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Abstract

Although anti-retroviral therapies have greatly extended the lives of HIV infected individuals,

current treatments are unable to completely eliminate virally infected cells. A number of

latency reversing agents have been proposed for use in a “shock and kill” strategy to reacti-

vate latent HIV, thus making it vulnerable to killing mechanisms. Procyanidin trimer C1

(PC1) is a flavonoid found in multiple plant sources including grape, apple, and cacao,

which has antioxidant and anti-inflammatory properties. We determined that PC1 reacti-

vates latent HIV in cell line and primary cell models of HIV, through activation of the MAPK

pathway. Notably, PC1 reactivates latent HIV without increasing surface markers of T cell

activation. Combining several therapeutics, which activate HIV transcription through differ-

ent mechanisms, is the most efficient approach to clinically reactivate latent reservoirs. We

utilized PC1 (MAPK agonist), kansui (PKC agonist), and JQ1 (BET bromodomain inhibitor)

in a triple combination approach to reactivate latent HIV in cell line and primary cell models

of HIV latency. When used in combination, low concentrations which fail to reactivate HIV

as single treatments, are effective. Thus, several mechanisms, using distinct activation

pathways, act together to reactivate latent HIV.

Introduction

Latency is the principal obstacle to complete eradication of HIV [1]. Transcriptionally silent

virus evades anti-retroviral therapies (ART), which target viral proteins expressed during the

replication cycle [2, 3]. In spite of undetectable plasma viremia while on ART, suppressed

patients have rapid viral rebound following treatment interruption [4, 5]. As a consequence,

HIV+ individuals must remain on life-long ART. Although HIV infection in the era of ART

has become a more manageable chronic infection, problems with adherence to drug regimens,

co-morbidities, and the emergence of drug resistance emphasize the need for continued

research into HIV cure [6–8]. Since the barrier to cure is the persistence of latent HIV, target-

ing this persistent and transcriptionally silent virus is critical.

A “shock and kill” strategy has been proposed to target latently infected cells, in which virus

is shocked out of latency by compounds which activate HIV transcription, making virally
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infected cells available to cellular and immune killing mechanisms [9]. HIV is dependent on

cellular transcriptional machinery, including nuclear factor kappa B (NF-κB), activator protein

1 (AP1), and positive transcription elongation factor b (P-TEFb) [10]. P-TEFb is a critical tran-

scription factor (TF) required for HIV gene expression. Cellular P-TEFb exists in equilibrium

between an inactive state, bound to Hexim1 and 7SK snRNA, and a free active state that is

recruited to the HIV long terminal repeat (LTR) by NF-κB and the HIV transactivator of tran-

scription (Tat) [11, 12]. Once at the LTR, P-TEFb phosphorylates negative elongation factors

and RNA polymerase II (RNAPII), thus permitting productive elongation [13]. NF-κB is regu-

lated by its inhibitor, IκBα [14]. Upon activation, IκBα is phophorylated, degraded, and

released; freeing NF-κB for nuclear transclocation. The mitogen activated protein kinases

(MAPK) signaling cascade phosphorylates JNK, p38, and extracellular signal-related kinase

(ERK), which regulate AP1 expression [15]. Proposed latency reversing agents (LRAs) target

these TF to reactivate latent HIV and purge hidden HIV reservoirs.

A number of LRAs are currently being investigated to determine which reactivate latent

HIV through separate but complementary cellular pathways; and each group of LRA has its

own advantages and caveats [16]. Histone deacetylase and BET bromodomain inhibitors

(HDACi and BETi), such as JQ1, robustly activate HIV through the release of P-TEFb from

7SK snRNP [17, 18]. However, these compounds do not work in human primary T cells [19,

20]. Resting CD4+ T cells have low expression of P-TEFb and other cyclin dependent kinases

(CDKs) which are abundant in T cell lines and necessary for efficient transcriptional elonga-

tion and co-transcriptional processing of nascent transcripts [10, 21]. Therefore, it is crucial to

include a compound that increases P-TEFb levels for JQ1 to function properly. Protein kinase

C (PKC) agonists, including ingenol, induce a robust T cell response including activation of

inflammatory response genes and cell proliferation [22–25]. A crude extract from Euphorbia

kansui (kansui) contains 12 ingenols and other bioactive compounds, which may contribute

to its overall ability to activate T cells without much toxicity [26–28]. Kansui reactivates latent

HIV in cell lines and primary T cell models of latency, increases cellular levels of the P-TEFb

components cyclin T1 (CycT1) and CDK9, and reactivates latent virus from cells isolated from

ART suppressed patients [21]. In spite of the appeal of PKC agonists, there has been caution

using these agents as a single treatment since concentrations which reactivate latent HIV could

induce global T cell activation and cytokine release if delivered clinically [29, 30]. Ideally, a

lower dose of PKC agonist could be used in combination with other compounds which reacti-

vate HIV, but do not activate T cells. MAPK signaling activates HIV through induction of AP1

expression [31, 32]. Procyanidin C1 trimer (PC1), a flavonoid isolated from Theobroma cacao

(cacao), reactivates cell line models of HIV through the MAPK pathway and act synergistically

with the potent PKC agonist PMA [33]. PC1 is also commercially available as a general well-

ness supplement, derived from a variety of plant sources including grape seed. The use of

MAPK agonists to reactivate latent HIV has not been investigated as rigorously as PKC,

HDACi, or BETi, but has great potential for use in combinatorial therapeutic approaches. The

most effective proposed latency reversal strategies include two or more compounds which

reactivate latent HIV by different mechanisms [21, 29, 30]. Thus, several mechanisms, using

distinct activation pathways, will act together to reactivate latent HIV.

In this study, we determined the potential of PC1 isolated from grape seed as an LRA.

Using cell line and primary CD4+ T cell models of HIV latency, we found that PC1 reactivates

latent HIV without concurrently activating these lymphocytes. Indeed, the combination of

PC1, kansui, and JQ1 activated cellular TFs via separate pathways and reactivated HIV syner-

gistically from latency.

Procyanidin trimer C1 reactivates latent HIV as a triple combination therapy with kansui and JQ1
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Materials and methods

Cell lines, PBMC, and primary CD4+ T cells

2D10 cells (obtained from Dr. Jonathan Karn at Case Western Reserve University) are a Jurkat

based HIV latency cell line model that contains attenuated Tat and d2EGFP in the place of

Nef. Reactivation of latent HIV in 2D10 cells was measured by d2EGFP expression by flow

cytometry. Trima residuals from healthy donors, from Trima aphoresis collection and

enriched for PBMC, were obtained from Blood Center of the Pacific (San Francisco, CA). Bulk

peripheral blood mononuclear cells (PBMCs) were cultured 3 days on tissue cultured plastic to

allow for macrophages to adhere. Non-adherent PBMCs were negatively selected for purified

CD4+ T cells, or used directly in PMBC experiments. CD4+ T cells were selected from bulk

PBMC using negative bead selection (Dynal CD4+ untouched beads, Invitrogen). Primary

CD4+ T cells were activated and expanded using CD3/CD28 beads (Invitrogen) and 30 U/ml

interleukin 2 (IL-2) for 5 days.

Procyandin Trimer C1

Procyanidin Trimer C1 (PC1) was obtained from ChemFaces Biochemical (CFN99560,

Wuhan, China) and reconstituted in DMSO. Working stocks were stored at -20˚C.

Cell culture and reactivation conditions

Cells were maintained in RPMI 1640 supplemented with 10% FBS and Penicillin/Streptomycin

at 37˚C with 5% CO2. Cells were stimulated at a concentration of 1 x 106 cells/ml with PC1 at

indicated concentrations, DMSO (1 μl/ml), kansui extract (Baoji F.S. Biological Development

Co. Ltd. (Shanxi, China)), or JQ1 (Martin Delaney Collaboratory of AIDS Researchers for

Eradication (CARE)). Cells were seeded in triplicate wells of a 24 well plate, and stimulated for

24 hours. Approximately 5–10 x 106 cells/5-10 ml on 10 cm plates were stimulated to obtain

lysates for protein expression analysis.

Generation of HIV-1 infectious titers and infections

Infectious stocks of HIV-1 were generated by transfecting 293T cells with 15 μg of pNL4.3-Nef

(+)-HSA (NL4.3 HSA) (National Institutes of Health AIDS Research and Reference Reagent

Program, Division of AIDS, NIAID, NIH: pNL4-3.HSA.R+.E- from Dr. Nathaniel Landau at

the NYU School of Medicine [34, 35]) and 3 μg of VSV-G using calcium phosphate. Viral

supernatants were harvested and filtered through a 0.45 μm disc at 48 hours post transfection.

Approximately 0.5 x 106 pg p24 of infectious virus were added per 1 x 106 activated CD4+ T

cells. Cells were spinoculated for 90 min at 2000 rpm with polybrene (2 μg/ml). 24 hours post

infection, cells were washed twice to thoroughly remove initial infectious virus.

Human CD4+ T cells model of HIV latency

Primary CD4+ T cells were activated, infected with HIV-1 NL4.3 HSA, and given decreasing

concentrations of IL-2 over 12 days in culture to induce quiescence and HIV latency, as previ-

ously described [21]. Latently infected and uninfected control cells were stimulated for 24

hours and samples were collected for flow cytometry analysis.

Flow cytometry analysis

Cells were harvested 24 hours post reactivation and washed in cold PBS and 0.5 x 106 cells

were allotted to each tube. Cells were stained with PE mouse anti-human CD69 (555531, BD
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Biosciences), PE anti-human CD25 (555432, BD Biosciences), FITC rat anti-mouse HSA

(553261, BD Biosciences), or fixed immediately to analyze GFP expression. Cells were fixed in

2% paraformaldehyde and analyzed using the BD Biosciences FACScaliber and CellQuest Pro

software at the UCSF Parnassus Flow Cytometry Core. Cells were gated on the live lymphocyte

gate using the forward and side scatter plot, and the percentage of live lymphocytes in 10,000

collected total cells was used as an estimate for cell viability.

Western blotting analysis of protein expression

Whole cell lysates were generated using lamemmli buffer (Bio-rad) in the presence of protein-

ase inhibitor cocktail. Lysates were run on 10% SDS-PAGE and transferred onto a nitrocellu-

lose membrane. Membranes were cut at approximately 60 kDa; the top portion of the

membrane was used to probe for CycT1 (75 kDa) and the bottom portion was used to probe

for phospho-(p-) (42 kDa) and total IKBα (40 kDa), p- and total ERK (42 kDa), and β-actin

(55 kDa). Membranes were blocked in 5% non-fat milk (NFM) for at least 1 hour and blotted

overnight with mouse anti-human cyclin T1 antibody (sc-271348, Santa Cruz Biotechnology),

mouse anti-human p-ERK (P-p44/42 MAPK) (9106S, Cell Signaling), rabbit anti-human ERK

(p44/42 MAPK) (9102S, Cell Signaling), mouse anti-human p-IKBα (9246S, Cell Signaling),

mouse anti-human IKBα (48145S, Cell Signaling) and rabbit anti-human β-actin (ab8227,

abcam) antibodies in 5% NFM. Membranes were washed 3 x with PBS with 0.05% Tween 20,

and then blotted for 1 hour with HRP anti-rabbit IgG, in 5% NFM. After washing 3 x with PBS

with 0.05% Tween 20; membranes were treated with ECL Plus chemiluminescence reagent

(Promega) for 5 minutes and imaged using Odyssey Fc imaging system and Image Studio soft-

ware (LI-COR). Reprobed membranes were stripped with NewBlot Stripping Buffer (LI-COR)

then washed 3 x with PBS.

Calculation of drug synergy

To determine whether combination treatment resulted in synergistic activation of HIV we

used the Bliss independence model previously described [29]. The equation faxy,p = fax + fay-

(fax)(fay), wherein fax,p is the prediction based on the individual effects of PC1 (fax) and kansui

+ JQ1 (fay). The individual effects were calculated by the equation fax/y/xy = (% GFP positive

combination treatment—% GFP positive DMSO)/ (% GFP positive kansui 500 μg/ml—% GFP

positive DMSO). The difference between the observed and predicted values (Δfaxy = faxy,o—

faxy,p) was calculated. A value greater than 0 signified synergy, a value equal to 0 indicated Bliss

independence, and a value less than 0 indicated antagonism.

Statistical analysis

Statistical analysis was performed using a Student t test, two-tailed distribution, and assuming

equal variances. Further regression analysis was performed to confirm the significance of the

triple combination treatments in relation to the effects of each single and double combination

treatment, wherein an F statistic of less than 0.05 was considered significant.

Results

PC1 reactivates latent HIV in a cell line model of HIV latency

For this study, we obtained PC1 isolated from grape seed, which is the source of many com-

mercially available PC1 wellness supplements. Preliminary experiments were performed in

2D10 cells, which are Jurkat cells that stably express GFP driven by the HIV LTR [36]. GFP

was measured by flow cytometry to determine HIV reactivation. A crude extract of kansui,
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containing the PKC agonist ingenol, was used as a positive control [21]. Kansui treatment

resulted in a 42-fold increase in GFP expression over the DMSO control (Fig 1A, lane 2). A

dose dependent increase in GFP was observed with increasing concentrations of PC1 (Fig 1A,

lanes 3–7). GFP expression was significantly increased in cells treated with 12, 18, and 24 μM

PC1, ranging from 12 to 24-fold over the DMSO control (Fig 1A, lanes 5–7). Importantly,

Fig 1. PC1 reactivates latent HIV in a cell line model of HIV latency. 2D10 cells were stimulated for 24 hours with DMSO, kansui, or PC1 at the indicated

concentrations. (A) GFP expression was measured by flow cytometry. (B) Percent viability was estimated using forward/side scatter and the percentage of live

lymphocytes in 10,000 total cells analyzed. Triplicate stimulations were performed. Error bars represent standard error of the mean. (���p<0.001).

https://doi.org/10.1371/journal.pone.0208055.g001
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none of the concentrations of PC1 tested were toxic to 2D10 cells (Fig 1B, lane 3–7) compared

to kansui, which decreased their viability by 45% (Fig 1B, lane 2). These preliminary studies

provided the proof of concept that PC1 from grape seed reactivates latent HIV, and effective

concentrations were similar to those observed with PC1 from cacao [33].

PC1 activates the MAPK pathway

PC1 from cacao activates the MAPK pathway, but not the PKC pathway, in a Jurkat model of

HIV latency [33]. To determine if PC1 from grape seed activates the same cellular pathway,

human primary CD4+ T cells were stimulated with increasing concentrations of PC1 for 24

hours. PC1 activated the MAPK signaling cascade through phosphorylation of ERK (p-ERK),

where levels of total ERK protein remained constant (Fig 2A). A threshold of p-ERK was

achieved in cells treated with 12 μM PC1 (Fig 2A, lane 5), and levels of phosphorylation did

not increase with 18 and 24 μM PC1 (Fig 2A, lanes 6 and 7). In contrast, kansui did not induce

p-ERK (Fig 2A, lane 2). These results agree with previously published reports that PC1 from

cacao activates the MAPK signaling cascade [33].

PKC signaling activates NF-κB and increases cellular expression of P-TEFb [37]. Resting pri-

mary PBMC express low levels of CycT1, with some variability in expression between donors (Fig

2B, lane 1). Treatment with kansui induced a robust increase in CycT1 expression (Fig 2B, lane 2)

and phophorylation of IκBα, as a measure of NF-κB activation (Fig 2C, lane 2). However, no con-

centration of PC1 tested increased levels of CycT1 or p-IκBα (Fig 2B and 2C, lanes 3–7).

PC1 does not increase markers of T cell activation

Treatment of 2D10 cells with kansui resulted in a dose dependent increase in the early T cell

activation marker, CD69 (Fig 3A, lane 2–4). Kansui also induced expression of the high affinity

Fig 2. PC1 activates ERK. Human CD4+ T cell or PBMC were stimulated for 24 hours with DMSO, kansui, or PC1 at indicated concentrations. Whole cell lystates were

separated on 10% SDS PAGE. Membranes were probed with specific antibodies for (A) p-ERK and total ERK (B) CycT1, (C) and p-IκBα and total IκBα, and β-actin.

Densitometric data were collected, normalized to appropriate loading controls with the DMSO negative control set to one. Results are representative of western blots

from three healthy donors.

https://doi.org/10.1371/journal.pone.0208055.g002
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Fig 3. PC1 does not increase markers of T cell activation. 2D10 cells were stimulated for 24 hours with DMSO, kansui, or PC1 at the indicated

concentrations. (A) CD69 and (B) CD25 expressions were measured by flow cytometric analyses. Triplicate stimulations were performed. Error

bars represent standard error of the mean. (���p<0.001).

https://doi.org/10.1371/journal.pone.0208055.g003
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IL-2 receptor, CD25. However, CD25 induction was more all or none, with only the highest

dose of kansui inducing CD25 (Fig 3B, lanes 2–4). No concentration of PC1 tested increased

CD69 or CD25 expression on 2D10 cells (Fig 3A and 3B, lanes 5–9). However, this finding is

not surprising given the lack of NF-κB activation (Fig 2B, lanes 3–7).

PC1 reactivates latent HIV in a primary CD4+ T cell model of HIV latency

While PC1 activated HIV transcription in 2D10 cells (Fig 1A), it was important to validate

effects of proposed therapeutic reagents on primary cells. Immortalized cell lines express high

levels of P-TEFb, CDK11, and NF-κB, which are lacking in resting CD4+ T cells [18, 38].

Therefore, it is important to verify that LRAs are not just effective in cell lines. In these cells,

kansui stimulation resulted in robust CD69 expression (Fig 4A, lane 2), PC1 did not induce

the expression of CD69 at any concentration tested (Fig 4A, lanes 3–6). Moreover, no concen-

tration of PC1 reduced the viability of primary CD4+ T cells (Fig 4B, lanes 3–6).

Using our in vitro HIV latency model [21], we tested the ability of PC1 to reactivate latent

HIV in primary human CD4+ T cells. Activated T cells were infected with VSV-G-

Fig 4. PC1 reactivates latent HIV in a primary CD4+ T cell model of HIV latency. (A) Uninfected human primary CD4+ T cells were stimulated for 24 hours with

DMSO, kansui, or PC1 at the indicated concentrations. Cells were stained with anti-CD69 antibody and measured by flow cytometric analyses. (B) Percent viability was

estimated using forward/side scatter and the percentage of live lymphocytes was determined in 10,000 total cells analyzed. (C) Human primary CD4+ T cells were

infected with VSV-G-pseudotyped NL4.3 HSA and maintained over 12 days with decreasing concentrations of IL-2 to establish latency as previously described [21].

Uninfected cells were maintained in the same conditions. At 12 days post infection, cells were stimulated for 24 hours with DMSO, kansui, and PC1. Cells were stained

with anti-HSA antibody. Data are presented as a fold change in HSA expression over the uninfected control cells. Experiments were repeated with three independent

donors, each with three technical repeats. A representative experiment, from a single donor is presented. Error bars represent standard error of the mean. (���p<0.001).

https://doi.org/10.1371/journal.pone.0208055.g004
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pseudotyped HIV-1 NL4.3 HSA R+E- (NL4.3 HSA) that expresses the murine heat shock anti-

gen (HSA), which allows reactivated cells to be quantified using flow cytometry. Following

infection, cells were driven into quiescence through gradually decreasing concentrations of IL-

2, and at day 12 post infection, HSA was no longer detectable on the surface of infected cells

(Fig 4C, lane 2). Uninfected cells were maintained in the same conditions (Fig 4C, lane 1).

Cells were stimulated for 24 hours with kansui and indicated concentrations of PC1. Kansui

induced a 15-fold increase in HSA expression (Fig 4C, lane 3). Reactivation in primary lym-

phocytes was approximately 2.5 fold less than observed in 2D10 (Fig 1 compared to Fig 5).

This result was expected due to the abundant expression of key cellular transcription factors,

such as P-TEFb, CDK11, and NF-κB in immortalized cell lines [18, 38], which make them eas-

ier to reactivate. This difference highlights the importance of verifying cell line responses in

primary cell models. While 6 μM PC1 had no effect (Fig 4C, lane 4), 9 μM PC1 increased HSA

expression 6-fold (Fig 4C, lane 5). At higher concentrations of PC1, 18 and 24 μM, a 12.5-fold

increase was observed, nearly equivalent to that of the kansui positive control (Fig 4C, lane 6

and 7). Thus PC1 alone also reactivates latent HIV in primary CD4+ T cells, without global

lymphocyte activation.

Combination therapy of PC1, kansui, and JQ1 reactivates latent HIV in a

primary CD4+ T cell model of HIV latency

The most effective proposed latency reversal strategies include two or more compounds which

reactivate latent HIV by different mechanisms [29, 30]. When used in combination, effective

concentrations can be reduced to avoid potentially toxic side effects. Because PC1 reactivates

HIV through the MAPK pathway, it is ideal to use with a PKC agonist (kansui) and a com-

pound that activates P-TEFb (JQ1).

Latently infected CD4+ T cells were treated with the indicated concentrations of PC1, kan-

sui, and JQ1 either as single, double, or triple combinations. Unstimulated infected cells did

not express HSA (Fig 5A–5C, lane 1). Cells were treated with the high concentration of kansui

(500 μg/ml) as a positive control, which induced a 15-fold increase in HSA expression (Fig

5A–5C, lane 2). Cells treated with 6 μM PC1 (Fig 5A and 5B, lane 3), kansui (Fig 5A, lane 4),

or JQ1 (Fig 5B, lane 4) alone resulted less than 2.5-fold increases in HSA. When 6 μM PC1 was

used in combination with kansui or JQ1, HSA expression increased 2-fold over kansui or JQ1

alone (Fig 5A and 5B, lane 5). The additive effect of PC1 and kansui or JQ1 is indicated by the

dashed line on each graph, and neither double treatment surpassed this additive effect (Fig 5A

and 5B, lane 5) [39]. However, when used as a triple combination, 6 μM PC1 increased expres-

sion of HSA 3.5-fold over kansui and 2.5-fold over JQ1 (Fig 5C, lanes 4–6). More importantly,

the triple combination of 6 μM PC1, 50 μg/ml kansui, and 0.1 μM JQ1 resulted in a synergistic

response, which surpassed the sum of all three single treatments (Fig 5C, lanes 3–6), and was

nearly as effective as the high dose of kansui (Fig 5C, lanes 2 and 6). Synergy was confirmed by

the Bliss Independence for HIV drug combinations model [29], in which the difference

between predicted and observed effects was greater than 1.

The triple combination of PC1, kansui, and JQ1 had even greater efficacy with the higher

dose of PC1. 24 μM PC1 did not have a synergistic effect in double combinations with kansui

and JQ1 (Fig 6A and 6B, lanes 5); the 12.5-fold induction of HSA in each of these treatments

was most likely only the effect of PC1 (Fig 6A and 6B, lanes 3 and 5). However, a triple combi-

nation with 24 μM PC1 resulted in a 30-fold induction of HSA (Fig 6C, lane 6), and was greater

than the additive effects of all three single treatments, as indicated by the dashed line (Fig 6C,

lane 6). Synergy was confirmed by the Bliss Independence for HIV drug combinations model

[29], in which the difference between predicted and observed effects was greater than 1.

Procyanidin trimer C1 reactivates latent HIV as a triple combination therapy with kansui and JQ1
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Furthermore, the triple combination of 24 μM PC1, 50 μg/ml kansui, and 0.1 μM JQ1 resulted

in 2-fold higher induction than the high concentration of kansui alone (Fig 6C, lanes 2 and 6).

Importantly, no loss in cell viability was observed with double or triple combination treat-

ments including 6 μM (Fig 5D–5F) or 24 μM PC1 (Fig 6D–6F). Our previous data indicate

that a combination of 50 μg/ml kansui and 0.1 μM JQ1 induces expression of the early T cell

activation marker, CD69 without inducing cellular toxicity [21]. PC1 treatment does not

induce T cell activation as measured by expression of CD69 (Fig 3A), nor does it activate NF-

κB (Fig 2B), which indicates it should not further impact T cell activation by the low dose com-

bination of kansui and JQ1.

Taken together the triple combination of PC1, kansui, and JQ1 effectively reactivated latent

HIV by activating different but complimentary signaling pathways. When used as a combina-

tion, lower concentrations of all 3 compounds were effective at reactivating latent HIV.

Fig 5. Combination therapy of low dose PC1, kansui, and JQ1 reactivates latent HIV in a primary CD4+ T cell model of HIV latency. Human primary CD4+ T

cells were infected with VSV-G-pseudotyped HIV-1 NL4.3 HSA and maintained over 12 days with decreasing concentrations of IL-2 to establish latency as previously

described. Uninfected cells were maintained in the same conditions. At 12 days post infection, cells were stimulated for 24 hours with: (A) single and double PC1 (6 μM)

and kansui (50 μg/ml) (B) single and double PC1 (6 μM) and JQ1 (0.1 μM) (C) single and triple PC1 (6 μM), kansui (50 μg/ml), and JQ1 (0.1 μM). Cells were stained

with anti-HSA antibody and measured by flow cytometric analyses. Data are presented as a fold change in HSA expression over uninfected control cells. Dashed line is

equal to the additive effects (sum % HSA of the single treatments), and a synergistic effect was observed if double and triple treatments surpassed this line. Synergy was

validated using Bliss Independence calculation of drug synergy. Experiments were repeated with three independent donors, each with three technical repeats. A

representative experiment, from a single donor is presented. (D-F) Uninfected CD4 + T cells were treated as above. Percent viability was estimated using forward/side

scatter and the percentage of live lymphocytes in 10,000 total cells analyzed. Error bars represent standard error of the mean. (�p<0.05, ��p<0.01, ���p<0.001).

https://doi.org/10.1371/journal.pone.0208055.g005
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However, as PC1 reactivated latent HIV without T cell activation, the higher dose of PC1 may

also represent a safer strategy in our triple combination therapy.

Discussion

In this study we determined that PC1 reactivates latent HIV and works best in a triple combi-

nation therapy with kansui and JQ1. PC1 reactivated 2D10 in a dose dependent manner with-

out toxicity. PC1 activated the MAPK signaling pathway, through phosphorylation of ERK.

Furthermore, PC1 did not induce CD69 or CD25 expression, indicating that it reactivates HIV

without T cell activation. PC1 effectively reactivated HIV in an immortalized cell line and pri-

mary CD4+ T cell models of HIV latency. Finally, suboptimal doses of PC1, kansui, and JQ1

reactivated latent HIV more effectively than single doses of any compound, and the highest

Fig 6. Combination therapy of high dose PC1, kansui, and JQ1 reactivates latent HIV in a primary CD4+ T cell model of HIV latency. Human primary CD4+ T

cells were infected with VSV-G-pseudotyped HIV-1 NL4.3 HSA and maintained over 12 days with decreasing concentrations of IL-2 to establish latency as previously

described. Uninfected cells were maintained in the same conditions. At 12 days post infection, cells were stimulated for 24 hours with: (A) PC1 (24 μM) and kansui

(50 μg/ml) (B) PC1 (24 μM) and JQ1 (0.1 μM) (C) e PC1 (24 μM), kansui (50 μg/ml), and JQ1 (0.1 μM). Cells were stained with anti-HSA antibody and measured by

flow cytometry analysis. Data are presented as a fold change in HSA expression over the uninfected control cells. Dashed line is equal to the additive effects (sum % HSA

of the single treatments), and a synergistic effect was observed if double and triple treatments surpassed this line. Synergy was validated using Bliss Independence

calculation of drug synergy. Experiments were repeated with three independent donors, each with three technical repeats. A representative experiment, from a single

donor is presented.(D-F) Uninfected cells were treated as above. Percent viability was estimated using forward/side scatter and the percentage of live lymphocytes in

10,000 total cells was analyzed. Error bars represent standard error of the mean. (�p<0.05, ��p<0.01, ���p<0.001).

https://doi.org/10.1371/journal.pone.0208055.g006
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dose of PC1, when used in triple combination, reactivated latent HIV more effectively than

even the highest concentration of kansui.

When considering compounds for therapeutic use, high effective concentrations in vitro
could translate to even larger clinical doses. In our study, we determined that 18–24 μM PC1

had the highest efficacy, which is a relatively large amount. Clinical dosing strategies could be

adjusted to accommodate these effective doses, but this finding is not ideal. However, PC1

treatment does not increase the expression of markers of T cell activation, as measured by

CD69 and CD25, and likely would not induce global T cell activation, which indicates that

higher therapeutic concentrations should be tolerated without toxic side effects. Additionally,

we determined that a triple combinatorial approach, using a lower dose of PC1, reactivated

latent HIV as well as a high dose of kansui. Thus, the effective dose of PC1 is significantly

reduced when used in combination with kansui and JQ1, at a concentration more ideal for its

therapeutic use.

Our study examined three LRAs, which reactivate latent HIV through three different path-

ways, but when combined reactivate more potently than any single treatment. However, we

did not exhaust the complete list of available LRAs to test in combination with PC1. The PKC

agonists prostratin and bryostatin activate resting CD4+T cells and latent HIV in vitro [40,

41]. However both compounds are too toxic and cost prohibitive to manufacture for wide-

spread clinical applications [42, 43]. Our previous studies indicate that a crude extract of kan-

sui reactivates latent HIV to the same degree as the purified PKC agonist ingenol [21]. Kansui

has been used in traditional Chinese medicine for thousands of years with minimal toxicity

and is orally bio-available [44]. Other LRAs currently under investigation include: HDACi,

such as Panobinostat, Romidepsin, SAHA and valproic acid [45–49]. These all robustly acti-

vate HIV in cell line models of latency, by inducing chromatin stress and subsequently releas-

ing of P-TEFb from its inactive complex. All of these compounds reactivate latent HIV

through similar mechanisms as JQ1 [17, 18]. Thus, although we did not test an extensive panel

of LRAs for our studies, we chose appropriate and representative compounds for an effective

combinatorial approach.

Our study utilized immortalized and primary T cell models of HIV latency, but we did not

test HIV+ ART suppressed patients. In our previous study we determined that our in vitro pri-

mary cell latency model provided a good predictor for responses in patient samples [21]. Thus,

concentrations of kansui and JQ1 that effectively reactivated latent HIV in this in vitro latency

model were equally effective in PBMC isolated from HIV+ ART suppressed patients. This in
vitro model uses gradual reductions in IL-2 concentrations and the removal of T cell receptor

engagement over several weeks to bring activated HIV-infected primary CD4+ T cells into a

quiescent state. In addition to our model, a number of other primary CD4+ T cells have been

designed as a surrogates for studies of proviral latency in vivo. A comprehensive review and

comparison of several of these models was performed by Spina et al. [19]. In that study, reacti-

vation varied among these models, particularly in the ability to respond to HDACi without

additional stimuli, which could indicate that cells in some of these models are not fully resting

[18]. In spite of these differences, every model tested reactivated latent HIV following treat-

ment with PKC agonists, albeit at different magnitudes [19]. Our latency model is resistant to

reactivation by HDACi and BETi alonge and requires a strong PKC agonist to first increase

expression of P-TEFb [21, 22], thus it is appropriate to test the efficacy of the triple combina-

tion of PC1, kansui, and JQ1.

Combinatorial therapies have the greatest potential to effectively purge the HIV latent res-

ervoir [29, 30]. PC1, JQ1, and kansui activate cellular transcription factors through distinct

pathways, which combined lead to additive effects on HIV reactivation as well as to reduced

effective concentrations of individual compounds. By combining different compounds, lower
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doses of a kansui can be administered, reducing global T cell activation. Furthermore, treat-

ment with JQ1 activates P-TEFb transiently, which induces a feedback loop that is character-

ized by increased expression of Hexim1 and the subsequent inactivation of P-TEFb in the 7SK

snRNP [50]. In the meantime, Tat is synthesized, which can utilize P-TEFb even from the inac-

tive complex [10]. Whereas HIV transcription is maintained, cells return to their resting state.

Additionally, PC1 activates through MAPK signaling without T cell activation. Therefore

together this combination may prevent inflammatory gene expression and the resulting cyto-

kine storm, while still potently reactivating latent HIV. Double combinations of LRAs have

been extensively researched, including combinations of PKC agonists and HDACi/BETi,

which resulted in synergistic reactivation [23, 29, 30, 33]. Our triple combinatorial approach

expands on this research and includes compounds which reactivate latent HIV at higher con-

centrations. When used together at lower concentrations, all three potently reactivate latent

HIV at more manageable therapeutic concentrations.

Kansui and PC1 are both compounds derived from natural plant sources, which represent

affordable, readily available raw materials which can easily be made into therapeutic agents

[51]. Kansui has been used for thousands of years in traditional Chinese medicine for treat-

ment of fluid retention, ascites, and cancer; consumed as a tea in its raw form [52–54]. Kansui

is a member of the Euphorbia family of plants, which are found in abundance world–wide.

Euphorbia, are the main plant source of ingenol, which in addition to its ability to reactivate

latent HIV, has been developed into a topical treatment of actinic keratosis world-wide and

used as the cancer therapeutic Aveloz in Brazil [53, 55]. PC1 is found in a variety of plant

sources including grape, apple, cinnamon, and cacao, which are all ubiquitous sources of raw

material [56]. The plant sources of PC1 have natural metabolic and anti-inflammatory proper-

ties as well as reported cardiovascular and anti-cancer benefits [57–60]. While natural product

based therapeutics are often viewed as alternative medical treatments, scientific discovery of

therapeutic compounds has a rich history of plant derived drugs, including aspririn, taxol, and

quinine [51]. Taking advantage of these natural products has the potential to yield affordable

and more easily scalable production of LRAs.
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