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Melanoma is a type of skin cancer that often leads to poor prognostic responses and survival rates. Melanoma usually develops in the
limbs, including in fingers, palms, and themargins of the nails.Whenmelanoma is detected early, surgical treatmentmay achieve a higher
cure rate.0e early diagnosis ofmelanomadepends on themanual segmentation of suspected lesions.However,manual segmentation can
lead to problems, including misclassification and low efficiency. 0erefore, it is essential to devise a method for automatic image
segmentation that overcomes the aforementioned issues. In this study, an improved algorithm is proposed, termed EfficientUNet++,
which is developed from the U-Net model. In EfficientUNet++, the pretrained EfficientNet model is added to the UNet++ model to
accelerate segmentation process, leading to more reliable and precise results in skin cancer image segmentation. Two skin lesion datasets
were used to compare the performance of the proposed EfficientUNet++ algorithm with other common models. In the PH2 dataset,
EfficientUNet++ achieved a better Dice coefficient (93% vs. 76%–91%), Intersection over Union (IoU, 96% vs. 74%–95%), and loss value
(30% vs. 44%–32%) compared with other models. In the International Skin Imaging Collaboration dataset, EfficientUNet++ obtained a
similar Dice coefficient (96% vs. 94%–96%) but a better IoU (94% vs. 89%–93%) and loss value (11% vs. 13%–11%) than other models. In
conclusion, the EfficientUNet++model efficiently detects skin lesions by improving composite coefficients and structurally expanding the
size of the convolution network. Moreover, the use of residual units deepens the network to further improve performance.

1. Introduction

Melanoma is a type of skin cancer with high spread char-
acteristics and a mortality rate of approximately 75% [1].
Machine learning algorithms have been widely used in
cancer research [2–5]. Moreover, medical image segmen-
tation and computer-aided vision techniques have recently
been used to improve the diagnosis of cancer lesions [6–8].
Image segmentation plays a vital role in many medical
imaging applications, and it can conveniently and

automatically describe the contours of anatomical structures
and other regions of interest.

Convolutional neural networks (CNNs) are the most
commonly used algorithms in medical imaging [9–11] and
are used for many tasks, including image classification
[10, 12, 13], superresolution [14–16], object detection
[17–19], and semantic segmentation [20–22]. However,
image segmentation is a considerable barrier for precise
computer-aided diagnoses. Image segmentation is different
from image classification or object recognition in that it is
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not necessary to know beforehand what visual concepts or
objects are being analyzed [23]. Deep learning can be used to
automatically extract features from images in different
categories; this may improve the feature detection time and
efficiency of traditional computer-aided detection by 10%.

Zhang et al. improved the accuracy of neural network
image segmentation using a SENet module with a U-Net
encoder [24]. 0e SENet module demonstrably improved
feature extraction and reduced running time. Xiuqin et al.
added a residual module based on the U-Net network, which
increased model performance in two aspects, namely, by (1)
improving the performance of network training and re-
ducing the gradient drop problem and (2) using the jump
connection residual module to nondegradation of infor-
mation and thereby allow deeper network structures to be
designed, which improved semantic segmentation perfor-
mance [25]. Wei et al. overcame the problem of limited
available dermoscopic image datasets using a pretrained
network and transferring the model parameters of the
DenseNet161 model trained on an ImageNet dataset for
natural image classification to Segmentor’s downsampling
path architecture [26]. Goyal et al. proposed two ensemble
methods called Ensemble-ADD and Ensemble-Comparison
to improve segmentation performance [27]. First, if no
DeeplabV3+ prediction is available, the ensemble methods
pick up the prediction of Mask R–CNN and vice versa.0en,
Ensemble-ADD combines the results of both Mask R–CNN
and DeeplabV3+ to produce the final segmentation mask.
Ensemble-Comparison-Large picks the larger segmented
area by comparing the number of pixels in the outputs of
both methods. By contrast, Ensemble-Comparison-Small
picks the smaller area from the output.

0e research field of automatic prostate segmentation in
3D MR images presents challenges. 0e lack of exact edges
between the prostate and other anatomical structures makes
the challenge on accurate boundary extraction. 0e seg-
mentation is further complicated by the complex background
texture and the significant variation in the prostate’s size,
shape, and intensity distribution. Zhu et al. [28] proposed
BOWDA-Net, a boundary-weighted domain self-tuning
neural network, to solve the problem for small medical im-
aging datasets [28]. Zhu et al. [29] suggested a novel 3D
network with a self-supervised function entitled Selective
Information Transfer Network (SIP-Net). 0ey assessed the
suggested model on the MICCAI Prostate MR Image Seg-
mentation 2012 Grant Challenge dataset, TCIA Pancreas CT-
82, and MICCAI Liver Tumor Segmentation (LiTS) 2017
Challenge datasets. 0e empirical results of these datasets
show that the proposed model obtains more reliable seg-
mentation results and outperformed state-of-the-art methods
recently [29]. In the work by Liu et al. [30], a new learning
approach and multisite-guided knowledge transfer was used
to overcome the difficulty of acquiring shared knowledge
from multiple datasets. 0is method revealed to enhance the
kernel to extract more common representations from mul-
tisite data. Extensive experiments on three heterogeneous
prostate MRI datasets show that our MS network consistently
improves the performance on all datasets and outperforms
state-of-the-art multisite learning methods.

2. Methods

Melanoma is a type of skin cancer with high spread char-
acteristics and a mortality rate of approximately 75% [1].
Machine learning algorithms have been widely used in
cancer research [2–5]. Moreover, medical image segmen-
tation and computer-aided vision techniques have recently
been used to improve the diagnosis of cancer lesions [6–8].
Image segmentation plays a vital role in many medical
imaging applications, and it can conveniently and auto-
matically describe the contours of anatomical structures and
other regions of interest. Figure 1 shows images of a skin
lesion and manually segmentation mask.

2.1. U-Net. U-Net for segmentation is illustrated in Figure 2
[31] 0e first half of the U-Net network performs feature
selection, and the second half performs upsampling. 0is
network structure is also called a transcoder. In the first half
of the U-Net encoding path, convolution and max pooling
are repeated. After every two 3× 3 convolutional layers on
the path, a 2× 2 max pool layer is added. After layer con-
volution, the rectified linear unit (ReLU) activation function
is used to downsample the original image. Each down-
sampling adds a new number of channels, and each layer
step in the second half of the decoding path involves con-
tinuously performing transposed convolution and convo-
lution operations on the feature map. In the upsampling half
of the decoding path, an ReLU activation function and two
3× 3 convolutional layers are added after each layer of
transposed convolution.

Each upsampling adds a feature map of the corre-
sponding encoding path, thereby reducing the number of
feature channels by half. For transposed convolution, the
general convolution is reversed, and the feature map ob-
tained using convolution is restored to the pixel space
through transposed convolution. 0e largest corresponding
feature map can intuitively understand which features are
selected through a convolution operation. 0e last layer of
the network is a 1× 1 convolutional layer, which can convert
the 64-channel feature vector into the required number of
classification results. U-Net can perform convolution op-
erations on images of arbitrary shapes. 0e U-Net encoding
path is upsampled four times and downsampled 16 times.
Because of four upsampling operations, detailed informa-
tion, such as that on the edge restoration of the segmentation
map, can be obtained, enabling the decoder to determine
target details, achieve point-level positioning, and devise
decoding paths. 0e operations also correspond to four
upsamplings.

In U-Net, low-level and high-level information is
combined. After multiple downsamplings of the low-level
information, the low-resolution information can provide
contextual semantic information of the segmentation target
in the entire image, reflecting the characteristics of the target
and its relationship with the environment. 0is feature
determines the object category and uses skip connections
between the encoder and decoder. 0e skip connection
operation applied to high-level information involves directly
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passing information from the encoder to high-resolution
information decoded at the same bandwidth, which provides
more detailed features for segmentation. When low-level
information is combined with high-level information, di-
rectly supervising semantic features and loss back-
propagation is not necessary. 0e recovered feature map
incorporates more low-level information features and fea-
tures at different scales. Unlike other networks, U-Net uses
feature fusion to perform stitching and stitches features
together in channel dimensions to form thicker features.

0e U-Net model for medical image segmentation has
the following advantages: (1) 0e boundaries of medical
images are blurred, and gradients are complex. Moreover,
more high-resolution information is required. High-reso-
lution information is mainly used for accurate segmentation.
(2) 0e internal structure of the human body is relatively
fixed. 0e distribution of segmentation targets in human
images is regular, and the semantics are simple and clear.
Low-resolution information is suitable for target

recognition. Such information is combined with high-res-
olution information in U-Net.

2.2. SegNet. 0e SegNet [32] architecture consists of a se-
quence of nonlinear processing layers (encoders) and a
corresponding set of decoders followed by a pixelwise
classifier. Typically, each encoder consists of one or more
convolutional layers with batch normalization and ReLU
nonlinearity, followed by nonoverlapping max pooling and
subsampling. 0e sparse encoding due to the pooling pro-
cess is upsampled in the decoder using the max pooling
indices in the encoding sequence (Figure 3). One key feature
of SegNet+ is the use of max pooling indices in the decoders
to perform upsampling of low-resolution feature maps. 0is
has the notable advantages of retaining high-frequency
details in the segmented images and of reducing the total
number of trainable parameters in the decoders. 0e entire
architecture can be trained end-to-end using stochastic

(a) (b)

Figure 1: Skin lesion samples (a) and corresponding masks (b).
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Figure 2: U-Net structure diagram.
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gradient descent. 0e raw SegNet predictions tend to be
smooth even without conditional random field-based
postprocessing.

2.3.UNet++and ImprovedUNet++. As depicted in Figure 4,
UNet++ [33] has some improvements over U-Net [31]; such
improvements mainly relate to the skip connection part of
the U-Net structure. Compared with the original U-Net
network, UNet++ connects layers 1 to 4 of U-Net together.
0e advantages of this structure are as follows: (1) Regardless
of whether the depth feature is effective, it will still be used so
that the network can learn the importance of features of
different depths. (2) As the feature extractor is shared, the
entire U-Net need not be trained: only one encoder is
trained, and the features of different levels are restored by
different decoder paths. In the UNet++ architecture, the
encoder can be flexibly replaced with various backbones.0e
main improvement of UNet++ is in filling up the original,
hollow U-Net: the advantage is in grasping different levels of
features and using feature overlay to integrate different levels
of features so that when semantically similar feature maps
are received, the semantic gap between the encoder and
decoder feature stubs is reduced, making optimization
easier. Sun et al. [34] proposed a new architecture called
UNet+, which is formed by removing the original skip
connection in U-Net and connecting every two adjacent
nodes in the set. Based on the new connection scheme,
UNet + connects disjoint decoders, thus enabling gradient
backpropagation from deep decoders to shallow decoders.
UNet + further relaxes the unnecessary restrictive behavior
of skip connections by proposing an ensemble of all feature
mappings computed in the shallower stream [34].0erefore,
removed dense connections is a neural network adjustment
technique, which enables gradient backpropagation from
deep decoders to shallow decoders. In the structure of
improved UNet++, we removed dense connections from the
original UNet++ to reduce the amount of calculation and
change the way of skip connections.

2.4. High-Resolution Network. U-Net [31], SegNet [32], and
other methods have been widely applied in many studies;
their features are using convolutional operations to compute
low-resolution representations and then gradually recover
high-resolution representations. However, in order to learn
high representations and reduce spatial accuracy loss,
HRNet employs a strategy of maintaining high resolution
throughout the feature extraction process [35]. 0e archi-
tecture consists of a multiresolution convolutional parallel
module, an interactive fusion module, and a representation
head module. Sun et al. [34, 35] augmented HRNet with a
direct segmentation head. He aggregated the output rep-
resentations at four different resolutions and then used 1× 1
convolution to fuse these representations. 0e HRNeT ar-
chitecture is shown in Figure 5. 0e output representations
are fed into the classifier. Ke Sun evaluated his method on
three datasets, namely, Cityscapes, PASCAL-Context, and
LIP, and achieved state-of-the-art performance. 0erefore,
we introduced HRNeT to image segmentation applications
for skin lesions in order to benchmark the performance of
the model. Figure 5 indicates that the neural network ar-
chitecture of HRNeT is composed of parallel high- and low-
resolution subnetworks, and the multiscale feature fusion
that 1x, 2x, and 4x is achieved by repeatedly exchanging
information between multiresolution subnetworks [35]. 0e
horizontal and vertical directions in the figure correspond to
the depth of the network and the scale of the feature map,
respectively.

2.5. Backbone. Transfer learning is a machine learning
technique where for which the knowledge gained in training
one problem is used in the training of another task or
domain [36]. In deep learning, the first few layers are trained
to define the features of the task. In transfer learning, the last
few layers of the trained network can be removed, and new
layers are used to retrain the target task. In the transfer
learning approach, using the network knowledge previously
trained with a large amount of visual data for a new task is
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Figure 3: SegNet structure diagram.
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very beneficial in saving time and achieving high accuracy
compared with training the model from scratch.

0is study proposed EfficientUNet++ that replaced the
encoder in UNet++ with two backbone architectures: pre-
trained Xception [37] and EfficientNet [38] models. Al-
though for both architectures, networks of varying depths
exist, we choose the shallower depths to prevent overfitting

to our limited training data. 0ese models have learned to
extract useful and powerful features from images and use
them as starting points for learning new tasks. 0ey use
pretraining as a benchmark for improving existing models
while adding the advantages of pretrained models to make
learning efficiency faster and more stable and to accurately
split skin lesion images.
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Figure 4: Structure diagram of (a) UNet++ module and (b) improved UNet++ module. L denotes loss function.
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Figure 5: 0e neural network architecture of HRNeT.
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2.5.1. Xception. Xception as depicted in Figure 6 and the
Inception model [39] can determine the correlation between
functional channels and the spatial correlation between
separate channels of the function using convolution oper-
ations. Xception [37] achieves higher recognition accuracy
than the Inception model. 0e structure consists of 36
convolutional layers for the characteristic extraction of the
network. 0e 36 convolutional layers are divided into 14
modules, and the above structure is redesigned as an in-
ception model block. In the case of redesigning the ResNet
architecture, it is possible to increase the number of layers of
the model while reducing the number of parameters. 0is
not only reduces storage space but also enhances the ex-
pressive power of the model. Each 3× 3 convolution acts on
a feature map containing one channel only; this is the basic
module of Xception. Adding a residual connection mech-
anism similar to ResNet to Xception significantly accelerates
the convergence process and achieves significantly higher
accuracy.

2.5.2. EfficientNet. As shown in Figure 7, EfficientNet [38]
usesMBConv inMobileNetV2 [40] as the backbone network
of the model. It also uses the extrusion and excitation
methods in SENet to optimize the network. It can be ex-
panded from B0 to B7 using the compound expansion
method, together with adjustment of scaling parameters to
increase the size of the network in order to improve
accuracy.

2.6. EfficientNet++ Training. EfficientNet++ was tested on
two skin lesion segmentation datasets with a small number
of dermatoscopic images in the training set compared with
the number of network parameters. 0erefore, to improve
the performance of EfficientNet++ and overcome the pos-
sible overload problem due to the insufficient training set,
the following three strategies were used for the segmentation
of dermatoscopic images.

2.6.1. Preprocessing. A standard preprocessing step was
performed on the images before delivering them to the
network. Initially, an algorithm for grayscale world color
constancy was applied to normalize the image’s color, as
suggested in [41]. 0is preprocessing step deals with varying
lighting conditions in the images and is widely used for skin
lesion analysis [42–44]. Subsequently, as a common pre-
processing step for transfer learning, the mean intensity
RGB values were subtracted from the ImageNet dataset [45].
Various enhancement techniques were used to obtain more
robust models, including random scaling, random rotation,
vertical and horizontal flipping, random luminance and
contrast shifts, random adaptive histogram equalization,
random cropping, and random manipulation of HSV (Hue,
Saturation and Value) color channels. 0e random cropping
strategy is applied to both the training and validation set
images to calculate the scores.

2.6.2. Dropout and Batch Normalization. 0e motivation of
using the batch normalization layer, dropout layer, and
regularisation term in the dense layers is to prevent over-
fitting to the limited training set [43]. In our proposed
network, an enormous number of parameters may lead to
overfining and failure during the network training. A
dropout regularisation technique is introduced [46]. A
subgroup of neurons with probability in a given layer will be
eliminated as inactive neurons. 0ese inactive neurons do
not contribute to the feedforward and backpropagation
processes. Under such conditions, because the active neu-
rons cannot rely on the eliminated neurons, they are forced
to learn more robust features independently. As a result, the
network is well trained even with limited data. Batch nor-
malization is a training technique for deep neural networks
that normalizes each small batch of inputs to a single layer,
with the effect of stabilizing the learning process and sig-
nificantly reducing the number of training cycles needed to
train a deep network.

2.6.3. Adam Stochastic Optimization. 0e Momentum
Optimization [47] was proposed to accelerate Stochastic
Gradient Descent (SGD) [48]. 0is is achieved by reducing
oscillations and directing SGD in the associated direction, at
the cost of defining an additional hyperparameter. For this
reason, Adam’s algorithm, known as the adaptive moment
[49], was used. An Adam optimization is relatively robust to
the choice of hyperparameters during this implementation.
A learning rate of 0.0001 was set, and Adam’s default pa-
rameters were used to compute the first and second
moments.

2.7. Evaluation Criteria

2.7.1. Loss Function. Dice coefficient loss and cross-entropy
loss are loss functions commonly used in semantic seg-
mentation tasks. Former is an essential measure of the
overlap between two samples. 0is measure ranges from 0
to 1, where a Dice coefficient of 1 means complete overlap,
which is represented as equation (1), where N is the size of
the pixels, pi is the predicted pixels, and yi is the test pixels.
0e cross-entropy loss examines each pixel one by one and
compares the predicted results (probability distribution
vector) for each pixel category with the heat-coded label
vector. When there are only two categories, a binary en-
tropy loss, called BCE loss, is used and represented as
equation (2). However, the training is unstable when
dealing with extremely unbalanced samples, both BCE and
Dice coefficients. In BCE, if y � 0 is much larger than y � 1,
then the y � 0 component of the loss function will dom-
inate, making the model heavily biased towards the
background, resulting in poor training results. 0erefore,
the loss function in this study uses the combination of BCE
and Dice loss; the formula is represented as equation (3),
and the parameter α is used to control the weights of the
BCE or Dice coefficients.
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Dice loss � 1 −
1
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, (1)

BCE �
1
N


i�1

yilog pi 1 − yi( log 1 − pi( ( , (2)

loss � (1 − α)BCE + αDice × loss, (3)

accuracy �
TP + TN

TP + TN + FP + FN
. (4)

2.7.2. Metrics. A confusion matrix was commonly used in
the analysis of semantic segmentation.0e confusion matrix
was composed of (true positives (TP) false positives (FP),
true negatives (TN), and false negatives (FN). 0e confusion
matrix of TP, FP, FN, and TN is presented in Table 1.
Methods were evaluated in terms of accuracy equation (4).
All parameters range from 0 to 1 and are ideally as close to 1
as possible. In addition to the calculation of binary precision,

the threshold parameter, which defaults to 0.5, is calculated.
Each predicted value is compared with the threshold. Values
greater than the threshold are set to 1, and values less than or
equal to the threshold are set to 0.

0e Dice coefficient is a commonly used indicator for
evaluating segmentation result quality. It is mainly used to
calculate the Dice distance of the two intervals to segment the
similarity of the interval.0e range is between 0 and 1. Dice loss
is proposed to solve problems arising when the foreground
proportion is too small. When the overlapping part of two
samples is measured, the indicator ranges from 0 to 1 (where 1
represents complete overlap), which is defined as follows:

Dice �
2TP

FN + 2TP + FP
. (5)

Intersection over Union (IoU) is a task outputting a
prediction range. In order for IoU to be used to detect
objects of any size and shape, it is necessary to mark the
range of the detected object in the training set image and
measure the correlation between the ground-truth and the
prediction.
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Figure 6: 0e network architecture for (a) Inception module and (b) Xception module.
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IoU �
TP

TP + FP + FN
. (6)

3. Experiment

3.1. Dataset

3.1.1. International Skin Imaging Collaboration 2018 Dataset.
0e International Skin Imaging Collaboration (ISIC) has
expert annotations on international datasets and is used to
improve the automatic segmentation of melanoma diag-
noses to help reduce mortality [50]. 0e ISIC-2018 dataset
has a total of 5188 images, including skin lesion images and
mask images. To evaluate our proposed method to larger
datasets, we extract training data from the ISIC-2018: Skin
Lesion Analysis Towards Melanoma Detection grand chal-
lenge dataset [50, 51]. Abraham and Mefraz Khan proposed
a hybrid U-Net approach with a Dice score of 86% [52]. In
this study, the proposed EfficientUNet++ has reached a Dice
score of 96%; it displays superior performance to the pre-
vious reports. 0e detail results are described in the follow
section.

3.1.2. PH2 Dataset. PH2 is dataset of skin images obtained
from the Pediatric Department of Pedro HispanoHospital in
Matosinhos, Portugal [53]. Data are provided on manual
segmentation and clinical diagnosis. 0e dataset has a total
of 400 images, including skin lesion images and mask im-
ages. In 2018, Yu proposed an aggregated deep convolutional
features approach with a Dice score of 94% [6]. 0e pro-
posed EfficientUNet++ has reached a Dice score of 96%, and
it displays superior performance. 0e partitioning of data-
sets is essential for training models with generalization
capabilities.0e training and validation sets are used to train
the model and to assess whether there is a good fit. 0e test
set is used to test the model’s performance with data that the
model has unseen in model training phase.

3.2. Ablation Study. Ablation studies are used to analyze the
performance of an artificial intelligence system by removing
certain components to obtain an understanding of the
contribution of that component to the overall system. 0e
term is used by analogy with biology (the removal of
components of an organism) and, continuing the analogy,
especially when analysing artificial neural nets, by analogy
with brain ablation procedures [54]. Meyes et al. [55]
suggested that ablation studies are a viable approach to study
knowledge representation in ANNs and are particularly
useful to study the robustness of networks to structural
damage, a feature of ANNs that will become increasingly

important for future safety-critical applications [55]. To
quantitatively verify the validity of our model, we performed
ablation tests on PH2 data validation set (shown in Table 2).
In our experiments, EfficientNet was used as the backbone
[56], and submodules were added to perform the functional
validation in the separate sessions.

0e activation functions were also explored for ablation
study. 0e chosen comparators are mainly the following
activation functions: Mish, Swish, SELU, and ReLU [57]. For
making the results more reliable, we only replaced the ac-
tivation function of the network with Mish, Swish, GeLU,
PReLU, and ReLU and kept the other hyperparameters
unchanged. As shown in Table 3, the results revealed that the
choice of ReLU as the activation function provided better
accuracy than other functions.

3.3. Loss andDiceCoefficientCurves ofAlgorithms. As shown
in Figures 8 and 9, our proposed method involves using 160
and 2570 training images of skin lesions from the PH2 and
ISIC-2018 datasets, respectively. Early stopping (ES) is a
common model training strategy in the literature. Jiménez
and Racoceanu adopted ES to train the AlexNet and U-Net
using stochastic gradient descent, a batch size of 128 and 100
epochs to mitosis analysis in breast cancer grading. 0ey
observe the convergence trend of the model, storing the
weights before overfitting as the prediction model [58]. 0e
training strategy is widely adopted in semantic segmentation
and image recognition applications [59–61]. In this study,
five models were trained, and then, tests were performed on
40 and 200 skin lesion images, respectively. For the loss of
UNetEfficicent++ in Figures 8(i) and 8(j)), after 100 epochs
of training, the steady increase in the loss function indicates
that UNetEfficicent++ develops overfitting after 33th epoch.
To overcome this issue, we used the weights saved in 33th
epoch to test the performance of the network in the test
dataset. For the loss of UNetEfficicent++ in Figures 9(i) and
9(j)), UNetEfficicent++was overfitted after the 27th epoch;
as results, we used the weights saved in 27th epoch to test the
performance of the network in the test dataset.

Five models were trained, and then, tests were performed
on 40 and 200 skin lesion images, respectively, after 100
epochs of training. 0e ISIC-2018 and PH2 datasets also
showed that the IoU and Dice scores improve with further
increases in datasets and training steps. 0e ability of the
proposed model to learn through experiments with the two
datasets was evaluated using the accuracy curve shown in
Figures 8 and 9. 0e curve demonstrates that the relatively
large ISIC-2018 dataset reached a Dice coefficient percentage
of 96%. 0is improvement is due to the Dice loss function
used by the sigmoid classifier.

3.4. Evaluation of PH2 Dataset. We compared the perfor-
mance of our proposed method with that of other methods
using the PH2 dataset. 0e results are listed in Table 4. Our
method achieved the best performance. As shown in Fig-
ure 10 from the ground-truth and segmentation results, the
SegNet algorithm performed relatively ineffective image
segmentation on the PH2 dataset. Compared with UNet++,

Table 1: Confusion matrix for binary classification.

Prediction result
Actual test

Positive Negative
Positive TP FP
Negative FN TN
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XceptionUNet++ increased by 2% and 3% with respect to
Dice and IoU, and EfficientUNet++ increased by 4% and 4%,
respectively. Compared with HRNeT, EfficientUNet++ in-
creased by 2% with respect to Dice.

3.5. Evaluation of the ISIC-2018 Dataset. To verify the ef-
fectiveness of the proposed method, we compared the
performance of various algorithms when applied to the
ISIC-2018 dataset (Figure 11). 0e results are listed in Ta-
ble 5. Our method achieved the highest scores in the default
performance measures in this challenge compared with the
other algorithms. 0e HRNeT and EfficientUNet++ have
improvements of 2% and 3% when compared with UNet++
and XceptionUNet++. Even the novel HRNeT has a similar
performance to EfficientUNet++, EfficientUNet++ shows a
higher robustness and the best performance results on both
datasets. In addition, EfficientUNet++ has fewer trainable
parameters than HRNeT, which means that EfficientU-
Net++ is more efficient in memory usage than HRNeT
(Table 6). As shown in Figure 11, the improved UNet++
algorithms made fuzzy boundaries clearer and enhanced
focus on foreground pixels.0erefore, our method is capable
of obtaining a high degree of precision and accuracy in pixel
classification and segmentation, and it represents an im-
provement on other segmentation methods.

4. Discussion

Manual segmentation of skin lesion images is time con-
suming and imprecise. 0e deep learning image segmen-
tation UNet++ algorithm can be used for the automatic
segmentation of medical images; however, because of the
density of connections, the number of calculations required
is high, so UNet++ cannot accurately segment the locations
and boundaries of skin lesions. Automatic lesion segmen-
tation remains a challenge due to the large variation in the
appearance of dermoscopic images, and streaks on der-
moscopy images usually are difficult to detect because they
are not perfect linear structures b[[parms

resize(1),pos(50,50),size(200,200),bgcol(156)]] lighting
condition, and were subject to nonuniform vignetting [62].
Sample imbalance in the PH2 dataset [63–65] causes seg-
mentation models to be severely biased and results in low
prediction accuracy. Although this problem can be over-
come through data enhancement, the possible improvement
is limited. 0e most direct solution is to expand the size of
the original dataset or use a focal loss function [66] suitable
for the unbalanced sample. However, focal loss has static loss
that does not change with data distribution, it failed to meet
expectations due to instability during training.0erefore, we
use the loss function that adopts the combination of Dice
loss and BCE loss, realizing the accurate segmentation of
skin lesion.

0e preprocessing of input images is very helpful in the
task of segmentation, which consists of working with
grayscale images and normalizing to improve image quality.
In the UNet++ model, quality of encoding affects the final
segmentation. Due to time and calculation limitations, it is
unfeasible to train bespoke models from scratch. In this
study, we proposed an improved UNet++ algorithm in
which Xception and EfficientNet pretraining is imple-
mented. Using pretrained image networks on the encoder
can be useful because pretraining reduces the neural net-
work model training time and can reduce errors. Pretrained
models have learned to extract powerful and useful functions
from images and use them as starting points for learning new
tasks, and they can use pretraining as a benchmark from
which to improve existing models. However, UNet++’s
dense connection and the memory usage are efficient;
meanwhile, the network can avoid vanishing gradient.
However, this approach causes excessive irrelevant features
passing on the network and the redundant use of compu-
tational resources. 0erefore, to mitigate feature map ex-
plosion in the upsampling path, the dense connections of
UNet++ are avoided in the network structure and improved
the way to skip connection. 0e improved UNet++ algo-
rithm can improve accuracy and efficiency in medical image
segmentation. We used five deep learning algorithms for

Table 2: Ablation study results for the different modules in PH2 data.

Method Dice Accuracy IoU
EfficientNet +U-Net 0.90 0.92 0.90
EfficientNet + inception 0.90 0.93 0.91
EfficientNet + xception 0.91 0.93 0.92
EfficientNet +UNet++ 0.93 0.96 0.96
Note: the best results are in bold.

Table 3: Results of the ablation study with different activation functions.

Activation function Epoch Learning rate Batch size Optimizer Backbone Accuracy
Mish 100 0.001 2 Adam EfficientNet 0.92

Swish 100 0.001[[parms
resize(1),pos(50,50),size(200,200),bgcol(156)]] 2 Adam EfficientNet 0.91

GeLU 100 0.001 2 Adam EfficientNet 0.92
PReLU 100 0.001 2 Adam EfficientNet 0.94
ReLU 100 0.001 2 Adam EfficientNet 0.96
Note: the best results are in bold.
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comparative experiments and performed image segmenta-
tion on the PH2 and ISIC-2018 datasets to verify the ef-
fectiveness of the improved method. 0e results show that
the segmentation of the improvedUNet++ is superior to that
of other algorithms.

For modelling the features of melanoma skin lesion,
EfficientUNet++ can exploit the advantages of EfficientNet and
UNet++, and the performance of the method proposed in this

study is verified in both ablation study and 5-fold cross vali-
dation. 0e primary contributions are concluded as follows:

(1) An effective semantic segmentation model based on
deep learning is proposed and validated with two
skin lesion data

(2) 0e validity of the proposed method is compared
with that of four classical models: SegNet [32], U-Net

0

0 20 40 60
Epochs

Model Loss
Lo

ss

80 100

1

2

3

4

5

6

7

8

Train Set
Val Set

(a)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0 20 40 60
Epochs

Model dice_coef

di
ce

_c
oe

f
80 100

dice_coef Set
Val Set

(b)

0

0 20 40 60
Epochs

Model Loss

Lo
ss

80 100

1

2

3

4

5

6

7

8

Train Set
Val Set

(c)

0.6

0.7

0.8

0.9

1.0

0 20 40 60
Epochs

Model dice_coef

di
ce

_c
oe

f

80 100

dice_coef Set
Val Set

(d)

0.2

0.4

0.6

0.8

1.0

1.2

0 20 40 60
Epochs

Model Loss

Lo
ss

80 100

1.4

Train Set
Val Set

(e)

0.60

0.65

0.70

0.75

0.80

0.85

0 20 40 60
Epochs

Model dice_coef

di
ce

_c
oe

f

80 100

dice_coef Set
Val Set

(f )

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 20 40 60
Epochs

Model Loss

Lo
ss

80 100

1.4

1.6

Train Set
Val Set

(g)

1.00

0.95

0.90

0.85

0.80

0.75

0.70

di
ce

_c
oe

f

0 20 40 60
Epochs

80 100

dice_coef Set
Val Set

Model dice_coef

(h)

0.0

0.2

0.4

0.6

0.8

0 20 40 60
Epochs

Model Loss

Lo
ss

80 100

Train Set
Val Set

(i)

0.70

0.65

0.75

0.80

0.85

0.90

0.95

1.00

0 20 40 60
Epochs

Model dice_coef

di
ce

_c
oe

f

80 100

dice_coef Set
Val Set

(j)

Figure 8: Validation set trends of loss and Dice coefficients for each method in the PH2 dataset. XceptionUNet and EfficientUNet++ appear
the superior trends of loss and Dice coefficient than other models in the initial epochs. (a, b) SegNet, (c, d) U-Net, (e, f ) UNet++, (g, h)
XceptionUNet, and (i, j) EfficientUNet++.
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[31], UNet++ [32, 33], Xception [37], and the state-
of-the-art method HRNeT [27]

(3) 0e proposed method exhibits the strengths from
both of EfficientNet and UNet++ features

(4) 0e experiments demonstrated that the robustness of
EfficientUNet++ has outperformed other methods

(5) 0is work verified that the practicability of the in-
tegrated method of UNet ++ and EfficientNet

Although our model has achieved promising segmenta-
tion accuracy in two independent datasets, the lighter colors
in lesion areas were not accurately segmented; therefore, our
model requires further improvements. In the future, we will
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Figure 9: Validation set trends of loss and Dice coefficients for each method in the ISIC-2018 datasets. XceptionUNet and EfficientUNet++
appear the superior trends of loss and Dice coefficient to other models in the initial epochs. (a, b) SegNet, (c, d) U-Net, (e, f ) UNet++, (g, h)
XceptionUNet, and (i, j) EfficientUNet++.
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Table 4: Model performance regarding PH2 data.

Method Dice Accuracy IoU
HRNeT 0.91 0.96 0.96
SegNet 0.76 0.94 0.74
U-Net 0.89 0.94 0.82
UNet++ 0.89 0.96 0.92
XceptionUNet++ 0.91 0.96 0.95
EfficientUNet++ 0.93 0.96 0.96
Note: bold indicates the best results.
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Figure 10: PH2 data-based model comparison of prediction results.
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Figure 11: ISIC-2018 data-based model comparison of prediction results.
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attempt to join residual blocks [67] and SE blocks [68], and
these challenging topics deserve further study.

5. Conclusions

Manual image segmentation may result in errors and in-
efficiency. 0erefore, an automatic image segmentation al-
gorithm can help doctors to diagnose the size and location of
melanoma lesions and reduce medical costs. To improve the
UNet++ algorithm, we propose EfficientUNet++. 0is
method combines UNet++ and EfficientNet networks and
redesigns skip connections to aggregate features of varying
semantic scales at the decoder subnetworks, leading to a
highly flexible feature fusion scheme, thereby accelerating
network convergence and retaining more edge information.
0e EfficientUNet++ algorithm structurally expands the size
of the convolutional network by simply and efficiently
compositing coefficients, and the introduction of residual
units deepens the network and thereby improves perfor-
mance. As a result, the outputs of EfficientUNet++’s PH2
and ISIC-2018 datasets are more accurate than those of other
methods. Verification can prove that skin lesions can be well
segmented using the improved UNet++. 0is research can
play a vital role in reducing manual interventions and
misdiagnoses, improving accuracy and solving related
medical image segmentation problems. However, due to the
dataset’s limitation, the model’s capacity to identify mela-
noma lesions was restricted, and the proposed method does
not provide further insight into the prognosis of melanoma
lesions that have received attention in recent studies [69, 70].
Recently, the novel techniques for jointing multi-
segmentation of multiscale feature extraction have been
proposed [71, 72]. In the future studies, the new technique
can be combined to enhance the model’s capacity to aware
boundary for melanoma lesions and add temporal image
data to investigate the model for the prediction of melanoma
lesions’ prognosis.
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