+

k

e

dhpr
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.
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kdhpr
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(50)

Uptake of Ca2+ from the cytosol into the LSR

Ca2+ fluxes from cytosol to SERCA and SERCA to LSR

J k Ca SERCA

k Ca

cyt serca cyt serca myo tot

cyt serca

, ,

,

[ ]

[

= × ×

− ×

+

+

2 2

2 ]] [ ]

[ ],

myo serca

serca cyt serca

Ca

k Ca

2 2

2

×

− ×

+

+

(51)

J k Ca Ca

k Ca

serca sr sr serca LSR serca

sr serca

, ,

,

[ ] [ ]

[

= × ×

− ×

+ +

+

2 2 2

2 ]]

[ ],

LSR tot

cyt sr myo

SERCA

k Ca

2

2

×

+ × +

(52)

I J FVcyt serca cyt serca serca, ,= × 2 (53)

I J FVserca sr serca sr serca, ,= × 2 (54)

Differential equation for Ca2+ buffered by the SERCA protein:

d Ca

dt
J Jserca

cyt serca serca sr
[ ]

, ,

2+
= − (55)

Expressions for the rate constants for Ca2+ binding to/release from SERCA:

k K CaMKIIcyt serca cyt serca act, , ( . )= + ×1 07 5500 (56)

K K ECcyt serca cyt serca
fwd

, , ( )=  50
2 (57)

k K CaMKIIserca sr serca sr act, , ( . )= + ×1 07 5500 (58)

k
K

EC
sr serca

serca sr
bwd,

,

( )
=

50
2 (59)
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Affinities for the forward and backward Ca2+ fluxes:

EC PSR PLB

CaMKII

fwd
dp

act

50 0 015 1

1 027
1 5500

  = + ×

×
+ ×

⎛

⎝
⎜

⎞

⎠
⎟

. ( )

. (60)

EC PSR PLBbwd
dp50 1250 1110= − × × (61)

Differential equation for phospholamban

dPLB

dt
k PLB

k CaMKII

CaN PKA

dp PLB
p

PLB
act

act act

=

−

+

+

12

21 5500

2 5

(

.  ))2PLBdp

(62)

PLB PLBp dp= −1 (63)

Ca2+ pump in SL

I I
Ca

kmpca Ca
PMCA PMCA

myo

myo

=
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

+

+

[ ]

[ ]

2

2
(64)

Na+/Ca2+ exchanger

I
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e

NaCa FV
RT

= × −

℘ +
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−

1 2 3

1 0 27
0 65

( )

.
.

(65)

NUM R
V

K
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mAllo
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1
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+
⎛

⎝
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⎠
⎟⎟
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⎜
⎜
⎜
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⎟
⎟
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[ ]

(66)

NUM e Na Ca
FV

RT
NaCa o2

0 35
3 2= + +

.

([ ] ) [ ] (67)

NUM e Na Ca
FV

RT
NaCao3

0 65
3 2= + +

.

([ ] ) [ ] (68)
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+ +
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[ ]
[ ]

3 3 2

3 2
2

1 aaCa

mCai

mCai
NaCa

mNai
o

K

K Na
Na

K

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

+ +
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛
+

+
([ ] )

[ ]3
3

1

⎝⎝

⎜
⎜

⎞

⎠

⎟
⎟

+ ⎡
⎣

⎤
⎦( ) ⎡

⎣
⎤
⎦

+ ⎡
⎣

⎤
⎦( ) ⎡

⎣
⎤
⎦

+ +

+ +

Na Ca

Na Ca

NaCa o

o NaCa

3
2

3
2

(69)

where [Ca2+]NaCa, [Na+]NaCa are Concentrations at the mouth of the NaCa-

exchanger.

The corresponding unitary current iNaCa is obtained by dividing the above net chan-

nel current INaCa by the number of dyadic units Ndyad.

Na+/Cs+ pump

I R I
Cs

Cs kmcs

Na

NaCs NaCs NaCs
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=
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⎠

⎟
⎟
⎟

(70)

The corresponding unitary current iNaCs is obtained by dividing the above net chan-

nel current INaCs by the number of dyadic units Ndyad.

Background Na+ current

I G
RT

F

Na

Na
Na b Nab

myo

o
, ln

[ ]

[ ]
= −

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

+

+ (71)

Ca2+ transfer from LSR to a single jSR

i
Ca Ca

FVtr
LSR jSR

tr
jSR=

−⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

+ +[ ] [ ]2 2

2


(72)

Ca2+ release from a unit jSR into a single DCU

i J Fryr ryr r z= × × Δ Δ( )2 2 (73)
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where,

J
O Ca Ca P

ryr
ryr jSR ryr ryr

r z

=
−

Δ Δ

+ +2 2 2

2

([ ] [ ] )


(74)

Gating scheme for the 4-state Markovian model for the RyR-sensitive SR Ca2+

release channel:

C C O Cryr ryr ryr ryr4 1 1 2 3= − + +( ) (75)

dC

dt
k C k O

k k C

ryr ryr
ryr

ryr
ryr
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4 2
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41 21
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k Ca varryr
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k k k kryr ryr ryr ryr
43 12 34 21= =; ; (83)
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k k k kryr ryr ryr ryr
23 14 32 41= =; ; (84)

var e
A l

= ×
⎡

⎣
⎢
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⎦
⎥
⎥

−

10 0
1 0 7013

0 03

2

.
.

.
s

(85)

where [Ca2+]ryr is the Ca2+ concentration at the mouth of the RyR channel on the

dyadic side. In the presence of caffeine (CF, concentration in μM):

O

e

ryr CF2
0 522

1

0 503410
264 9

= −

+

⎛

⎝

⎜
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⎞

⎠
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⎟⎟

+−
.

.[ ]
.

(86)

Gating scheme for the 6-state Markovian model for the Luminal Calcium sensor.

I A I Ils ls ls ls4 1 1 2 3= − + +( ) (87)

B I I Bls ls ls ls5 1 2 3 6= − + +( ) (88)

dA

dt
k I k I k B k Als ls

ls
ls

ls
ls

ls
ls

ls
1

4 2 5 141 21 12 14= + − +( ) (89)

dI

dt
k B A k B I k I

k k

ls ls
ls ls

ls
ls ls

ls
ls

ls ls

2
5 1 5 4 312 42 32

21 24

= + +

− +( ++ +k k Ils ls
ls23 25 2) 

(90)

dI

dt
k B I k I k k Ils ls

ls ls
ls

ls
ls ls

ls
3

5 4 2 343 23 34 32= + − +( ) (91)

dB

dt
k Ca B k Bls ls

jSR ls
ls

ls
6

5 656
2

65= −+[ ] (92)

A1ls Fractional occupancy of RyR by Triadin/Junctin

I2ls Fractional occupancy of RyR by Triadin/Junctin and Calsequestrin

I3ls Fractional occupancy of Triadin/Junctin by Calsequestrin

I4ls Free Triadin/Junctin, B5ls - Free Calsequestrin

B6ls Fractional Occupancy of Calsequestrin by Calcium

Ca2+ dependent CaM mediated activation of CaMKII and CaN

Ca2+ binding to CaM and CaM buffering

CaM CaM Ca CaM Ca CaM CaMB

Ca CaMB Ca CaMB CaMCaN
tot= − − −

− − −
−

   

  
2 4

2 4

CCa CaMCaN Ca CaMCaN

CaMKII P P P Ptot

2 4

1 3 5 4

 

 

−
− + + +( )

(93)
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B B CaMB Ca CaMB Ca CaMBtot= − + +( )2 4 (94)

RO k Ca CaM k Ca CaMCM CM2 02
2 2

02 2= × − ×+[ ] (95)

R k Ca Ca CaM k Ca CaMCM CM24 24
2 2

2 42 4= × − ×+[ ] (96)

RO B k Ca CaMB k Ca CaMBB
CM

B
CM2 02

2 2
20 2= × − ×+[ ] (97)

R B k Ca Ca CaMB

k Ca CaMB

B
CM

B
CM

24 24
2 2

2

42 4

= ×

− ×

+[ ]
(98)

ROB k CaM B k Ca CaMBBon
CM

Boff
CM= × × − ×0 0 2 (99)

R B k Ca CaM B k Ca CaMBBon
CM

Boff
CM2 2 2 2 2= × × − × (100)

R B k Ca CaM B k Ca CaMBBon
CM

Boff
CM4 4 4 4 4= × × − × (101)

dCa CaM

dt
R R R B R CaN

CaMKII RCK RCKtot

2

56 21

02 24 2 2= − − −

+ × −( )
(102)

dCa CaM

dt
R R CaN R B

CaMKII RCK RCKtot

4

46 23

24 4 4= − −

− × −( )
(103)

dCa CaM

dt
R R CaN R B

CaMKII RCK RCKtot

4

46 23

24 4 4= − −

− × −( )
(104)

dCaMB

dt
R B R B= −0 02 (105)

dCa CaMB
dt

R B R B R B2 02 2 24= + − (106)

dCa CaMB
dt

R B R B4 24 4= − (107)

CaMKII activation:

P P P P P P2 3 1 4 5 61= − − − − − (108)
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T P P P P= + + +3 4 5 6 (109)

k T T
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RCK k P
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k PP P
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k PP P
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(119)

dP

dt
RCK RCK RCK1

21 51 13= + − (120)

dP

dt
RCK RCK RCK3

23 13 34= + − (121)
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dP

dt
RCK RCK RCK4

34 46 45= − − (122)

dP

dt
RCK RCK RCK5

45 56 51= − − (123)

dP

dt
RCK RCK RCK6

46 56 62= − − (124)

CaMKII P P P Pact = × + + +100 3 4 5 6( ) (125)

CaN activation:

Ca CaN CaN Ca CaN CaMCaN

Ca CaMCaN Ca CaMCaN
tot2 4

2 4

= − −
− −

(126)

RCN k Ca Ca CaN

k Ca CaN

Ca Caon
CN

Caoff
CN

4
2 2

2

4

= × ×

− ×

+[ ]
(127)

RCN k Ca CaMCaN

k Ca CaMCaN

CN

CN

02 02
2 2

20 2

= × ×

− ×

+[ ]
(128)

RCN k Ca Ca CaMCaN

k Ca CaMCaN

CN

CN

24 24
2 2

2

42 4

= × ×

− ×

+[ ]
(129)

RCN k CaM Ca CaN

k CaMCaN

on
CN

off
CN

0 0 4

0

= × ×

− ×
(130)

RCN k Ca CaM Ca CaN

k Ca CaMCaN

on
CN

off
CN

2 2 2 4

2 2

= × ×

− ×
(131)

RCN k Ca CaM Ca CaN

k Ca CaMCaN

on
CN

off
CN

4 4 4 4

4 4

= × ×

− ×
(132)

dCa CaN
dt

RCN RCN RCN RCNCa
4

4 0 2 4= − − − (133)

dCaMCaN
dt

RCN RCN= −0 02 (134)

dCa CaMCaN
dt

RCN RCN RCN2
2 02 24= + − (135)
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dCa CaMCaN
dt

RCN RCN4
4 24= + (136)

CaN Ca CaMCaN Ca CaMCaN

Ca CaMCaN CaMCaN
act = +

+
+

100 0 1

10 0 1
4 2

4

( . )

.+  

00 1 4. Ca CaN

(137)

A2 - Differential equations for buffers used in the model

Fluorescent indicator dye

d CaF
dt

k Ca fluo CaF

k CaF

fluo myo tot

fluo

[ ]
[ ]([ ] [ ])

[

3
3 3

3

3
2

3

= −

−

+ +

− ]]
(138)

Intracellular Ca2+ buffering:

calmodulin (bulkmyoplasm):

dO
dt

Ca O Oc
myo c c= − − ×+200 1 476 02[ ] ( ) . (139)

Troponin

(Fractional occupancy of troponin-Ca complex by Ca2+):

dO c
dt

Ca O Ot
myo tc tc= − − ×+78 4 1 392 02. [ ] ( ) . (140)

(Fractional occupancy of troponin-Mg complex by Ca2+):

dO
dt

Ca O O

O

c
myo tmgc tmgmg

tmgc

= − −

− ×

+200 1

6 6

2[ ] ( )

.
(141)

(Fractional occupancy of troponin-Mg complex by Mg2+):

dO
dt

Mg O O

O

tmgmg
myo tmgc tmgmg

tmgmg

= − −

− ×

+2 0 1

666 0

2. [ ] ( )

.
(142)

A3 - Differential equations for ion concentrations used in the model

Intracellular Ca2+ concentration:

1. Ca2+ concentration in the cytosol

d Ca
dt

I I I
FV

I I

myo dyad PMCA Ca L SL

myo

cyt serca NaCa

[ ] , ,

,

2

2

2

+

=
− −

+
− + ,,SL

myoFV

dO
dt

dCaF
dt

2

1− −

(143)
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where Idyad is the net integrated Ca2+ flux diffusing out of all the dyadic units into

the cytosol

dO
dt

dO
dt

dO
dt

dO
dt

TC TMgC c= + +3 2 6 4 1 8. . . (144)

2. Ca2+ concentration in the jSR

d Ca
dt

i i
FV

dB
dt

jSR tr ryr

jSR

ls[ ]2

2
31000

6
+

=
−

− (145)

3. Ca2+ concentration in the LSR

d Ca
dt

I N i
FV

LSR cyt serca dyad tr

LSR

[ ] ,
2

2

+
=

−
(146)

4. Diffusion equation for Calcium in the dyadic space

∂
∂ = ∇ +

+
+[ ]

[ ]
Ca

t
D Ca Jdyad

Ca dyad ryr

dhpr Naca bnd

2
2 2

+ + +J J J
(147)

J
i
Ndhpr
Ca L TT

dyad r z

=
⎛

⎝
⎜

⎞

⎠
⎟ ×

Δ Δ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

, , .5 1821 103

2
(148)

J
i
NNaCa TT
NaCa TT

dyad r z
,

, .=
⎛

⎝
⎜

⎞

⎠
⎟ × ×

Δ Δ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2 5 1821 103

2
(149)

J
N K

K Ca

N K

K Ca

bnd
h h

h dyad

l l

l dyad

=
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

×
+

⎛

⎝
⎜
⎜

+

+

( [ ] )

( [ ] )

2 2

2 2

⎞⎞

⎠
⎟
⎟

∂
∂

+[ ]Ca
t

dyad
2

(150)

Intracellular Na+ concentration:

1. Na+ concentration in the cytosol

d Na
dt

N
Na Na

I I

myo
dyad

dyad myo

Na

Na b NaC

[ ] [ ] [ ]

,

+ + +

=
−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−
+



3 aa SL

myo

NaCs SL

myo

F V

I
F V

,

,

×
⎡

⎣
⎢

⎤

⎦
⎥

+ ×
⎡

⎣
⎢

⎤

⎦
⎥

3

(151)
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2. Na+ concentration in the dyadic space

d Na
dt

Na Na

i i

dyad myo dyad

Na

NaCa TT NaC

[ ] [ ] [ ]

,

+ + +

=
−⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−
+



3 3 ss TT

cleftF V
,

×
⎛

⎝
⎜

⎞

⎠
⎟

(152)

Intracellular Cs+ concentration:

1. Cs+ concentration in the cytosol

d Cs
dt

N
Cs Cs

I
F

myo
dyad

dyad myo

Cs

NaCs SL

[ ] [ ] [ ]

,

+ + +

=
−⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

+ ×



2
VVmyo

⎛

⎝
⎜

⎞

⎠
⎟

(153)

2. Cs+ concentration in the dyadic space

d Cs
dt

Cs Cs

i
F V

dyad myo dyad

Cs

NaCs TT

cle

[ ] [ ] [ ]

,

+ + +

=
−⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

+ ×



2

fft

⎛

⎝
⎜

⎞

⎠
⎟

(154)
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DHP-sensitive ICa,L channel; [Ca

2+]dyad : spatial Ca
2+ concentration in the dyad; [Ca2+]jSR : luminal Ca2+ concentration in

the jSR; [Ca2+]LSR : Ca
2+ concentration in the LSR; [Ca2+]myo : cytosolic Ca2+ concentration; [Ca2+]serca : Ca

2+

concentration buffered by the SERCA protein; [Ca2+]o : extracellular Ca
2+ concentration; [Ca2+]ryr : Ca

2+ concentration
at the “mouth” of the RyR channel on the dyadic side; CaCM: Ca2+ bound calmodulin; CaF3: Ca2+ bound to the buffer
Fluo3; CaM: calmodulin; CaMKII: Ca2+/calmodulin-dependent protein kinase II; CaMKIIact : activated Ca2+/calmodulin-
dependent protein kinase II; CaN: calcineurin; CaNact : activated calcineurin; CDF: calcium dependent facilitation; CDI:
calcium dependent inactivation; CF: caffeine; CICR: calcium-induced calcium-release; CS: calsequestrin; [Cs+]myo : Cs

+

concentration in the cytosol; [Cs+]dyad : Cs
+ concentration in the dyadic space; DCU: dyadic coupling unit; DHP:

dihydropyridine; DHPR: dihydropyridine receptor; E-C: excitation contraction; EC50bwd: affinity of backward Ca2+ flux
from LSR to cytosol; EC50fwd: affinity of forward Ca2+ flux from cytosol to LSR; ICa,L : L-type Ca2+ current; ICa,L,SL :
sarcolemmal component of the ICa,L channel current; ICa,L,TT : ICa,L channel facing the dyadic space; ICs : cesium current
through the ICa,L channel; Icyt,serca : Ca

2+ uptake current directed from the cytosol to the SERCA; INa : sodium current
through the ICa,L channel; INa,b : background sodium current; INaCa : sodium calcium exchanger current; INaCa,SL :
sarcolemmal component of the INaCa exchanger current; INaCa,TT : INaCa exchanger facing the dyadic space; INaCs :
sodium cesium pump current; IPMCA : plasma membrane Ca2+ ATPase pump current; Iryr : Ca

2+ current due to CICR
from an individual jSR; Iserca,sr : Ca

2+ uptake current directed from the SERCA to the LSR; Itr : Ca
2+ current due to

concentration gradient driven Ca2+ transport from LSR to jSR; jSR: junctional portion of the sarcoplasmic reticulum; kd :
dissociation constant; kmp : half saturation constant for the sarcolemmal Ca2+ pump; LCC: L-type DHP-sensitive Ca2+

channel; L-type: long lasting type; LSR: longitudinal portion of the sarcoplasmic reticulum; mM: milli molar; mV: milli
volt; [Na+]dyad : Na

+ concentration in the dyadic space; [Na+]myo : Na
+ concentration in the cytosol; nM: nano molar;

Oc : fractional occupancy of calmodulin by Ca2+ in the cytosol; Ocalse : fractional occupancy of calsequestrin by Ca2+ in
the jSR; Otc : fractional occupancy of troponin-Ca sites by Ca2+ in the cytosol; Otmgc : fractional ocupancy of troponin-
Mg sites by Ca2+ in the cytosol; Otmgmg : fractional occupancy of troponin-Mg sites by Mg2+ in the cytosol; pC: pico
coulomb; Po : Open probability; PKA: protein kinase A; PLBdp : Unphosphorylated phospholamban; PLBp :
phosphorylated phospholamban; PSR: phospholamban to SERCA ratio; Ry: ryanodine; RyR: ryanodine receptor; SERCA:
sarcoplasmic reticulum Ca2+ ATPase; SL: sarcolemma; SR: sarcoplasmic reticulum; Tc: Ca2+-specific troponin binding
site; T-tubule: transverse tubules; TT: transverse tubules; VC: voltage clamp; VDI: voltage dependent inactivation;
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