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Bias in progression-free survival analysis
due to intermittent assessment of
progression
Leilei Zeng,*† Richard J. Cook, Lan Wen and Audrey Boruvka

Cancer clinical trials are routinely designed to assess the effect of treatment on disease progression and death,
often in terms of a composite endpoint called progression-free survival. When progression status is known only
at periodic assessment times, the progression time is interval censored, and complications arise in the analysis of
progression-free survival. Despite the advances in methods for dealing with interval-censored data, naive methods
such as right-endpoint imputation are widely adopted in this setting. We examine the asymptotic and empiri-
cal properties of estimators of the marginal progression-free survival functions and associated treatment effects
under this scheme. Specifically, we explore the determinants of the asymptotic bias and point out that there is
typically a loss in power of tests for treatment effects. © 2015 The Authors. Statistics in Medicine Published by
John Wiley & Sons Ltd.
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1. Introduction

A fundamental goal in oncology is the reduction of mortality due to cancer. Therapeutic advances for
many cancers and the increasing pressure to evaluate experimental treatments in a timely and cost-
effective manner have made it challenging to design adequately powered trials based on the time from
randomization to death. This has led to increased use of the composite progression-free survival endpoint
[1], where the nominal response is the time from randomization to the first of progression or death. From
2005 to 2009 inclusive, for example, just over one-quarter of the trials published on breast, colorectal
and non-small-cell lung cancer in the Journal of Clinical Oncology assess treatment effects based on the
composite endpoint of progression-free survival [2].

The utility and interpretation of findings based on progression-free survival are currently being dis-
cussed in the oncology literature [3]. Miksad et al. [4] point out that because interest primarily lies in
the effect of treatment on overall survival, there is an implicit assumption that progression-free survival
is a surrogate for overall survival. These authors conduct a scientific review to examine the empirical
evidence of an association between findings from progression-free survival and overall survival analy-
ses; they conclude that while there is an association between the findings, the predictive accuracy is not
high. Sidhu et al. [5] study this issue in metastatic colorectal cancer trials involving fluoropyrimidine-
based regimens and found a higher correlation, leading them to conclude that progression-free survival
is a valid surrogate for overall survival in this context. In another context, Ballman et al. [6] examine the
association between 6-month progression-free survival and overall survival at 12 months. With a view
to gaining insight into the structural nature of the relation between these two endpoints, Broglio and
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Figure 1. A three-state model for joint consideration of progression and death.

Berry [7] decompose the effect of treatment on overall survival into components, one of which relates to
progression-free survival. Saad et al. [8] emphasize the importance of a clear definition of progression
when analysed on its own or as part of a composite endpoint.

Frydman and Szarek [9] point out that the classical illness-death model (Figure 1) offers a natural
framework for joint consideration of a non-terminal event, such as progression, and the terminal event
death. In the current setting, we consider individuals to be in state 0 at the time of randomization when
they are progression free and alive. Individuals enter state 1 upon progression and subsequently enter
state 2 upon death. The possibility of death without progression is accommodated by direct transition
from state 0 to state 2. Let Tjk denote the potential j → k transition time. If T01 < T02, we let T1 = T01
denote the time of entry to state 1. The time of entry to state 2 is the overall survival time denoted by
T2 = I(T02 < T01)T02 + I(T01 ⩽ T02)T12. The progression-free survival time is the time of exiting state 0
denoted by T = min(T01, T02) = min(T1,T2).

Challenges arise when progression-free survival is used as an endpoint, as progression status is only
observed at periodic assessment times and the time of progression is at best interval censored. The time to
the composite progression-free survival endpoint is then subject to a hybrid censoring scheme involving
interval censoring for progression and right censoring for death.

Figure 2(a) shows a timeline diagram where T1 and T2 are the times of progression and death, respec-
tively; Ak, k = 1, 2,… denote the assessment times; and C is a right censoring time. In this scenario,
progression is first detected at A2, so one knows that T lies in the interval (A1,A2]. The most common
strategy for dealing with this type of data, however, is to use right-endpoint imputation whereby the sur-
rogate S = A2 is used in lieu of the event time T and standard survival analysis methods are adopted; this
approach is recommended by the FDA [10]. A further complication arises when death occurs without
prior evidence of progression (Figure 2(b)) as it is unknown whether or not progression occurred between
the last negative assessment (A2) and the time of death. The convention in this case is to assume individ-
uals have not progressed and hence use S = T2 as the progression-free survival time (e.g. see Dejardin
et al. [11]). The strong implicit assumptions associated with the approaches described earlier warrant

Figure 2. Timeline diagrams for progression (T1), death (T2), assessments (A1 and A2) and censoring (C).
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careful consideration when dealing with the intermittently observed progression component in the
composite progression-free survival endpoint.

Given the vast number of cancer trials using progression-free survival as the primary endpoint, the chal-
lenges in interpreting findings based on composite endpoints and the seemingly self-evident shortcomings
of using the documented time of progression rather than the actual progression time, it is surprising that
this problem has not received more attention. Frydman and Szarek [9] and Lefonndré et al. [12] highlight
and examine the biases that arise from some form of imputation in this setting. Panageas et al. [13] dis-
cuss the role of the assessment schedule on inferences regarding progression-free survival analysis and
discuss, in particular, the phenomenon that the Kaplan–Meier (KM) estimate tends to drop around the
time of scheduled assessments in a way that reflects both the risk of progression and the assessment pro-
cess. Binder and Schumacher [14] consider modelling the time to progression and examine the impact
of censoring progression times at death for individuals not observed to have progressed. Lefonndré et
al. [12] advocate suitable methods for interval-censored data when modelling the joint distribution of
progression and death times. Much of this work has been based on simulation studies.

In this article, we examine the asymptotic and empirical properties of estimators arising from use of
the surrogate ‘observed’ progression-free survival times as is customarily carried out under the intermit-
tent assessment scheme. We consider the settings where the assessment times are pre-scheduled, but there
is modest variation between individuals in precisely when they occur, to reflect data arising in clinical
trials. We also consider the setting in which assessment times are governed by an independent and pos-
sibly progression-dependent stochastic process to correspond to the less regulated assessment schemes
of observational cohort studies. We formulate models for each component of the composite endpoint
(progression and death) in the framework of an illness-death model with proportional intensities so that
the proportional hazards assumption is satisfied for the endpoint of progression-free survival. Asymp-
totic calculations are carried out by considering an enlarged state space that allows joint consideration
of the disease process and the assessment process. From this stochastic model, the distribution of the
‘observed’ progression-free survival time is derived, where it is defined by right-endpoint imputation
when progression is detected and the survival time otherwise. We contrast this distribution with that of
the latent progression-free survival time in a variety of scenarios. We also use the theory of misspecified
Cox models to derive the asymptotic biases of the estimated treatment effects from a Cox proportional
hazard model for progression-free survival [15–17].

The remainder of this paper is organized as follows. In Section 2, we introduce further notation for the
three-state illness-death model, and we discuss issues in the use of ‘observed’ progression-free survival
when progression is intermittently observed in Section 3. We derive the expected partial score functions,
which are central to the derivation of the asymptotic bias in estimates of treatment effect from the Cox
proportional hazards model. We also derive the asymptotic power associated with Wald-type tests of
the null hypothesis of no treatment effect and demonstrate the potential reduction in power from adopt-
ing right-endpoint imputation. Empirical investigations are conducted in Section 4 to illustrate the finite
sample properties, and concluding remarks are given in Section 5.

2. The Markov illness-death model for progression and death

We let Z(t) denote the state occupied at time t, and {Z(u), 0 < u} represent the corresponding stochastic
process. At time t > 0, the history of the process, denoted as H(t) = {Z(u), 0 < u < t}, contains
information on the timing and nature of any transitions over (0, t). Transitions among the states 𝒮 =
{0, 1, 2} at any time t are governed by the transition intensities

lim
Δt→0

P(Z(t + Δt) = k|H(t))
Δt

= Yj(t) 𝜆jk(t|H(t)) , j < k ∈ 𝒮 , (1)

where Yj(t) = I(Z(t−) = j) indicates that the individual is ‘at risk’ of a transition out of state j at time t,
j = 0, 1.

If the transition intensities depend on the process history only through state occupied at t−, we write

𝜆jk(t|H(t)) = 𝜆jk(t),

and the process is Markov. We can then let A(t) =
[
𝜆jk(t)

]
denote the transition intensity matrix, where

Ajk(t) = 𝜆jk(t) for j < k ∈ 𝒮 , Ajj(t) = −
∑

k>j 𝜆jk(t), and other elements are zero. Let P(s, t) = [pjk(s, t)]
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denote the transition probability matrix with elements pjk(s, t) = P(Z(t) = k|Z(s) = j), s < t. The matrix
P(s, t) satisfies the Kolmogorov forward differential equation

d
dt
P(s, t) = P(s, t)A(t) , t > s, (2)

which enables one to express the transition probabilities in terms of intensity functions [18]. When the
process is time homogeneous, the calculation becomes much simpler and P(t) = exp(At). For the three-
state illness-death models shown in Figure 1, the explicit expressions for p00(s, t) and p01(s, t) are

p00(s, t) = exp

(
−∫

t

s
[𝜆01(u) + 𝜆02(u)]du

)
,

p01(s, t) = ∫
t

s
𝜆01(u) exp

(
−∫

u

s
[𝜆01(v) + 𝜆02(v)] dv

)
exp

(
−∫

t

u
𝜆12(v) dv

)
du .

(3)

Note that the survival function for the progression-free survival endpoint is then

 (t) = P(T > t) = p00(0, t), t > 0, (4)

with respective hazard function h(t) = −d log( (t))∕dt = 𝜆01(t) + 𝜆02(t), the sum of the cause-specific
hazard functions for 0 → 1 and 0 → 2 transitions.

At times in what follows, it will also be useful to consider the counting process formulation of multi-
state processes, and with that in mind, we define Njk(t) as the number of j → k transitions over (0, t] and
let ΔNjk(t) = Njk(t + Δt−) − Njk(t−) count the number of j → k transitions over the interval [t, t + Δt).
Then dNjk(t) = limΔt→0 ΔNjk(t) indicates the occurrence of a j → k transition at time t.

3. Progression-free survival with intermittent assessment schemes

3.1. Distribution of imputed progression-free survival time

When interest lies in evaluating treatment effects on the basis of progression-free survival, standard sur-
vival models are often fitted with the time T = min(T1,T2) in mind. As discussed in Section 2, progression
status is only determined at periodic assessment times, and hence, among individuals for whom progres-
sion is detected, the progression time is interval censored. For such individuals, the convention is to use
the assessment time at which progression is detected as the progression-free survival time. For individu-
als dying without progression having previously been detected, it is unknown whether or not progression
occurred, and in this case, it is conventional to assume they were progression-free at the time of death and
to take the time of death as the progression-free survival time. These conventions lead to invalid infer-
ence because the distributions of the adopted event time and the actual progression-free survival time
differ. In what follows, we formally construct a probability model that represents the process generating
the available data. We then use this model to evaluate the performance of methods used in this situation.

Let CA denote an administrative censoring time and Ri a random right censoring time for individual i,
so that the survival status is known over the interval (0,Ci], where Ci = min(CA,Ri). Suppose progression
status is assessed at a sequence of times 0 = ai0 < ai1 < · · · < aiKi

< Ci. The surrogate for the
progression-free survival time T is given by

S = min{aik; I
(
Z
(
aik

)
= 1

)
, k = 1,… ,Ki} ⋅ I

(
Z
(
aiKi

)
= 1

)
+ T2 ⋅ I

(
Z
(
aiKi

)
= 0

)
, (5)

which takes the value of the assessment time if progression is detected, and the time of death otherwise.
The progression-free survival time is considered right censored at the last negative assessment if the final
assessment is negative and death has not been observed during the course of follow-up [11]. We derive the
distribution function for the surrogate event time S under two different intermittent assessment schemes,
deferring discussion of covariates until Section 3.2.

The first scenario is designed to mimic the setting of a randomized trial and the second a less regular
assessment scheme such as one might see in a cohort study. The prostate cancer trial by Scher et al. [19]
is a suitable example in which progression is evaluated every month during the first 6 months of follow-
up and every 3 months thereafter. For ease of exposition, we assume there is an assessment at the time of
randomization denoted a0 = 0, and K regularly spaced follow-up assessments are scheduled over (0,CA]

3184

© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2015, 34 3181–3193



L. ZENG ET AL.

at ak = kCA∕K, k = 1,… ,K. According to (5), the surrogate progression-free survival time S is one of
these fixed assessment times if progression is detected, but it otherwise takes on any value over (0,CA]
if death is observed. This S is a mixed-type non-negative random variable with positive mass at a finite
number of discrete points (at the assessment times) and a cumulative distribution function

FS(s) = P(S ⩽ s) = ∫
s

0
f (u)du +

∑
k∶ak⩽s

P(S = ak) ,

where

f (u) = p00(1a0, ak−1)

[
1∑

j=0

p0j(ak−1, u
−)𝜆j2(u)

]
for u ∈ (ak−1, ak) ,

P(S = ak) = p00(a0, ak−1)p01(ak−1, ak) ,

and p00(u, v) and p01(u, v) are given in (3). The cumulative function is a complicated time-varying function
of the baseline intensities in the three-state multiplicative illness-death model characterizing the true
underlying process of progression and death, as is the hazard function hS(s).

For cohort studies, point process models offer a useful framework for characterizing the stochastic
assessment process. We let Ak denote the random time of the kth assessment, k = 1, 2,…, and Na(t) =∑∞

k=1 I(Ak ⩽ t) count the number of follow-up assessments occurring over (0, t]. If Y(s) = I(s ⩽ C) and
the history of the joint process is defined as H†(t) = {(Z(ak), ak), k = 0,… ,Na(t−); I(s ⩽ T2),Y(s), 0 <
s < t} for an arbitrary individual, then their visit intensity is defined as

lim
Δt→0

P(ΔNa(t + Δt) = 1|H†(t))
Δt

= Y(t) 𝜆†(t|H†(t)) . (6)

A joint model for the response, assessment and censoring processes can be constructed by first expanding
the state space. Specifically, we define a new multistate process {Z†(s), 0 < s} with a state space 𝒮 † =
{V0,V1,… ,Vp

1 ,V
p
2 ,… ,P0,P1,… ,D0,D1,… ,…} as depicted in Figure 3. The subscript on the states Vk,

k = 1, 2,… , reflects the number of assessment visits for which progression was not detected; for the states
Vp

k , k = 1,…, the superscript p designates an assessment made post-progression. Thus, an individual is
in state Vk at time t if they are alive and progression-free and Na(t) = k (i.e. Ak ⩽ t < min(T1,T2,Ak+1)).
They are in state Pk at time t if they progressed after the kth assessment but have not yet experienced the
(k + 1)st assessment or died (i.e. Ak < T1 ⩽ t < min(T2,Ak+1)). An individual is in state Dk at time t
if I(Ak < T2 < min(t,Ak+1)) and in state Vp

k at time t if I(Ak < T1 < Ak+1 ⩽ t < T2), k = 0, 1, 2,….
Following the occurrence of the kth assessment, the next event to occur (visit k+1, progression or death)
is governed by a competing risk process; transitions to the right (i.e. Vk → Vk+1) occur with the cause-
specific intensity 𝜆†(t|H†(t)) = 𝛼(t). Downward transitions from the Vk state (i.e. Vk → Pk and Vk → Dk)
correspond to transitions out of state 0 in the original three-state illness-death process and hence have the
same transition intensities 𝜆01(t) and 𝜆02(t); likewise, the Pk → Dk transitions have intensity 𝜆12(t) under a
Markov model. Finally, the Pk → Vp

k+1 transition corresponds to the occurrence of the (k+1)st assessment
following progression and has intensity 𝜆†(t ∣ T1 < t,H†(t)) = 𝛼p(t). If we assume the assessment process
is independent of the disease process, then 𝛼p(t) = 𝛼(t), but otherwise, we may assign a different intensity,
such as 𝛼p(t) = 𝛼(t) exp(𝜌), to reflect increase intensity of the assessment process post-progression if, for
example, 𝜌 > 0. The latter may be reasonable if clinic visits are more likely if symptoms associated with
progression become evident; note that such a process would violate the sequential missing at random
assumption [20] and invalidate even methods based on interval-censored data [21].

Figure 3. A multistate diagram for joint consideration of progression, death and recurrent assessment times.
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We define  as the set of states V0, V1, …, and define p,  and  similarly. Under such a setup,
if K is large enough, the survival function for the surrogate progression-free survival time S is simply
P(Z†(s) ∉ p ∪ ). In other words, the survival function S(s) can be expressed as a function of the
transition probabilities of the multistate process given in Figure 3 such that

S(s) = 1 − P
(
Z†(s) ∈ p ∣ Z†(0) = 0

)
− P

(
Z†(s) ∈  ∣ Z†(0) = 0

)
. (7)

The transition probabilities necessary to compute this can be obtained by the Kolmogorov differential
equation of Section 2 but can also be calculated directly from the probability of particular sample paths.
For example, for an individual to be in state Vp

k at time s, k − 1 assessments have to occur prior to
progression, and the individual must survive to the kth assessment at Ak < s. Over [0, s], the individual
thus follows the path V0 → … → Vk−1 → Pk−1 → Vp

k at times 0 = a0 < · · · < ak−1 < t1 < ak ⩽ s, so the
probability P

(
Z†(s) = Vp

k ∣ Z†(0) = 0
)

takes form

∫
s

0 ∫
ak

0 ∫
t1

0
· · ·∫

a2

0

[
k−1∏
j=1

𝛼(aj)

]
𝜆01(t1)𝛼p(ak) exp

[
−∫

t1

0

(
𝜆01(u) + 𝜆02(u) + 𝛼(u)

)
du

]
× exp

[
−∫

ak

t1

(
𝜆12(u) + 𝛼p(u)

)
du

]
da1 … dak−1dt1dak .

(8)

An expression for P
(
Z†(s) = Dk ∣ Z†(0) = 0

)
is derived similarly by noting that over [0, s], an individual

must follow either the path V0 → · · · → Vk → Dk with transition times 0 = a0 < · · · < ak < t2 ⩽ s, or
path V0 → … → Vk → Pk → Dk with transitions at times 0 = a0 < · · · < ak < t1 < t2 ⩽ s. Hence,
P
(
Z†(s) = Dk ∣ Z†(0) = 0

)
takes the form

∫
s

0 ∫
t2

0
· · ·∫

a2

0

[
k∏

j=1

𝛼(aj)

]
𝜆02(t2) exp

[
−∫

t2

0

(
𝜆01(u) + 𝜆02(u) + 𝛼(u)

)
du

]
da1 … dak dt2

+∫
s

0 ∫
t2

0 ∫
t1

0
· · ·∫

a2

0

[
k∏

j=1

𝛼(aj)

]
𝜆01(t1)𝜆12(t2) exp

[
−∫

t1

0

(
𝜆01(u) + 𝜆02(u) + 𝛼(u)

)
du

]
× exp

[
−∫

t2

t1

(
𝜆12(u) + 𝛼p(u)

)
du

]
da1 … dak dt1 dt2

(9)

When the multistate process is time homogeneous where 𝜆jk(t) = 𝜆jk and the assessment process is
ignorable and time homogeneous (𝛼(t) = 𝛼p(t) = 𝛼), expressions (8) and (9) can be further simplified.
Substituting (8) and (9) in (7) results in an expression for S(s), and the hazard hS(s) is no longer a simple
sum of 𝜆01(s) and 𝜆02(s).

We compare the survival functions for progression-free survival time (4) and the surrogate progression-
free survival time (7) under various parameter configurations for the setting where the assessments arise
from a point process. We assume time-homogenous transition intensities 𝜆jk(t) = 𝜆jk, j < k ∈ 𝒮 , with
values set such that (i) P(T01 < T02) = 𝜆01∕(𝜆01 + 𝜆02) equals a desired probability of progression, (ii)
𝜆12∕𝜆02 = 1.5 corresponds to an increased risk of death following progression and (iii) 𝜋A = P(T >
CA) = p00(0,CA) = 0.20 gives a 20% administrative censoring rate for the progression-free survival
endpoint; we set CA = 1 without loss of generality. The random right censoring time Ri is assumed to
follow an exponential distribution with the hazard set to yield the desired net censoring rates (𝜋N), where
𝜋N = P(Ci < T) with Ci = min(CA,Ri). We set 𝛼(t) = 𝛼 and 𝛼p(t) = 𝛼 exp(𝜌) with 𝜌 = {log 1, log 2} for
an progression independent or dependent assessment process.

Figure 4(a) contains a plot of the survival functions for the surrogate (black dashed line) and actual
(black solid line) progression-free survival times for the case when P(T01 < T02) = 0.8, and the
assessment process is event independent with a time homogeneous rate 𝛼 = 2. The asymptotic bias in
the estimator of the median progression-free survival time is evident in Figure 4(a) from the distance
between the vertical lines; the median progression-free survival time is overestimated by a factor of
(0.31 − 0.12)∕0.12 = 2.6. Similarly, a progression-free survival analysis based on the surrogate time
leads to an over-estimation of the probability of being event free. We also find that when all other factors
are fixed, the extent of over-estimation is greater when assessments are less frequent (e.g. comparing the
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Figure 4. Survival functions for the surrogate progression-free survival time (dotted) and the actual progression-
free survival time (solid) when the assessment process is (a) event independent and (b) event dependent; here,

P(T01 < T02) = 0.8, 𝛼(t) = 𝛼 = 2, 𝜆12∕𝜆02 = 1.5 and 𝜋A = 0.2.

biases when 𝛼 = 2 versus when 𝛼 = 4). Finally, the asymptotic bias decreases as P(T01 < T02) decreases
below 0.8 because as the probability of failure due to death increases, the probability that the actual failure
time will be recorded increases.

Figure 4(b) displays an analogous plot to Figure 4(a) for the case of an event-dependent assessment
process with 𝜌 = log 2; here, the intensity for the next assessment doubles after progression occurs.
The findings are similar, but the biases are lower because the lag from progression to its detection is
stochastically smaller.

3.2. Cox regression based on the surrogate progression-free survival time

Treatment effects are naturally characterized by multiplicative intensity models of the form

𝜆jk(t ∣ x) = 𝜆jk0(t) exp
(
x′𝛽jk

)
, (10)

where 𝜆jk0(t) is the baseline rate of j → k transitions and 𝛽 = (𝛽′jk, j < k ∈ 𝒮 )′ is the vector of regression
parameters. For simplicity, we focus on a binary treatment indicator x, so that the hazard ratio for the
progression-free survival time is

h(t ∣ x = 1)
h(t ∣ x = 0)

=
𝜆010(t) exp(𝛽01) + 𝜆020(t) exp(𝛽02)

𝜆010(t) + 𝜆020(t)
. (11)

The proportionality assumption holds for h(t) under either (i) 𝛽01 = 𝛽02 or (ii) 𝜆010(t) = 𝜆020(t) [22, 23].
Under the first scenario, the treatment effect on progression-free survival is the same as the treatment
effect on progression and death, 𝛽 = 𝛽01 = 𝛽02. The second scenario leads to a treatment effect on
progression-free survival given by 𝛽 = log[(exp(𝛽01)+exp(𝛽02))∕2]. When neither of these two conditions
are satisfied, the hazard ratio (11) will be a complicated time-varying function of the baseline intensities
and the treatment effects for progression and death.

We consider the setting when proportionality holds for the progression-free survival endpoint under
condition (i) and a semi-parametric regression model for the hazard takes a form h(t; x) = h0(t) exp(x𝛽),
where h0(t) is the baseline hazard, x is a binary treatment indicator and 𝛽 is the true treatment effect.
While this is no doubt unrealistic, we do so because our primary objective is to evaluate the impact of
using the surrogate event time S in a Cox regression model under the intermittent assessment scheme. If
neither condition (i) nor (ii) is satisfied, the Cox model for T is misspecified to start with, and it will be
difficult to determine the role of the inspection process in the results.

To distinguish the true model from the one for the surrogate, we write

hS(s; x) = hS0(s) exp(x𝛾), s > 0, (12)

for the working Cox model based on the surrogate time S with baseline hazard hS0(s) and treatment effect
𝛾 . Let Y†

i (s) = I(s ⩽ Si) be the at-risk indicator and dNi(s) = I(Si = t) be the event indicator, which are
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all defined based on the imputed event time S. If Yi(s) = I(s ⩽ Ci) indicates individual i is still under
observation, then Ȳi(s) = Yi(s)Y

†
i (s) indicates they are under observation and at risk of the composite

event. The partial likelihood [24,25] leads to a score function for 𝛾 of the form U(𝛾) =
∑n

i=1 Ui(𝛾), where

Ui(𝛾) = ∫
∞

0
Ȳi(s)

[
Xi −

R(1)(𝛾; s)
R(0)(𝛾; s)

]
dNi(s) , (13)

R(1)(𝛾, s) =
∑n

i=1 Ȳi(s)Xi exp(Xi𝛾) and R(0)(𝛾, s) =
∑n

i=1 Ȳi(s) exp(Xi𝛾). If �̂� denotes the estimate of 𝛾 by
solving U(𝛾) = 0, then �̂� −→ 𝛾∗ in probability, where 𝛾∗ is the solution to

∫
∞

0

{
E[Ȳi(s)XidNi(s)] −

r(1)(𝛾, s)
r(0)(𝛾, s)

E[Ȳi(s)dNi(s)]
}

= 0 , (14)

with r(0)(𝛾, s) = E{R(0)(𝛾, s)} and r(1)(𝛾, s) = E{R(1)(𝛾, s)}, respectively [16]. Lin and Wei [17] prove that√
n(�̂� − 𝛾∗) is asymptotically normal with

var
(√

n(�̂� − 𝛾∗)
)
= [A−1(𝛾∗)][B(𝛾∗)][A−1(𝛾∗)]′ , (15)

where

A(𝛾) = ∫
∞

0
E

{
Ȳi(s)

[
r(1)(𝛾, s)
r(0)(𝛾, s)

−
(

r(1)(𝛾, s)
r(0)(𝛾, s)

)2
]

dNi(s)

}
,

B(𝛾) = ∫
∞

0
E

{
Ȳi(s)

[
Xi −

r(1)(𝛾, s)
r(0)(𝛾, s)

]2

dNi(s)

}
.

We define 𝛾∗ − 𝛽 as the asymptotic bias.
The expectations in (14) and (15) are taken with respect to the distribution of the surrogate time S with

expressions E{Ȳi(s)XidNi(t)} = (s)fS(s; x = 1)P(X = 1), E{Ȳi(s)dNi(t)} =
∑1

x=0 (s)fS(s; x)P(X = x),
r(1)(𝛾, s) = n(s)S(s; x = 1) exp(𝛾)P(X = 1) and r(0)(𝛾, s) = n

∑1
x=0 (s)S(s; x) exp(x𝛾)P(X = x), where

(s) = P(Ri ⩾ s) denotes the survival function for the independent random right censoring time Ri. Note
that fS(s; x) and S(s; x) are the density and survival functions for the surrogate progression-free survival
time S derived in Section 3.1, and they are functions of baseline intensities and treatment effects in the true
three-state illness-death model as well as the parameters governing the assessment process. These enable
one to evaluate how the bias in the estimator from the imputed data analysis changes according to these
factors. In the Appendix, we report the results of a small investigation regarding the asymptotic behaviour
of Cox regression coefficients of the treatment effect when the surrogate progression-free survival data
are used. For the scenarios studied, we find that there is generally a conservative bias, meaning the naive
use of the surrogate progression-free survival time underestimates the impact of treatment.

4. Simulations and analyses based on correct and misspecified models

Here, we report on simulation studies designed to empirically assess the bias and frequency properties
of tests and confidence intervals in terms of power and coverage probabilities. Individuals were ran-
domized to one of two treatment arms in a balanced fashion with equal probability. Given the treatment
assignment, the times to progression or/and death were simulated based on the three-state multiplica-
tive model; T01 and T02 were simulated based on exponential distributions with rates 𝜆01 exp(x𝛽) and
𝜆02 exp(x𝛽), respectively, and if T01 < T02, we simulate T12 according to an exponential distribution
with rate 𝜆12 exp(x𝛽12). The values for the baseline intensities are set to satisfy the following con-
straints: (i) P(T01 < T02 ∣ X = 0) = 𝜆01∕(𝜆01 + 𝜆02) = {0.6, 0.8}; (ii) 𝜆12∕𝜆02 = 1.5; and (iii)
𝜋A = P(T > CA ∣ X = 0) = 0.20. We set 𝛽01 = 𝛽02 = 𝛽 = log 0.4 and 𝛽12 = log 1. The random right
censoring time Ri is simulated by an exponential distribution with the rate set to achieve 𝜋N = {0.4, 0.6}.

For the case with fixed assessment times, we assume K = 4 assessments occur over [0,CA], where
CA = 1, at times ak = kCA∕K + 𝜖k, where 𝜖k ∼ N(0, 𝜎e) and k = 1,… ,K. The random error 𝜖k is
added to mimic the situation where some variation occurs around the evenly spaced assessment times
in a protocol. We let 𝜎e = {CA∕(6K),CA∕(20K)} for moderate and mild variation so that the chance
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Figure 5. Kaplan–Meier curves estimated using right end point imputed progression-free survival event times and
actual progression-free survival event times, contrasted against the theoretical survival function of progression-
free survival, for treatment and control groups. Number of fixed assessments K = 4 with a random normal noise
𝜖k ∼ N(0, 𝜎e). (𝛽01 = 𝛽02 = 𝛽 = log 0.5, 𝛽12 = 0, P(T01 < T02 ∣ X = 0) = 0.80, 𝜆12∕𝜆02 = 1.5, 𝜋A = 0.2,

𝜋N = 0.4).

of two consecutive assessment times would be realized in the reverse order is small. We plot (4) along
with the KM estimates based on the actual progression-free survival time (dashed line) and the surrogate
progression-free survival time (solid line) for a data set of n = 1000 individuals. The plots reveal a
striking, familiar but misleading stepwise drop in the KM curves based on the surrogate event times as
seen in [19], for example. This pattern becomes more distinctive as the variation around pre-scheduled
assessment times decreases (as shown in Figure 5(b)) and the risk of progression increases. In addition,
the KM curves under right-endpoint imputation sit above KM curves based on actual progression-free
survival event times and the theoretical curves.

We also simulated random assessment times based on a Poisson process where the gap time between
two consecutive assessments follows an exponential distribution with a rate 𝛼. For each parameter config-
uration, we calculated the sample size required to achieve 80% power for a Wald test at the 5% significance
level under the Cox model. Three types of analysis were conducted on each simulated dataset for a
given sample size including a Cox model for the true progression-free survival time, a Cox model for
the surrogate progression-free survival time and a correct analysis based on the actual panel observation
scheme using a time-homogenous illness-death model of Section 2. The first and third analyses yield
consistent estimates of the treatment effect, but the first, of course, is not possible in practice. Under the
assumption that the inspection process satisfies the sequentially missing at random condition [20] and is
non-informative, the partial likelihood has the form

{
Ki∑

k=1

Pr
[
Z
(
aik

)
∣ Z

(
ai,k−1

)
,Xi )

]}{
1∑

j=0

Pr
[
Z
(
t−i2
)
= j ∣ Z

(
aiKi

)
,Xi

]
𝜆j2

(
ti2 ∣ Xi

)}I(Ti2<Ci)
.

This analysis can be implemented with the MSM package [26].
Table I reports the difference between the average estimated treatment effects and the true 𝛽 (EBIAS)

based on 1000 replications for each parameter configuration, the empirical standard error of the estimates
(ESE), the average robust standard error (RSE) based on (15) and the empirical coverage probability
of nominally 95% CIs for 𝛽 (ECP). The proportion of replicates in which a test of H0 ∶ 𝛽 = 0 is
rejected under a two-sided Wald test is also reported as the empirical power (EP). The Cox regression
analysis of the actual event time and the multistate analysis yielded estimates with negligible empirical
biases, but the naive Cox analysis based on the imputed event times gave biased estimates of treatment
effect. The empirical coverage probabilities from all three analysis are very close to the nominal level.
Although the multistate analysis based on panel data and the Cox model based on the true event time
both yield consistent estimates, the former is associated with slightly larger standard errors and lower EP,
reflecting the loss of information when event times are interval censored. More appreciable differences in
EP are seen when comparing the naive Cox regression analysis with the parametric multistate analysis.
The EP from the naive Cox regression analysis are below 80% in general and can be as low as 62.7%.
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The impact of the misspecification due to right-endpoint imputation can therefore be quite substantial.
A selection of results in Table I are graphically displayed in Figure A.1 in the Appendix, demonstrating
good agreement between the empirical finite sample behaviour and results anticipated based on large
sample theory.

5. Discussion

There has been much discussion about the use of composite endpoints in clinical trials [22, 23], and
while views are somewhat divided, it is apparent that a clear interpretation of findings based on com-
posite endpoints is difficult given the many factors influencing estimators. More discussion on use of
progression-free survival as a primary endpoint in oncology can be found in recent papers by [2,3,27,28].

We have restricted attention to a idealized setting in which the treatment effect is the same for pro-
gression and death in order to simplify discussion and focus attention on the effects of intermittent
assessments.

Frydman and Szarek [9] discuss the issue of interval-censored progression times in the context of
nonparametric estimation of progression-free survival distribution. Boruvka and Cook [29] consider esti-
mation and inference with the Cox model when two competing events are subject to different censoring
schemes and interest lies in the transition intensity ratios. They point out that the present problem can be
cast in this dual censoring framework, and hence, their methods could be utilized in this context. We have
focused here, however, on the study of currently used methods to alert researchers to their limitations.
Of particular importance is our finding that the standard practice of using the surrogate progression-free
survival time can lead to a substantial drop in the power of the trial when assessments are infrequent.
To ensure trials are adequately powered, sample sizes should be increased to address the loss of power
associated with the use of the surrogate event time S. One approach to this is to derive the sample size
formula based on the three-state illness-death model addressing the interval-censored progression times;
piecewise constant baseline hazard function can be adopted to ease the calculation. Alternatively, one
can simply adjust the sample size based on the misspecified model by deriving the limiting behaviour of
the naive estimator and accommodating the bias and robust large sample variance in the calculations to
ensure the power is maintained at the nominal level despite the misspecification.

These issues, while motivated by the setting of cancer clinical trials, arise in many other areas of health
research involving joint consideration of non-fatal events and death. Examples include osteoporosis trials
in which elderly patients are at risk of both asymptomatic fractures (e.g. vertebral compression) and
death where the former events are only detected by periodic bone scans, studies of cognitive impairment
where periodic assessments may be scheduled and carried out until death or administrative censoring,
among others.

Appendix A: Asymptotic properties of treatment effect estimates from Cox
regression on surrogate PFS

We set P(X = 1) = P(X = 0) = 0.5 and take the transition intensities in the illness-death model to have
a multiplicative form 𝜆jk(t) = 𝜆jk exp(x𝛽). As before, values for the baseline intensities 𝜆jk are based on
specifications for P(T01 < T02 ∣ X = 0) = 𝜆01∕(𝜆01 + 𝜆02), 𝜆12∕𝜆02 and 𝜋A; see Section 3.1. We set
𝛽01 = 𝛽02 = 𝛽 ∈ {log 0.9, log 0.75, log 0.5} for mild, moderate and strong (beneficial) treatment effects.
We let 𝛽12 = log 1 for no treatment effect on the intensity for progression to death transition.

Figure A.1 displays percent relative asymptotic bias (100(𝛾∗ − 𝛽)∕𝛽), asymptotic power associated
with a Wald test of no treatment effect and the asymptotic coverage probability of a 95% CI when fitting a
Cox model based on the surrogate progression-free survival time under an ignorable random assessment
process with intensity 𝛼(t) = 𝛼. The treatment effect is under-estimated in general with the percent relative
biases ranging from about 3% to 15%; see Figure 5. As expected, the magnitude of the bias increases as the
rate of assessments decreases and as the competing risk of progression over death, P(T01 < T02 ∣ X = 0),
increases. The size of the treatment effect itself seems to have very little impact on the magnitude of the
percent relative bias. For each parameter configuration, we derived the sample size required to achieve an
80% power for a two-sided Wald test of treatment effect at the 5% significance level under the Cox model
for the progression-free survival analysis. We then calculated the asymptotic power that one can actually
obtain when the surrogate time is used for analysis. Figure A.1(c, d) shows that using the surrogate
time can lead to an appreciable loss in power, which increases as the assessment rate decreases and the
probability of progression increases. For example, when 𝛼 = 2 and P(T01 < T02 ∣ X = 0) = 0.8, the

© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2015, 34 3181–3193
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Figure A.1. Asymptotic percent relative bias (100(𝛾∗ −𝛽)∕𝛽), asymptotic power and asymptotic coverage proba-
bility of Cox regression coefficient of treatment effect from progression-free survival analysis using imputed data;

here, 𝛽01 = 𝛽02 = 𝛽 = {log 0.5, log 0.75, log 0.9}, 𝛽12 = log 1, 𝜆12∕𝜆02 = 1.5, 𝜋A = 0.2 and 𝜋N = 0.4.

power from the naive progression-free survival analysis can drop to as low as 63% when the nominal
level is 80%. The asymptotic coverage probability of the 95% CI, on the other hand, is quite robust to the
model misspecification. Analogous results are found when the assessment times are fixed and, hence, are
not reported here.
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