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Abstract
Aims/hypothesis The aim of the study was to investigate the
effects of genetic deficiency of aldose reductase in mice on
the development of key endpoints of diabetic nephropathy.
Methods A line of Ar (also known as Akr1b3)-knockout
(KO) mice, a line of Ar-bitransgenic mice and control
C57BL/6 mice were used in the study. The KO and
bitransgenic mice were deficient for Ar in the renal
glomeruli and all other tissues, with the exception of, in

the bitransgenic mice, a human AR cDNA knockin-
transgene that directed collecting-tubule epithelial-cell-
specific AR expression. Diabetes was induced in 8-week-
old male mice with streptozotocin. Mice were further
maintained for 17 weeks then killed. A number of serum
and urinary variables were determined for these 25-week-
old mice. Periodic acid–Schiff staining, western blots,
immunohistochemistry and protein kinase C (PKC) activity
assays were performed for histological analyses, and to
determine the levels of collagen IV and TGF-β1 and PKC
activities in renal cortical tissues.
Results Diabetes-induced extracellular matrix accumulation
and collagen IV overproduction were completely prevented
in diabetic Ar-KO and bitransgenic mice. Ar deficiency also
completely or partially prevented diabetes-induced activa-
tion of renal cortical PKC, TGF-β1 and glomerular
hypertrophy. Loss of Ar results in a 43% reduction in urine
albumin excretion in the diabetic Ar-KO mice and a 48%
reduction in the diabetic bitransgenic mice (p<0.01).
Conclusions/interpretation Genetic deficiency of Ar signif-
icantly ameliorated development of key endpoints linked
with early diabetic nephropathy in vivo. Robust and
specific inhibition of aldose reductase might be an effective
strategy for the prevention and treatment of diabetic
nephropathy.
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Cit Citrate buffer
DN Diabetic nephropathy
ECM Extracellular matrix
GSH Glutathione
KO Knockout
MDA Malondialdehyde
PAS Periodic acid–Schiff
PKC Protein kinase C
SOD Superoxide dismutase
STZ Streptozotocin
UAE Urinary albumin excretion
WT Wild type

Introduction

In the mammalian kidneys, aldose reductase (AR) is
abundantly produced in the inner medulla, where it
converts glucose to sorbitol, the latter serves as a critical
organic osmolyte to protect the collecting duct tubule cells
from hyperosmotic insults [1] (the human gene encoding
AR is AKR1B1 [also known as AR] and the mouse gene is
Akr1b3 [also known as Ar]). In contrast to its prominent
expression in the renal medulla, AR production in the renal
cortex is low to moderate, depending on cell types. Under
normal physiological conditions, AR production in the
glomerulus is low. However, a significant increase in
glomerular AR production was found in diabetic human
patients [2, 3]. Diabetes in rats led to a tenfold increase in
glomerular sorbitol content, whereas sorbitol was un-
changed in diabetic rats treated with an aldose reductase
inhibitor (ARI), sorbinil [4]. Within the glomerulus, Ar
mRNA expression is strongly induced in the mesangial
cells [5, 6] and the endothelial cells [7] under hypertonic
conditions. Overactivation of AR in renal cells has been
linked with aberrant activation of protein kinase C (PKC)
[8–10], generation of advanced glycation products, in-
creased expression of TGF-β and generation of reactive
oxygen species [11]. Together these data suggest that
significant activation of AR by hyperglycaemia in the renal
glomeruli might contribute to the onset or progression of
glomerulopathy and diabetic nephropathy (DN).

AR is the first and the rate-limiting enzyme of the polyol
pathway, a pathway that has been implicated in the
development of diabetic complications, particularly diabetic
retinopathy and diabetic neuropathy [11, 12]. The associ-
ation of AR and the polyol pathway with the development
of DN, however, is less conclusive, partly because the data
obtained from genetic, biochemical, pharmacological, ani-
mal and clinical studies have been less consistent [13]. For
instance, some human genetic studies support the associa-
tion of AR 5′-end polymorphism with DN [14–19] while

others did not confirm this [19–21]. In one animal model
study, transgenic overexpression of human AR in mice led
to pathological changes in the kidney, lens and retina [22].
In another communication, however, it was reported that
diabetes-induced albuminuria was prevented in transgenic
rats overexpressing human AR selectively in the straight
(S3) portion of renal proximal tubules [23]. Most pharma-
cological experiments demonstrated a positive influence of
chemically synthesised ARIs on the development of DN in
diabetic rats [13, 24–26], but a few failed [27, 28]. Further,
although some human clinical trials have reported un-
changed glomerular function after ARI treatment [29],
encouraging results have also been obtained that clearly
demonstrate the beneficial effects of the inhibition of AR
with ARIs [13, 30].

The reasons for the inconsistency with regard to the
pathophysiological roles of AR and the effectiveness of
ARIs in DN are not completely clear. However, incomplete
AR inhibition, the presence of multiple AR-like proteins,
individual genetic differences and the specificity, side or
toxic effects of ARIs are among the possible contributing
factors. Studies have shown that human and rodent kidney
tissues possess a number of AR-like proteins, such as AR-
like gene-1 [31] and renal-specific oxidoreductase [32], as
well as renal aldehyde reductases [33]. It is not clear how
these structurally and functionally similar proteins might
interact in vitro and in vivo. Meanwhile, the specificity of
these inhibitors used in animal studies or clinical studies
remains open to question. Some of them are already known
to be able to inhibit aldehyde reductases, in addition to AR
[33]. Such ‘off-target’ effects might underlie undesired side
effects or even toxic effects.

One approach to overcome the shortcomings associated
with the use of ARIs is to use a gene-knockout (KO)
model. Mice globally deficient in Ar (Ar−/−), however, were
found to carry defects in the renal medulla characterised by
renal medullary atrophy and epithelial cell death [34, 35].
As a consequence of these medullary lesions, Ar-deficient
mice develop a phenotype resembling that of nephrogenic
diabetes insipidus in human [34, 35]. Because of this
problem, no DN study has yet been performed with Ar-
deficient mice, even though they have been available for
more than 10 years [34, 36]; therefore, the data from a
gene-knockout model have been lacking. Recently, we
created a double-transgenic mouse line (Ar−/− KspAR+/−

bitransgenic [BT]) that is deficient in AR in all tissues and
the kidney glomeruli except in the inner medulla, where an
AR-knockin transgene is driven by the kidney-specific
cadherin promoter to direct AR expression specifically in
the collecting tubule epithelial cells [35]. The BT mice
differ from the Ar-KO mice in that the Ar-KO mice are
completely deficient in AR whereas the BT mice are
deficient in AR in all tissues, including most parts of the
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kidney, except the medullary collecting tubule epithelial
cells that carry the knockin transgene. The glomeruli from
the Ar-KO and BT mice, however, are equivalent in terms
of AR production. As a consequence of the medullary
epithelial cell-specific AR expression of the knockin trans-
gene, the cellular lesions in renal medulla and the urine
concentrating mechanisms were shown to be significantly
corrected in the BT mice [35]. In our current study, we used
the Ar-KO and BT mice to investigate the effects of genetic
deficiency of Ar on the development of early DN. Our
results indicate that genetic ablation of Ar significantly
ameliorates the development of DN in streptozotocin
(STZ)-induced diabetic C57BL/6 mice.

Methods

Animals and animal treatments All animal experiments
were carried out in accordance with the guidelines of the
Xiamen University Institutional Committee for the Care
and Use of Laboratory Animals. Ar−/− mice [34] were
prepared and backcrossed with C57BL/6 mice for seven
generations. A line of transgenic mice (KspAR+/−) in which
a human AR transgene driven by the mouse kidney-specific
cadherin promoter to overproduce AR specifically in the
collecting tubule epithelial cells was generated and back-
crossed with C57BL/6 mice for six generations as described
[35]. Subsequent intercrosses between the KO mice and the
KspAR+/− mice generated the BT mice heterozygous for
KspAR and homozygous for the Ar-KO allele (Ar−/−

KspAR+/−), as well as the Ar-KO mice and the wild-type
(WT) mice [35]. The genotypes of three groups of mice
were verified as described previously by Yang et al. [35].
The KO, BT and WT mice were, therefore, relatively
homogeneous for the C57BL/6 background that was
maintained as described previously [35]. For each particular
genotype, male mice, 8 weeks old, were randomly divided
into two subgroups (each having at least six mice): one was
intraperitoneally injected with 40 mg kg−1 day−1 for five
consecutive days; and the other was injected with a vehicle
solution (0.1 mol/l citrate buffer [Cit]). Immediately after
the diabetic induction, blood glucose was assayed with a
Glucometer (OneTouch Ultra, LifeScan, Milpitas, CA,
USA) and only those mice with blood glucose levels above
16 mmol/l were considered to be diabetic. Six treatment
groups of mice were therefore generated. They were: non-
diabetic WT (WT + Cit) mice; non-diabetic KO (KO + Cit)
mice; non-diabetic BT (BT + Cit) mice; diabetic WT (WT
+ STZ) mice; diabetic KO (KO + STZ) mice; and diabetic
BT (BT + STZ) mice. The diabetic and non-diabetic mice
were maintained for an additional 17 weeks. The animals
were transferred to metabolism cages 1 day before the age
of 25 weeks (one mouse/cage, with free access to standard

chow diet and water) for 24 h for urine sample collection.
Blood samples were collected by sinus puncture and the
animals were subsequently killed and kidneys were
dissected for analyses.

PKC activity assays PKC activity assays were carried out
with the PepTag Nonradioactive PKC Assay System from
Promega (Beijing, China) according to the manufacturer’s
instructions. Briefly, renal cortical tissues were homoge-
nised in 2 ml ice-cold extraction buffer (supplied) with a
Kinematica homogeniser (Lucerne, Switzerland). The
homogenates were centrifuged at 100,000×g and 4°C for
60 min. The supernatant fractions were taken as the cytosol
fractions whereas the pellets were further dissolved in 2 ml
of the extraction buffer with 1% Triton X-100. After 30 min
incubation at 4°C, the solutions were centrifuged again at
100,000×g for 60 min, and the second supernatant fractions
were used as the membrane fractions. The concentrations of
protein in the preparations were determined with the BCA
Protein Assay Kit (Pierce Biotechnology, Rockford, IL,
USA). The membrane and cytoplasmic fractions were then
used for PKC activity assays, following the manufacturer’s
instructions. The phosphorylated and non-phosphorylated
reaction mixtures were separated on a 0.8% agarose gel.
The gels were visualised under UV light and the bands
were quantified by densitometric analysis using Image-Pro
Plus software (Media Cybernetics, Shanghai, China).

Serum analyses, urine analyses, western blots for TGF-β1
and collagen IV, immunohistochemistry for renal expres-
sion of collagen IV and other renal histological analy-
ses These experimental procedures are described in detail
in the Electronic supplementary material (ESM).

Statistical analyses All statistical analyses were performed
with the GraphPad Prism. Values are expressed as the
means ± SEM. Multiple group comparisons were per-
formed with one-way ANOVA with the Bonferroni’s post
test and pair-wise comparisons were performed with
unpaired Student’s t test. A probability value <0.05 was
considered to be significant.

Results

AR deficiency in the Ar-KO and BT mice significantly
ameliorated diabetes-induced renal hypertrophy, elevations
in serum triacylglycerols and serum LDL-cholesterol and
urinary albumin excretion (UAE) To assess the effects of
genetic deficiency of Ar on the development of DN, we
treated the Ar-KO, BT and WT C57BL/6 mice with
multiple low doses of STZ (40 mg/kg, i.p. for five
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consecutive days) to destroy the mouse pancreatic beta cells
and to induce diabetes. After STZ injection, blood glucose
levels were determined and only those with blood glucose
levels greater than or equal to 16 mmol/l were considered to
be diabetic. Both the STZ-treated mice and the control mice
were further maintained for 17 weeks under normal rearing
conditions (free access to standard chow and water) to
allow the development of diabetic kidney diseases.

At the age of 25 weeks (17 weeks from diabetes onset),
diabetic WT mice exhibited typical pathophysiological
features of early DN (Table 1). With the exception of
serum HDL-cholesterol, the body weight, serum content of
triacylglycerol, total cholesterol, LDL-cholesterol, blood
urea nitrogen (BUN), GFR and UAE were all significantly
altered in diabetic WT mice, manifesting as the develop-
ment of diabetes or early DN. In the diabetic Ar-KO mice,
complete deficiency of AR appeared to result in significant
improvement in the ratio of kidney/body weight (6.80±0.52
for diabetic Ar-KO mice vs 8.20±0.45 for diabetic WT
mice, p<0.05), serum triacylglycerols (0.57±0.07 mmol/
l for diabetic Ar-KO mice vs 1.11±0.18 mmol/l for diabetic
WT mice, p<0.001), serum LDL-cholesterol (1.16±
0.13 mmol/l for diabetic Ar-KO mice vs 1.62±0.13 mmol/
l for diabetic WT mice, p<0.05) and UAE (1.49±0.26 μg/
mg creatinine for diabetic Ar-KO mice vs 2.62±0.34 μg/mg
creatinine for diabetic WT mice, p<0.001). In contrast to
these DN-associated variables, the BUN and GFR were not
significantly improved in the diabetic Ar-KO mice. How-
ever, in diabetic BT mice, not only the body weight, but the
ratio of kidney/body weight, serum triacylglycerols and
LDL-cholesterol, and UAE were all significantly improved
compared with the diabetic WT mice; BUN (6.28±
0.19 mmol/l for diabetic BT mice vs 8.75±0.53 mmol/
l for diabetic WT mice, p<0.001) and GFR (0.18±0.01 l/
24 h for diabetic BT mice vs 0.12±0.01 l/24 h for diabetic
WT mice, p<0.05) both also appeared to be significantly
improved. In the STZ-treated groups, the three genotypes of
diabetic mice all excreted large volumes of urine that were
not statistically different. As these volumes of urine were
much larger than those in AR-deficiency-induced polyuria,
it suggests that hyperglycaemia is the predominant contrib-
uting factor for the polyuric phenotype. Together, these
biochemical analyses indicate that AR deficiency resulted
in improvement of most serum and urinary variables
associated with DN in diabetic C57BL/6 mice.

AR deficiency in the diabetic Ar-KO and BT mice
significantly ameliorated diabetes-induced glomerular hy-
pertrophy, cell proliferation, mesangial expansion and
collagen IV expression To examine for potential renal
cortical morphological differences in the diabetic WT mice
and the AR-deficient diabetic mice, we performed periodic
acid–Schiff (PAS) staining with the renal cortical tissues

dissected from six treatment groups of mice at the age of
25 weeks. As shown in Fig. 1a, no apparent difference in
glomerular morphology was observed for three non-
diabetic genotype groups of mice. The glomeruli were of
normal size and configuration for non-diabetic WT, Ar-KO
and BT mice. Further, there was no sign of mesangial
matrix expansion, inflammation or sclerosis in these mice.
In contrast to the findings in these non-diabetic mice, very
significant glomerular hypertrophy, increased cellularity
and narrowing of capillary lumens was observed in the
cortex/glomeruli of diabetic WT mice (Fig. 1a). Further, the
mesangium was diffusively and markedly expanded with
PAS-positive (purple colour) matrix material. When the
digital images of about 30 glomeruli for each genotype
were quantitatively analysed, the extracellular matrix
(ECM) accumulation index for the diabetic WT mice was,
on average, 41% higher than that for the non-diabetic WT
mice (0.099±0.002 for diabetic WT vs 0.070±0.003 for
non-diabetic WT, p<0.01, Fig. 1b), whereas the glomerular
size for the diabetic WT on average was 68% higher than
that for the non-diabetic WT mice (1,733±13.9 for diabetic
WT vs 1,031±36.7 for non-diabetic WT, p<0.001, Fig. 1c).
These results indicate significant lesions in renal cortical/
glomerular structures in the WT diabetic mice at the age of
25 weeks. Interestingly, in the glomeruli of diabetic Ar-KO
and BT mice, diabetes-induced glomerular hypertrophy,
cell proliferation and mesangial matrix expansion were all
significantly corrected (Fig. 1a–c). Despite the exposure to
hyperglycaemia for 17 weeks, glomerular size and ECM
accumulation and configuration in the diabetic Ar-KO and
BT mice were almost indistinguishable from those in the
non-diabetic mice, characterised by improved glomerular
hypertrophy, reduced cellularity and normalisation of
mesangial expansion (Fig. 1a–c). These results indicated
significant restoration in the renal cortical/glomerular
structures as a consequence of genetic deficiency of Ar.

In contrast to the significant differences in the cortex/
glomeruli areas, the outer medullary areas did not show
apparent histomorphological differences among genotype
groups of mice as determined by PAS staining (ESM
Fig. 1). In the inner medulla, however, severe tubular
atrophy was observed for all three genotype groups of
diabetic mice. The tubulointerstial lesions in the diabetic
BT mice, however, appeared to be slightly improved (ESM
Fig. 2) as compared with the diabetic Ar-KO mice.

As collagen IV is the principal protein of the expanded
ECM in the diabetic renal glomeruli [37, 38], we analysed
the production of collagen IV by immunohistochemistry
and western blot. As shown in Fig. 2, in non-diabetic WT
mice, relatively low collagen IV production was found in
the mesangial cells, the Bowman’s capsule and the tubule
basement membranes. In strong contrast to this, very
prominent collagen IV production was found in the cortical
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tissues of the diabetic WT mice in both the intraglomerular
cells and extraglomerular cells. In Ar-deficient mice,
however, renal cortical collagen IV production was signif-
icantly reduced in both the Ar-KO and BT mice, with the
reduction in the glomerular expression being more apparent
(Fig. 2a). Western blots of renal cortical tissues further
verified the trends of collagen production in diabetic WT,
Ar-KO and BT mice (Fig. 2b), suggesting that AR
deficiency, in glomeruli in particular, led to significant
reductions in diabetes-induced overproduction of collagen
IV in the glomeruli.

AR deficiency appears to slightly ameliorate diabetes-
induced oxidative stress in the renal cortex Recent studies
suggest that DN might be closely linked to oxidative stress
[39, 40] and that overactivation of AR/polyol pathway
contributes significantly to hyperglycaemia-induced oxida-
tive/nitrosative stress [41, 42]. We therefore performed
assays to determine glutathione (GSH) and malondialde-
hyde (MDA) content and the superoxide dismutase (SOD)
activity for renal cortical tissues (n=3 per group) in the six

study groups of mice (ESM Fig. 3). When the data for all
six treatment groups of mice were analysed with one-way
ANOVA, no significant difference in GSH or MDA content
or SOD activity between genotype groups was observed for
either non-diabetic or diabetic mice, which is probably
largely because of the limited number of mice. Despite this,
pair-wise comparisons showed that the renal cortical GSH
was depleted by ~68% in WT + STZ mice vs WT + Cit
mice (p<0.05, Student’s t test), manifesting as a significant
depletion in GSH consistent with hyperglycaemia-induced
oxidative stress. Interestingly, GSH appeared to be partially
corrected to ~72% and ~65% of the normal level in the
diabetic Ar-KO and BT groups, respectively, although the
results with n=3 per group were not statistically significant.
An apparent rise in cortical MDA content in the diabetic
cortex, also consistent with excess oxidative stress in the
diabetic vs non-diabetic cortex, was also seen in WT + STZ
mice vs WT + Cit mice, and an apparent correction was
seen in the diabetic Ar-KO mice but not in the diabetic BT
mice. In contrast to GSH and MDA, SOD activity showed
no trend towards change in any of the groups. Together

Fig. 1 The effects of genetic
deficiency of Ar on the patho-
histological development of DN
in the renal cortex and glomer-
ulus as determined by PAS
staining. a Renal cortex and
glomerulus morphology in six
treatment groups of mice at the
age of 25 weeks as determined
by PAS staining. The results
were typical of three mice for
each treatment group. Original
magnification ×1,000; scale bar,
25 μm. b Quantitative analyses
of ECM accumulation index in
six treatment groups of mice.
Values were expressed as the
mean ± SEM, n=3; *p<0.05,
**p<0.01. c Quantitative analy-
ses of glomerular sizes in six
treatment groups of mice. Glo-
merular area was determined as
described in the Methods.
Values are expressed as the
mean ± SEM, n=3; *p<0.05,
**p<0.01, ***p<0.001
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these data are, in general, consistent with the presence of
oxidative stress in the renal cortex of the diabetic vs the
non-diabetic state, with a corrective effect of AR deficiency
on hyperglycaemia-induced oxidative stress.

AR deficiency in the diabetic KO and BT mice caused
significant alterations in PKC activity and TGF-β1 pro-
duction in the renal cortex Previous studies have estab-
lished that the overactivation of PKC and TGF-β1 plays an
important role in the development of DN. Among other
roles, the PKC–TGF-β1 axis is involved in renal fibro-
genesis by regulating the production of a number of
components for mesangial expansion. To find out how the
genetic deficiency of Ar might affect PKC, we determined
PKC activity in the cytosolic and membrane fractions of
renal cortical homogenates from four treatment groups of
mice (i.e. non-diabetic WT and BT mice and diabetic WT
and BT mice). As shown in Fig. 3a, 17 weeks of diabetes
caused a 24.8% elevation in the renal cortical membrane
PKC activity in the BT mice (19,446±1,311 for diabetic
WT mice vs 15,572±144 for non-diabetic WT mice, p<
0.05), whereas the cytosolic PKC activity was reduced by
about 25%, although this was not statistically significant. In
Ar-deficient BT mice, however, the diabetes-induced
elevation of membrane PKC and downregulation of
cytosolic PKC were largely reversed. For the membrane
PKC, Ar deficiency caused a 37% reduction (19,446±1,311
for diabetic WT mice vs 12,189±918 for diabetic BT mice,
p<0.001). For cytosolic PKC, Ar deficiency caused a 75%

Fig. 3 Effects of Ar genetic deficiency on PKC activity and the
production of TGF-β1. a Membrane and cytosolic PKC activities in
the renal cortex of four treatment groups of mice at the age of
25 weeks. Values were expressed as the mean ± SEM, n=3; *p<0.05,
**p<0.01, ***p<0.001. b TGF-β1 production in the renal cortex in
six treatment groups of mice at the age of 25 weeks as determined by
western blots. Each lane represents an independent sample. Protein
loading was calibrated using β-actin

Fig. 2 Collagen IV production
in the renal cortex and glomer-
ulus in six treatment groups of
mice at the age of 25 weeks. a
Collagen IV production in renal
cortex and glomerulus in six
treatment groups of mice as
determined by immunohisto-
chemistry. Original magnifica-
tion ×1,000; scale bar, 50 μm.
The results were typical of three
mice for each treatment group. b
Collagen IV production in renal
cortex in six treatment groups of
mice as determined by western
blots. Each lane represents an
independent sample. Protein
loading was calibrated using β-
actin
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increase (5,534±366 for diabetic WT mice vs 9,685±341
for diabetic BT mice, p<0.01). Together these results
indicate that genetic Ar deficiency significantly affected
renal cortical PKC activity.

We further performed western blots to analyse renal cortical
TGF-β1 production in non-diabetic and diabetic mice. As
shown in Fig. 3b, moderate levels of TGF-β1 protein were
detected in non-diabetic WT, KO and BT mice. Seventeen
weeks of diabetes, however, greatly upregulated renal
cortical TGF-β1 production in the diabetic WT mice. In
contrast, in both the diabetic Ar-KO and BT mice, TGF-β1
production was significantly reduced and the reduction of
TGF-β1 production is consistent with reduced collagen IV
expression in the AR-deficient mice. These data thus
suggest that Ar deficiency contributes significantly to the
amelioration in the development of DN in the diabetic Ar-
KO and BT mice in part through suppressing diabetes-
induced activation of TGF-β1.

Discussion

As mentioned earlier, a large body of animal and clinical
studies using chemically synthesised ARIs has yielded
mixed results. As the use of genetic knockout models might
avoid the potential problems associated with the incomplete
AR inhibition, non-specific inhibition or other side effects
of ARIs, these models are crucial for the more definitive
elucidation of the role of AR in DN and of the potential
utility of AR inhibition in the prevention or treatment of
DN. Consistent with the positive findings of studies using
ARIs [13, 24, 25, 43–46], we showed in our current study
that the genetic deficiency of Ar in both the diabetic KO
mice and the diabetic BT mice resulted in significantly
reduced UAE, mesangial matrix expansion and reduced
overexpression of collagen IV, and improved glomerular
hypertrophy. Further, consistent with previous observations
[10, 44], we demonstrated that Ar deficiency was associated
with significant attenuation in renal cortical PKC activity
and TGF-β1 production. In addition, Ar deficiency signif-
icantly ameliorated diabetes-induced renal hypertrophy and
elevations in serum triacylglycerols and serum LDL-
cholesterol. Together these data clearly imply that
hyperglycaemia-induced overactivation of AR and eleva-
tion in metabolic flux through the polyol pathway in the
renal cortex and the glomeruli contributes significantly to
the development of early DN and that inhibition of AR or
blockade of the polyol pathway in the renal cortex or the
glomeruli might be an effective approach for the prevention
or treatment of DN.

Although Ar deficiency resulted in ameliorations in a
number of important variables associated with DN in both

the diabetic Ar-KO and diabetic BT mice, there were a few
variables (including serum glucose, BUN and GFR) that
characteristically distinguished the diabetic BT mice from
the diabetic Ar-KO mice. Somewhat surprisingly, the level
of BUN in diabetic Ar-KO mice at the age of 25 weeks was
indistinguishable from that of the diabetic WT mice. In
diabetic BT mice, however, BUN was 77% normalised
(6.28±0.19 mmol/l for diabetic BT vs 8.75±0.53 mmol/l
for diabetic WT, p<0.001), suggesting much improved
glomerular function for the diabetic BT mice. The reasons
for these differences between the diabetic Ar-KO mice and
the diabetic BT mice are not clear but are probably linked
to the corrections in Ar-deficiency-induced renal medullary
defects brought about by the re-introduction of renal
collecting tubule epithelial-specific production of AR.

PKC signalling has been shown to play critical
regulatory roles in the development of DN in experimen-
tal models [8]. Because excessive metabolic flux through
AR and the polyol pathway is associated with elevation of
cytoplasmic NADH/NAD+ and diacylglycerol, the latter
being a second messenger for PKC, overactivation of AR
has been linked with abnormal activation of PKC [9, 11,
47]. Keogh et al. have reported that AR inhibition
prevented glucose-induced prostaglandin synthesis and
PKC activation [47]. Using the ARI epalrestat, Ishii et al.
have also demonstrated that inhibition of AR blocked
glucose-induced increases in PKC and TGF-β1 activity in
cultured human mesangial cells [10]. Our demonstration
that genetic deficiency of Ar led to a decrease in membrane
PKC activity but an increase in the cytosolic PKC is
consistent with the results from AR inhibition by ARIs.
While the mechanisms for the membrane–cytoplasm
redistribution of PKC require further investigation, there
now remains no doubt that inhibition of AR is a way to
suppress glucose-induced overactivation of PKC in the
kidneys.

TGF-β1 is a multifunctional cytokine capable of
regulating cell proliferation, differentiation, motility, apo-
ptosis, immune cell function and ECM formation. Current-
ly, this pro-sclerotic protein is recognised as the major
cytokine responsible for mesangial expansion, ECM accu-
mulation and vascular dysfunction and glomerulosclerosis
in DN [48, 49]. Previous studies have shown that glucose-
induced TGF-β1 is polyol pathway dependent [10, 50] and
that inhibition of AR leads to suppressed production of
TGF-β [10] and collagen IV [44] and reduced mesangial
expansion [45]. The suppression of renal cortical TGF-β,
collagen IV and mesangial expansion brought about by
ARIs is now further recapitulated with the genetic mouse
models deficient in Ar in our current investigation. Normal-
isation of TGF-β1 activity due to AR deficiency thus is
likely to contribute significantly to the amelioration of DN
in the Ar-KO and BT mice.
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