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ABSTRACT

Brain–computer interfaces (BCIs) provide bidirectional communication between the brain and output devices that translate user intent into
function. Among the different brain imaging techniques used to operate BCIs, electroencephalography (EEG) constitutes the preferred
method of choice, owing to its relative low cost, ease of use, high temporal resolution, and noninvasiveness. In recent years, significant
progress in wearable technologies and computational intelligence has greatly enhanced the performance and capabilities of EEG-based BCIs
(eBCIs) and propelled their migration out of the laboratory and into real-world environments. This rapid translation constitutes a paradigm
shift in human–machine interaction that will deeply transform different industries in the near future, including healthcare and wellbeing,
entertainment, security, education, and marketing. In this contribution, the state-of-the-art in wearable biosensing is reviewed, focusing on
the development of novel electrode interfaces for long term and noninvasive EEG monitoring. Commercially available EEG platforms are
surveyed, and a comparative analysis is presented based on the benefits and limitations they provide for eBCI development. Emerging appli-
cations in neuroscientific research and future trends related to the widespread implementation of eBCIs for medical and nonmedical uses are
discussed. Finally, a commentary on the ethical, social, and legal concerns associated with this increasingly ubiquitous technology is provided,
as well as general recommendations to address key issues related to mainstream consumer adoption.

VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0047237

I. INTRODUCTION

The use of technology to bridge the gap between the human
mind and the external environment is no longer restricted to science
fiction and is now a reality that is permeating our everyday life. This
scientific feat has been made possible through the development of
brain–computer interfaces (BCIs), which are systems that integrate
hardware and software to establish a direct communication channel
between the brain and its surroundings.1 BCIs operate by acquiring
signals produced by the electrophysiological and hemodynamic activ-
ity of the brain in response to different stimuli and specific tasks car-
ried out by the user.2 This information is then relayed to effector
devices that bypass normal neuromuscular outputs through a series of
components that perform sequential tasks, including signal acquisi-
tion, signal processing (i.e., preprocessing, feature extraction, and fea-
ture classification), signal translation, and device output (Fig. 1). Since
their inception in the early 1970s, BCIs have been increasingly used to
assess, augment, assist, replace, and restore cognitive and sensorimotor

functions, not only in severely disabled patients but also in healthy
individuals.3–8 Furthermore, the continued advancement of biosensing
technologies has driven the rapid translation of BCIs, which have
migrated beyond the laboratory toward real-world environments and
mainstream applications.3,9

Multiple classification systems for BCIs have been proposed
based on different criteria, such as the degree of invasiveness, the level
of control exerted by the user, and the different types of stimuli used
to trigger brain activity.9,10 For instance, BCIs can be classified based
on the type of brain signals they record into active, reactive, and pas-
sive BCIs.11 Active BCIs rely on intentional tasks [e.g., finger tapping,
mental arithmetic, motor imagery (MI), or music imagery] to trigger
brain activity, objectively and without the need for external stimuli. In
contrast, reactive BCIs rely on different types of exogenous cues (e.g.,
audio-visual, interrogative, or painful stimuli), while passive BCIs
record arbitrary and unintentional brain signals related to the mental
state of the user (e.g., vigilance, drowsiness, or fatigue). Similarly, BCIs

APL Bioeng. 5, 031507 (2021); doi: 10.1063/5.0047237 5, 031507-1

VC Author(s) 2021

APL Bioengineering REVIEW scitation.org/journal/apb

https://doi.org/10.1063/5.0047237
https://doi.org/10.1063/5.0047237
https://doi.org/10.1063/5.0047237
https://doi.org/10.1063/5.0047237
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0047237
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0047237&domain=pdf&date_stamp=2021-07-20
https://orcid.org/0000-0002-1781-3126
https://orcid.org/0000-0003-1569-7288
mailto:rylie.green@imperial.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/5.0047237
https://scitation.org/journal/apb


have also been divided into two operation modes, depending on
whether the presentation of an external stimulus is required or not,
termed synchronous and asynchronous, respectively.12 In synchro-
nous or “cue-paced” BCIs, the interaction with the system occurs at a
fixed time window, and thus, the user is not able to select commands
at their own convenience. In contrast, asynchronous or “self-paced”
BCIs provide more natural interaction by allowing users to communi-
cate with the system at any time through the continuous processing of
brain signals.9,12 Although these classification systems have been
widely used in the literature, they are hindered by the lack of clear neu-
roscientific definitions and unified criteria for evaluation, which often
prevents the comparison between different studies.13,14

A more objective classification system is based on the need for
surgically implantable electrodes to monitor brain activity, which cate-
gorizes BCIs into invasive, semi-invasive, and noninvasive.15 Invasive
BCIs are characterized by the use of intraparenchymal grids of micro-
electrodes, which provide fast information transfer rates (ITRs) and
the highest spatial and temporal resolution.15–17 Intracortical electro-
des allow the recording of three types of brain signals, which are
single-unit activity (SUA), multiunit activity (MUA), and local field
potentials (LFPs). However, despite their high accuracy and optimal
signal fidelity, the risks associated with the surgical procedures largely
restrict their use outside well-controlled laboratory and clinical envi-
ronments. Furthermore, the growth of connective tissue and scar for-
mation around the electrodes following long-term implantation often
causes signal deterioration and can lead to device failure.1,5

Alternatively, semi-invasive BCIs allow the recording of electrocortico-
graphic oscillations via epidural or subdural electrodes placed on the
surface of the cortex.18 BCIs based on electrocorticography (ECoG)
constitute a less invasive approach that delivers high signal fidelity and
amplitude, as well as increased resistance to artifacts caused by blinks

or eye movements.19 However, despite the lower clinical risk and
robust performance over extended recording periods, the need for cra-
niotomies for electrode implantation remains.

Although invasive and semi-invasive approaches provide accu-
rate information regarding cortical neurodynamics, the potential bene-
fits of improved signal integrity are outweighed by the surgical risks in
the context of everyday applications. Because of this, a variety of non-
invasive brain imaging techniques have been developed, which moni-
tor the metabolic [e.g., functional magnetic resonance imaging
(fMRI)], magnetic (i.e., magnetoencephalography), and electrical [i.e.,
electroencephalography (EEG)] activity of the brain.4,8,9 In general,
noninvasive techniques provide minimal risk and high convenience by
enabling the recording of brain signals from the external surface of the
scalp. Among these, EEG constitutes the most widely used approach
for BCI development, owing to its relatively low cost, high temporal
resolution, and high portability and convenience. This technique
allows the monitoring of brain activity caused by the flow of ion
currents triggered by synaptic activation of neurons in the cortex
(Fig. 2).9,20 To date, numerous groups have reported the development
of EEG-based BCIs (eBCIs) for a wide spectrum of biomedical applica-
tions, including the operation of external devices, environmental
control, and interface interaction.21 Furthermore, recent advance-
ments in EEG signal processing and the development of user friendly
and wearable EEG (wEEG) headsets have enabled the migration of
eBCIs into mainstream environments for everyday use. In turn, this
rapid translation is beginning to reshape human–machine interaction
across multiple industries, such as health care and well-being, enter-
tainment, security, education, and marketing.

Herein, state-of-the-art technologies and applications of eBCIs in
medical and nonmedical contexts are reviewed. For this, an overview
of the neuroanatomical and neurophysiological mechanisms that
underlie the generation of electrical brain activity is provided. Recent
advancements in wearable biosensing are then discussed with a focus
on novel electrode interfaces for long-term and noninvasive EEG
monitoring. Commercially available EEG platforms are surveyed to
provide a comparative analysis in terms of electrode type and density,
functionality, portability, and device performance in the context of
eBCI development. Future trends toward the widespread implementa-
tion of eBCIs in neuroscientific research are discussed in the context of
emerging applications, including automation, entertainment, affective
computing, theranostics, and communication. To conclude, a com-
mentary on ethical, social, and legal concerns associated with this
increasingly ubiquitous technology is provided, as well as general rec-
ommendations to address key issues brought about by mainstream
consumer adoption.

II. NEUROPHYSIOLOGICAL BASIS OF EEG

Neurons are highly specialized cells that constitute the core com-
putational units of the brain. They exhibit a complex polarized struc-
ture, which is characterized by a cell body called the soma, as well as
two types of cytoplasmatic prolongations, the dendrites that converge
on the soma, and the axon that conveys activity away from the soma
[Fig. 2(a)]. It has been estimated that the human brain contains
approximately 86 � 109 neuronal cells,22 with pyramidal neurons
comprising about two-thirds of all neurons in the cerebral cortex.
Moreover, each pyramidal neuron establishes an average of 7000 syn-
aptic connections.23 Synaptic communication can take place at

FIG. 1. The architecture of an EEG-based brain–computer interface. The schematic
depicts the main stages involved in eBCI operation. Noninvasive EEG sensors are
used for the acquisition of electrical signals generated by neurons in the cerebral
cortex. EEG signals are either acquired from the spontaneous endogenous activity
of the brain or evoked by exogenous stimuli. Raw signals are preprocessed, and
features are then extracted, selected, classified, and translated to decode user
intent. Digital commands are then used to drive different output actuator devices,
such as prostheses, exoskeletons, vehicles, or assistive software.
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electrical synapses via gap junctions, which interconnect large popula-
tions of neurons to synchronize their responses.24 Alternatively, trans-
mission can occur at chemical synapses through the vesicular release
of neurotransmitters (NTs), which is triggered by the arrival of an
action potential at the presynaptic terminal and the subsequent open-
ing of voltage-gated Ca2þ channels [Fig. 2(b)]. NTs then diffuse across
the synaptic cleft and bind to specific receptors on the postsynaptic
terminal, which triggers the opening of ionic channels that modulate
membrane potential. Binding of excitatory NTs (e.g., glutamate) trig-
gers excitatory postsynaptic potentials (EPSPs) that cause membrane
depolarization, while inhibitory NTs [e.g., gamma-amino butyric acid
(GABA)] trigger inhibitory postsynaptic potentials (IPSPs) and mem-
brane hyperpolarization.23,24

The neocortex is a 2–5mm thick layer of cells on the outermost
surface of the brain, which is comprised of functionally distinct motor
areas that control voluntary movement, sensory areas that receive and
process information from the senses, and association areas that medi-
ate higher-order cognitive functions. Based on differences in cytoarchi-
tectural characteristics, the cerebral neocortex is organized in six layers
(I–VI) comprised of different cell types that vary across the cortex
and have been defined in spatial arrangements for specific functions
[Fig. 2(c)]. For instance, pyramidal neurons constitute the main cell
type in layers III and V, exhibiting particularly large morphologies in
layer V of the motor cortex, where they project apical dendrites all the
way to layer I. Excitatory synapses are usually located on dendritic
spines along superficial laminae, while inhibitory synapses are mainly

found on the soma in deeper laminae.24 Because of this highly orga-
nized columnar organization, the arrival of EPSPs or IPSPs generates a
superficial area of extracellular negativity, known as a sink, and a basal
area of extracellular positivity, known as the source. This separation of
charge is referred to as a dipole, which is orthogonally oriented to the
surface of the scalp [Fig. 2(a)]. However, dipoles from individual neu-
rons are too small and the electrical signals must travel across several
layers of non-neural tissues with different conduction properties
[Fig. 2(d)]. As a result, the simultaneous activation of thousands of
neurons is necessary to generate a signal that is strong enough to be
detected by electrodes on the scalp.25

EEG signals are field potentials that arise from the synchronized
synaptic activity of pyramidal neurons, which are organized in col-
umns perpendicular to the cortical surface. In particular, the synchro-
nous activation of approximately 100 cortical neurons in an area of at
least 6 cm2 is required to produce a signal that could be recorded on
the scalp.26 The summation of these individual dipoles is measured by
scalp electrodes as a single dipole with a magnitude that reflects the
number of neurons involved. Graphically, the EEG is a dynamic repre-
sentation of the differences in voltage between an active electrode
above the site of neuronal activity and a reference electrode.24 Surface
EEG measures the activity of cortical neurons located just below the
scalp, and thus, the electrical contribution of deeper structures such as
the thalamus, hippocampus, or the brainstem is minimal.27 However,
input from distal sites exerts a significant influence on the modulation
of EEG signals. For instance, the dorsal thalamus is considered as the

FIG. 2. Neurophysiological basis of EEG. (a) EEG signals reflect electrical brain activity that arises from the synchronous activation of groups of pyramidal neurons in the cere-
bral cortex. Excitatory postsynaptic potentials (EPSPs) generate dipoles by creating separation of charge perpendicular to the surface of the cortex. (b) Communication
between neurons is mediated at the synapse. The arrival of an action potential at the presynaptic terminal leads to vesicular release of a neurotransmitter (NT) into the synaptic
cleft, which then diffuses to reach membrane receptors on the postsynaptic terminal and trigger an EPSP. (c) The cerebral neocortex is organized in six layers (I–VI) with differ-
ent cytoarchitectural characteristics. The majority of EEG signals are generated by pyramidal neurons located primarily in layers III and V. These neurons are spatially aligned
perpendicular to the cortical surface, which yields a dipole layer orthogonal to the surface of the scalp. EEG activity is measured as differences in voltages recorded at different
locations on the scalp, which constitute the summation of postsynaptic potentials from thousands of neurons near each recording electrode. (d) To reach scalp electrodes,
EEG signals cross several layers of non-neural tissues with different conduction properties that attenuate the signal. (e) Electrodes are positioned on the scalp in defined con-
figurations, which depend on the functional area of the cortex that is monitored to drive eBCI control.
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main subcortical generator of EEG rhythms, which acts by synchro-
nizing the activity of neocortical neurons. Once they are generated,
EEG signals must travel from the cortex, through the meninges, the
skull, and the scalp to reach the electrodes [Fig. 2(e)]. The voltage mea-
sured at the scalp cycles between positive and negative values at a rate
that constitutes the frequency of the signal. The typical frequency
bands recorded by EEG range from 0.1Hz to around 30Hz, since
higher frequencies are heavily attenuated by the skull and the scalp or
obscured by artifacts. Finally, after the signals have been acquired by
the electrodes, these are processed and translated into meaningful
commands to enable eBCI control.

III. FUNDAMENTALS OF eBCI DESIGN AND OPERATION

The operation of eBCIs relies on patterns of brain activity that
are triggered by different stimuli or tasks, thus enabling the control of
external devices. To achieve this, specific features contained in ana-
logue brain signals need to be extracted, classified, and translated into
digital commands in a series of sequential stages (Fig. 1). In the signal
acquisition stage, brain signals are recorded using electrodes posi-
tioned on the scalp in defined configurations, such as the international
10–20 system standardized by the American Electroencephalographic
Society.28 EEG signals are highly susceptible to multiple sources of
noise, and thus, raw data are first transformed in a preprocessing stage
to enhance signal quality and improve the accuracy of the system. This
is mainly done through linear and nonlinear filtering techniques that
eliminate noise and known physiological or external artifacts.29–31 In
the feature extraction stage, discriminative and nonredundant infor-
mation is identified and extracted from EEG signals to yield a set of
features on which classification can be performed. Multiple feature
extraction techniques have been reported in the literature, which are
based on different approaches, such as dimension reduction,32–36

space domain,37–39 and time-frequency domain.40–43 Although a large
number of features can be retrieved from multiple channels and time
segments, extracted features should capture salient signal characteris-
tics in order to differentiate between task-specific brain states.44

Therefore, some systems incorporate a stage of feature selection in
which only the most discriminant features in a given set are communi-
cated to the classifier, which reduces computational complexity and
processing times.21 In the classification stage, the type of mental task
carried out by the user is decoded based on the selected features using
different classification algorithms, including Bayesian analysis,45,46

k-nearest neighbor classifiers,47,48 linear discriminant analysis,49,50

support vector machine,51,52 and artificial neural networks.53,54

Finally, in the signal translation stage, the classified features are passed
to a translation algorithm that converts them into instructions. Typical
instructions can range from letter selection and cursor control to com-
mands for the operation of robotic vehicles and prostheses. In this
regard, the complexity of the actuator and the capacity of the user to
produce the control signals required for device operation play a signifi-
cant role in the design of eBCIs.

Although the high temporal resolution of EEG signals is remark-
ably advantageous for BCI operation, they also present several chal-
lenges related to their nonstationarity and high susceptibility to noise
and signal artifacts.21 This is particularly relevant for applications
based on online (real-time) operation where EEG signals need to be
accurately processed within limited time windows. Because of this,
real-time signal processing techniques have been often associated with

trade-offs between speed and accuracy, while the latency, consistency,
and flexibility of these approaches remain a concern.55,56 In recent
years, artificial intelligence (AI) and machine learning have been
increasingly used to automate, complement, and enhance the analysis
of big data for biomedical applications, including the processing and
interpretation of EEG signals.57,58 In particular, approaches based on
deep learning have shown great promise to streamline the EEG signal
processing pipeline, since they can be used to perform feature extrac-
tion, selection, and classification within a single processing block.59,60

Therefore, apart from more capable and versatile biosensing hardware,
the need for robust and efficient tools for signal processing constitutes
one of the main challenges for the success of eBCI technology. For a
more in-depth discussion on state-of-the-art EEG signal processing
techniques, readers are directed to comprehensive reviews on this
subject.58,61–63

A. General considerations for eBCI design

The remarkably wide range of eBCI effector outputs has brought
forth the development of multiple control strategies, which vary
according to the capabilities and limitations of the end-user, as well as
the intended application of the device. Furthermore, these consider-
ations need to be taken into account from the early stages of the design
process to ensure optimal device compatibility and functionality. For
instance, the multidimensionality of the system, which refers to the
need for multiple elements of control (i.e., degrees of freedom), could
constitute a significant limitation for user adoption. Previous works
have shown that the control of a computer mouse typically requires
2–4 degrees of freedom, while achieving full dexterity over the individ-
ual joints of a robotic hand could require as many as 22.5 To circum-
vent this limitation, bidirectional BCI systems have been developed,
which allow sensory information to be directly input to the nervous
system via different feedback mechanisms, including brain stimula-
tion,64 reaction force,65 and somatosensory stimulation.66 These
closed-loop BCIs constitute co-adaptive systems where the user and
the computer learn from each other, which facilitates the operation
and assimilation of complex neuroprosthetics.67,68

The design process of eBCIs should take into account the physi-
cal capabilities and the requirements of the end-user. For instance,
users may require continuous control over the system, and thus, inter-
faces based on discrete selection methods and synchronous operation
may not provide adequate response times. In addition, a robust strat-
egy for the detection of noncontrol states should be implemented,
which allows users to focus on activities unrelated to eBCI operation.
For this, systems could be designed to differentiate control and rest sig-
nals in order to tolerate periods of inactivity, or they could incorporate
brain-controlled switches that enable or disable device control at
will.13,69,70

Another aspect to consider is the level of control, which refers to
the way in which device outputs are determined by user inputs. For
instance, the nonstationary nature of EEG signals often hinders the
ability to determine user intent consistently over extended periods of
time.71 Therefore, systems often need to be capable of carrying out
extensive signal smoothing and intelligent processing to translate
inputs into safe and effective actuator outputs. Alternatively, systems
have been designed so users are in charge only of higher-level abstract
operations while semi-autonomous subsystems manage other aspects
of low-level device control.64 More recently, intelligent entities for
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shared control have been developed, which assist users in accomplish-
ing a desired task with varying degrees of automation.72–74

Furthermore, the cumbersome training that is required to operate
multidimensional eBCI systems could prevent their use by a significant
population of users, a phenomenon that has been referred to as BCI
illiteracy.75 To circumvent this limitation, hybrid systems that combine
inputs from multiple types of sensors have been developed.76,77 These
hybrid systems have been shown to provide higher ITRs, lower false
positive rates, and enhanced man-machine adaptability, when com-
pared to conventional single-mode BCIs.78 Finally, apart from consid-
erations related to hardware and software components, one critical
aspect of eBCI design corresponds to the selection of a system para-
digm. Paradigms refer to the overall approach that is used to elicit the
brain signals that drive eBCI operation, and thus, they determine the
control strategy of the device.

B. Overview of eBCI paradigms

The high temporal resolution of EEG allows the identification of
a variety of brain signals that are representative of different aspects
of user intention, attention, and perception. In turn, these patterns of
brain activity can be modulated through their association with a par-
ticular sensory, cognitive, or motor process carried out by the user. In
the context of eBCIs, this targeted modulation of brain signals for
device control is carried out through various system paradigms.64,68

Similar to the design of the physical hardware, the choice of system
paradigm requires careful consideration of the psychological and phys-
ical conditions of the user, environmental limitations, and the level of
accuracy required.79 To date, several paradigms have been reported in
the literature, which vary according to the type of brain signals used
for device control, namely, evoked or spontaneous signals.9

Evoked potentials (EPs) are involuntary time-locked deflections
on brain activity that occur in response to the presentation of an exter-
nal event.4 Among these, visual and P300 EPs constitute two of the
most widely used control signals in eBCI paradigms.80 For instance,
steady-state visual evoked potentials (SSVEPs) are triggered by an
oscillating visual stimulus (e.g., a flashing light) presented at a fixed
frequency and are recorded with maximum amplitude over the occipi-
tal region.20,81 Although they enable relatively accurate and rapid com-
mand input, SSVEPs rely on normal attentional capacity and
oculomotor function, which are often compromised in patients with
severe neurological disease. On the other hand, P300 EPs are positive
deflections that occur approximately 300ms after the presentation of
an oddball stimulus (i.e., an unexpected and random variation within
a regular pattern of stimuli).1,80 P300 signals could be evoked by the
presentation of visual, auditory, or somatosensory stimuli and they
can be recorded over the central and parietal regions.20,80 The genera-
tion of P300 EPs requires little training by the user and the amplitude
of the response peak could be increased as the stimulus becomes less
probable.9 However, different sampling, averaging, filtering, and eye-
artifact removal techniques are often needed to isolate the signal, since
EP amplitudes are significantly smaller than other signals acquired
during EEG recording.4

Paradigms based on spontaneous signals do not require external
stimuli to produce control actions, since they rely on changes in EEG
activity elicited by mental tasks. EEG activity can be classified depend-
ing on the predominant frequency (ƒ) of the signal into delta
(ƒ< 4Hz), theta (4Hz < ƒ< 7Hz), alpha (8Hz < ƒ< 12Hz), beta

(12< ƒ< 30Hz), and gamma (ƒ>30Hz) bands.21 In particular, alpha
band activity from the sensorimotor cortex is designated mu or
Rolandic rhythm, and oscillations occurring in this and the beta bands
are collectively called sensorimotor rhythms.21,82 The planning, execu-
tion, and completion of voluntary movements elicit power decreases
or increases in sensorimotor rhythms that are referred to as event-
related desynchronization (ERD) and synchronization (ERS), respec-
tively.1,80 Paradigms based on ERD and ERS do not require the pre-
sentation of external stimuli, since brain signals are modulated
through mental tasks, such as MI. MI refers to a dynamic mental state
during which the representation of a movement is imagined without
overt motor output.83,84 As such, MI paradigms are widely used for
the control of assistive eBCIs for paralyzed individuals that retain the
capacity to conceive limb motion.85 However, the operation of these
systems requires extensive user training and they often exhibit high
variability in performance and poor accuracy.4,86 Another source of
spontaneous signals is slow cortical potentials (SCPs), which are shifts
in cortical activity that range from several hundred milliseconds to
several seconds and occur at a frequency below 1Hz.87 SCPs can be
self-regulated by healthy and paralyzed users through operant training,
and paradigms based on these signals are widely used for the control
of assistive communication devices.1,88 Furthermore, nonmotor cogni-
tive tasks such as visual counting, mathematical computations, mental
rotation, or music imagery could be used to generate SCPs by users
with severe motor impairment.9,89

In general, evoked signals allow higher throughputs with com-
paratively easier training and operation than spontaneous signals,
which require sustained user attention and concentration. Similar to
hybrid systems that integrate different brain imaging techniques, the
combination of multiple control signals has also been explored to cir-
cumvent the limitations of individual single-mode systems.77,78,90–92

Hybrid approaches enable a higher number of control commands, as
well as improved performance in terms of classification accuracy and
signal detection times. However, they also require significantly more
complex system architectures, which could hinder user acceptability.
Therefore, as systems become increasingly more elaborated, hardware
complexity remains a significant hurdle for the development of porta-
ble, wearable, and low-cost platforms. With regard to eBCIs, EEG sen-
sors constitute the most crucial component since they determine the
resolution of brain pattern recognition, while also influencing ease of
use and user adoption.

IV. STATE-OF-THE-ART ELECTRODE TECHNOLOGIES
FOR eBCIs

Due to the relative low costs and ease of use of surface EEG, this
technology holds great potential to be commercialized for the general
public. Despite multiple advancements in computational intelligence
and signal processing techniques, the engineering of accurate and
user-friendly sensors remains a critical issue for the development of
consumer-grade wEEG platforms. Successful recording of the small
current flows that comprise an EEG relies heavily on the front-end
hardware establishing a low impedance interface with the scalp. This is
mainly because high interfacial impedances decrease the quality of the
recorded signal while also increasing signal noise. Although the pres-
ence of physiological high-impedance layers such as the skull greatly
attenuates signal amplitude, primary loss of signal comes from the
interfacial impedance established between the electrode surface and
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the scalp. An equivalent-circuit model [Fig. 3(a)] can be used to visual-
ize the signal flow between the physiological environment and the con-
ductive electrode material.93

In an ideal situation, the interfacial impedance would be reduced
to a minimal value to enable direct coupling of the recording electrode
to the scalp. As such, minimizing this interfacial impedance is the pri-
mary design criteria for the development of EEG electrodes. In a clini-
cal setting, this typically involves preparation of the skin by degreasing
and abrasion to remove the stratum corneum (SC) at the chosen elec-
trode sites. The SC accounts for 200KX cm2 to 200X over a respective
frequency range of 1Hz–1MHz, making it one of the major contribu-
tors to the overall skin impedance.94 Traditionally, a conductive paste
or gel is then applied to the electrode site to bridge the skin–electrode
interface and lower interfacial impedance. In this regard, noninvasive
electrode interfaces have customarily been classified depending on the
presence of electrolytes at the electrode–skin interface (ESI) into wet,
dry, and semi-dry electrodes.95 EEG electrodes can be categorized as
either active or passive. Active electrodes have preamplification circuits

built into the electrode, thus minimizing the impact of noise from
ambient electrical activity during transmission along the electrode
lead. Active preamplification can be applied to wet, dry, and semi-dry
electrodes; however, it will add to the weight, size, and cost of the elec-
trodes compared to their passive counterparts.96

A. Wet, dry, and semi-dry electrodes

Wet electrodes form a “wet” interface with the scalp through the
use of a conductive gel or paste (Fig. 3). The addition of this conduc-
tive element to the electrode–scalp interface creates a low impedance
pathway that effectively reduces the contact impedance.93,97,98

Moreover, a robust connection to the scalp is formed, owing to the
surface conformation properties of the wet conductive element.95

Wet electrodes are commercially available in a range of designs
and materials (Table I). Tallgren et al. conducted an evaluation of
commercially available electrodes (silver, tin, and gold cup electro-
des; sintered Ag/AgCl, platinum, and stainless-steel electrodes; and

FIG. 3. (a) Equivalent circuit model of the interface formed between an electrode and the skin. Reproduced with permission from Shad et al., IEEE Sens. J. 20(24),
14565–14577 (2020). Copyright 2020 Authors, licensed under a Creative Commons Attribution (CC BY) license.93 (b) Schematic of the differences in electrode contact on the
scalp among wet (left), dry (middle), and semi-dry (right) electrodes, highlighting the electrode–skin interface (ESI) and the electrode electrolyte interface (EEI). Reprinted with
permission from Li et al., Sens. Actuators, B 277, 250–260 (2018). Copyright 2018 Elsevier.95 (c) Representative images of the different types of skin interface electrodes
(wet—left, dry—middle, and semi-dry—right). Left panel reproduced with permission from Leach et al., Front. Neurosci. 14, 586 (2020). Copyright 2020 Authors, licensed under
a Creative Commons Attribution (CC BY) license.98 Middle panel reproduced with permission from Zhang et al., Nat. Commun. 11(1), 4683 (2020). Copyright 2020 Authors,
licensed under a Creative Commons Attribution (CC BY) license.115 Right panel reprinted with permission from Li et al., Sens. Actuators, B 237, 167–178 (2016). Copyright
2016 Elsevier.125

APL Bioengineering REVIEW scitation.org/journal/apb

APL Bioeng. 5, 031507 (2021); doi: 10.1063/5.0047237 5, 031507-6

VC Author(s) 2021

https://scitation.org/journal/apb


disposable Ag/AgCl) and gels (nine conductive gels/pastes) for
recording of slow EEG potentials.99 Their results showed that the
choice of both components was critical for direct current recording
of EEG potentials. Notably, reusable sintered Ag/AgCl electrodes
demonstrated excellent DC-stability, low resistance, and minimal
low-frequency noise. Tin and stainless-steel electrodes were found
to have the highest noise levels.

The ability to readily form a low impedance connection has
made wet electrode technology the clinical gold-standard.100

However, wet electrodes are also prone to the degradation of the
electrolyte interface over time, which restricts their use to applica-
tions where only short-term monitoring is needed.101 The applica-
tion of multichannel wet electrodes generally requires a trained
technician and restricts movement of the subject, thus limiting
their application to clinical settings. Furthermore, the use of abra-
sive and conductive gels can cause skin irritation and discom-
fort.102,103 Wet electrodes also suffer from special limitations, due
to the risk of conductive gel bridging two electrode sites and

TABLE I. Comparative summary of electrode designs.

Electrode Material Advantages Disadvantages

Wet
Pad Metala, Ag/AgCl coating, sin-

tered Ag/AgCl
Low impedance Long setup requiring

technician
Drying
Shorting
Irritation

Cup Metal Low impedance Long setup requiring
technician

Less prone to lift off Shorting
Large cavity for electrolyte
reduces effects of drying

Irritation

Pregelled Metal or Ag/AgCl with
electrolyte

Low impedance Single use
Faster setup Drying

Shorting
Irritation

Solid-gel Hydrogel with electrolyte Low impedance Drying still an issue
Faster setup
Less irritation

Less prone to shorting
Slower drying

Semi-dry
Gel reservoir Metal or Ag/AgCl with

electrolyte
Faster setup Higher impedance than wet

electrodes
Less prone to shorting Drying still an issue

Dry
Thin film Metal, Ag/AgCl coatings Fast setup Increased impedance.

Poor conformability
Discomfort

Spikes, bristles, needles Metal, conductive composites Fast setup Discomfort
Geometries help push past hair Increased impedance

Improved skin contact
Reduced motion artifacts

Capacitive (noncontact) Metal or Ag/AgCl with dielec-
tric/air gap

Not as dependent on skin
contact

Dry foam Conductive composites Comfort Higher impedance
Conductive fabric Metal coatings, organic con-

ductor coatings
Improved conformability and

comfort
Poor skin contact. Prone to

motion artifact
Ideal for active use

aMetal ¼ Au, Ag, Sn, and stainless steel.
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causing a short-circuit. These limitations significantly reduce the
applicability of wet electrode interfaces for long-term or nonclini-
cal EEG recordings, as needed by many eBCIs. To this end, current
research on wet electrodes is focused on the stabilization of the
electrolyte interface. Solid–gel electrodes address issues related to
the placement and drying of wet electrodes by improving moisture
retention through the incorporation of a hydrophilic hydrogel net-
work.104,105 The hydrogel, which replaces the typical buffer
between the skin and electrode, is swollen in an electrolyte. The
soft hydrogel can also deform to the skin, maintaining good physi-
cal contact and reducing interfacial impedance. One of the most
promising approaches for creating long-term stable wet electrodes
is the incorporation of ionic liquids (ILs) into a long-lasting gel
interface.106,107 Owing to their unique chemical properties, ILs do
not suffer from the limitations of other types of liquids, such as
evaporation. Although the long-term toxicity of many ILs remains
a concern, new IL-based gels have been developed with signifi-
cantly improved biocompatibility.107,108

Dry electrodes form an interface with the scalp without the
use of any conductive electrolyte solution (Fig. 3). The majority of
modern wEEG systems have focused primarily on the use of dry
electrodes due to their relative ease of application and lack of scalp
preparation. Since these electrodes do not benefit from the excel-
lent interfacial impedance of the electrolyte, the material properties
of the electrode become critical to ensure uniform contact with the
scalp. Instead of bulky solid metal electrodes, dry interfaces typi-
cally employ thin conformal materials to maximize the surface
area of the electrode that can access the scalp.109 Dry electrodes
may be fabricated from thin metal films laminated to a polymeric
substrate,110 metallic or conductive coatings of nonconductive
components, or from conductive composites. Conductive compo-
sites consist of conductive particles such as metal111 or organic
conductors (graphite,112,113 carbon nanotubes,114 or conductive
polymers115,116) in an elastomeric matrix.

Alternative approaches to dry electrodes such as temporary tattoo
electrodes have been explored. Bareket et al. reported the fabrication
of transferable, conformal tattoo arrays for surface electromyography
(EMG) using standard screen-printing processes coupled with plasma
polymerization of poly(3,4-ethylenedioxythiophene) PEDOT.117 The
tattoo electrodes were found to have similar normalized impedance
compared to commercial pregelled Ag/AgCl electrodes. Ferrari et al.
demonstrated a similar approach using inkjet printing of PEDOT:
polystyrene sulfonate dispersions onto a transfer paper substrate.118

Electrodes were connected with sputtered-gold tracks and then insu-
lated with an adhesive glue layer. Notably these electrodes were dem-
onstrated to allow growth of hair through the active electrode sites
over a 24-hour period with no noticeable effect on the quality of EMG
recordings. This approach has considerable potential in the application
of long-term monitoring as it may remove the need to continually
rehydrate and reposition electrodes. However, typically the surface of
the scalp is covered with dense hair and EEG signals are intrinsically
weak, which negatively impact the recording quality. Thin film tattoos
are not easily applied to the scalp without removal of the hair. To cir-
cumvent this limitation, multiple design strategies have been explored
with an aim of improving the long-term stability of the electrode–scalp
interface, while also enhancing user comfort and compliance for every-
day use.

Finger-based sensors with copper pins,119 gold-coated spring-
loaded pins,120 or flexible polymer pins121 provide high geometric con-
formity to the irregular scalp surface, which minimizes electrode
impedance. However, despite the incorporation of flexible substrates,
previous works have reported that spring-loaded contact pins could
lead to user discomfort and even constitute injury hazards in ambula-
tory or highly dynamic environments.122 Furthermore, the intricate
structure of these sensors greatly increases the cost and the complexity
associated with the manufacturing process. Alternatively, other groups
have developed structures that more uniformly distribute the pressure
on the skin, in order to minimize the discomfort associated with con-
ventional finger-based sensors. For instance, low-cost electrode
brushes comprised of silver-coated polymeric bristles have been
reported.123 This strategy was shown to provide high redundancy
toward maintaining mechanical and electrical contact to the scalp,
while also delivering high-quality EEG recordings. In addition to flexi-
ble bristles, arched structures that match the curvature of the scalp
have also been investigated. Sterling silver electrodes have been
recently developed based on a 3D-printed reverse-curve-arch design,
which distributes the pressure exerted on the skin and effectively
passes through the hair to reach the scalp.124 In recent years, several
types of dry electrodes with varying geometries and designs have been
commercialized, which are generally coupled to EEG amplifiers with
very large input impedances or active amplifiers located in close prox-
imity to the electrode itself.

As a compromise between wet and dry interfaces, there has been
a recent push toward the use of semi-dry electrodes where a minimal
amount of electrolyte is used to improve the interfacial impedance
(Fig. 3). This small volume of electrolyte creates an initial seal between
the scalp and the dry electrode, minimizing the area exposed to evapo-
ration or degradation.97,125 Although the electrolyte does not decrease
contact impedance as much as wet electrodes, the extra contact has
been shown to significantly improve signal-to-noise ratio (SNR). In
addition, semi-dry electrodes provide improved user comfort com-
pared to wet electrodes, where the thick layer of electrolyte needed
could lead to skin reactivity over time.97 However, despite the small
volumes of electrolyte used, issues related to signal degradation still
hinder long-term wearability. In this regard, new design strategies for
semi-dry electrodes focus on identifying methods to enable the con-
trolled release of electrolyte into the interface for long-term
recordings.126

Maintaining the long-term stability of the electrode–scalp
interface is paramount to the successful implementation of eBCIs.
Although all three interface variants have seen significant improve-
ments in their ability to record high-SNR EEG, wet electrodes
remain the clinical gold standard. Therefore, there is a need for
studies that focus on systematic comparisons between electrode
technologies, which could elucidate the technical and scientific
advantages that each platform provides. In addition, further multi-
disciplinary improvements aimed at enhancing the stability, com-
fort, and performance of dry electrodes are needed. Alternatively,
materials-based approaches for epidermal electronics110,127 and
noncontact capacitive electrodes128,129 have been explored to
develop EEG systems with enhanced wearability. However, despite
the advantages provided by these technologies, the majority of
consumer-grade wEEG platforms that have reached the market
rely on the use of dry and semi-dry electrodes.
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B. Survey of commercial wEEG platforms

In the context of eBCIs, the selection of wEEG hardware depends
on the required type, number, placement, and sampling frequency of
the electrodes, as well as the resolution of the signal.130 These criteria
vary widely depending on the specific application, and thus, multiple
wEEG platforms with varying degrees of sophistication are available at
different price points. In general, modern wEEG devices have largely
focused on limiting the placement of recording units to the head, elim-
inating the need for bulky instrumentation boxes and restricting the
use of wires to minimize noise.100 In recent years, the advancement of
wireless technology and the emergence of miniaturized and power effi-
cient electronics have enabled the commercialization of a variety of
consumer-grade wEEG headsets (Table II).

Despite the wide variety of wEEG systems available, further
research efforts are needed to produce more capable and user-friendly
sensors, as well cost-effective electronics with reduced power con-
sumption. Apart from more capable hardware, highly compelling and
engaging applications are critical to promote the use of these technolo-
gies outside laboratory environments. With the advent of increasingly
sophisticated and affordable devices for wearable biosensing, the devel-
opment of so-called killer apps will ensure the rapid and widespread
dissemination of eBCIs among the general population.

V. CURRENT and EMERGING APPLICATIONS OF eBCIs
A. Health care and well-being

Traumatic brain injuries (TBI), post-traumatic stress disorder
(PTSD), stroke, and other neurodegenerative diseases could impair the
function of motor nerves and other structures of the central nervous
system (CNS). Therefore, targeting the mechanisms underlying this
process could enable the development of rehabilitative and restorative
therapies. As described in previous sections, BCIs constitute promising

options to develop assistive technologies for patients with impaired
motor function.131–133 Although brain monitoring techniques such as
computed tomography (CT) and fMRI are routinely used to evaluate
brain function, their limited temporal resolution does not allow the
detection of small disturbances in brain activity.134 In this regard, EEG
and MI have been widely explored for the rehabilitation of patients
suffering from TBIs, stroke, and other neurodegenerative dis-
eases.135–138 This is mainly because the high temporal resolution of
EEG allows the accurate detection of transient power changes in differ-
ent frequency bands (Fig. 4), which are triggered by these pathological
conditions.139–141

One of the most widely reported therapeutic applications of
eBCIs is neurofeedback (NFB), which relies on the acquisition and in
situ processing of EEG signals followed by direct feedback to the
patient in real time. This technique allows the self-regulation of differ-
ent neurophysiological parameters by the user, which translates into
self-modulation of brain function and ultimately into behavioral
changes.142 NFB is widely used for patients that undergo epileptic seiz-
ures with high amplitude focal sharp wave discharges, which could be
trained to limit rhythms that lead to the generation and propagation
of seizures.143 The high efficacy of NFB and the emergence of com-
plementary technologies, such as electrooculography (EOG) and
electromyography (EMG), have led to the development of multiple
applications for this technology.144 In addition, other eBCIs based
on speech imagery have been used for word recognition and assis-
tive communication devices.144 Finally, eBCIs have also enabled
the development of prostheses with enhanced functionality, when
compared to conventional EMG-based approaches.145 Although
multi-degrees of freedom (DOF) control remains challenging with
conventional techniques, the use of neural network models holds
great promise to develop eBCI technologies that improve the oper-
ation of complex prostheses.145

TABLE II. Technical specifications of commercially available wEEG devices.

Device Electrodes Channel count Sampling rate (Hz) Weight (g) Battery life (h) Resolution (bits) Price (USD)

NeuroSky MindWave Mobile 2 Dry 1 512 90 8 16 $100
Muse 2 Dry 4 220/500 61 5 10 $250
MyndPlay MyndBand Dry 3 512 300 10 � � � $270
Emotiv Insight Semi-dry 5 128 � � � 8 14 $300
Emotiv Epoc X Saline 14 128/256 170 12 14/16 $850
OpenBCI EEG Electrode Cap Wet 16 125 � � � 24 24 $1400
Emotiv Flex Saline/wet 32 128 � � � 9 14 $1700
mBrainTrain Smarting Wet 24 220/500 60 5 24 $6730
NeuroScan Siesta Wet 32 1024 300 � � � 16 �$18 000
Brain Products LiveAmp 64 Dry/wet 64 1000 120 4 24 >$18 000
ABM B-Alert X24 Wet 20 256 110 8 24 �$20 000
Cognionics Quick 30 Dry 30 500 610 8 24 $22 000
Wearable Sensing DSI 24 Dry 21 300/600 600 8 16 $22 500
g.tec g.Nautilus Research Dry/wet 64 250 140 6 24 �$25 000
Neuroelectrics Enobio 32 Dry/wet 32 500 97 6 24 �$25 000
IMEC EEG headset Dry 8 256 200 8 12 $25 000
ANT Neuro eggo Sports Dry/wet 64 2048 500 5 24 �$50 000
Cognionics Mobile 128 Wet 128 500 460 6 24 �$50 000
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In addition to therapeutic applications, eBCIs have also been
used for diagnostic purposes due to the correlation of alterations in
EEG activity with the onset of neurodegenerative disorders. For
instance, it has been suggested that a decrease in gamma activity may
be directly associated with cognitive decline.146,147 Furthermore, previ-
ous works have shown that Alzheimer’s disease (AD) leads to increases
in delta and theta activities, as well as decreases in alpha and beta band
activities. It has been demonstrated that EEG-based classification of
patients with subjective cognitive impairment (SCI) and AD can be
carried out with high accuracy.148 This evidence suggests that eBCIs
constitute remarkably advantageous diagnostic tools for potential early
diagnosis of a variety of neurological disorders.

The continuous monitoring of brain activity provided by EEG
holds great promise for the development of technologies aimed at
modulating user mood and emotions through drugs, meditation,
and other strategies. For instance, pharmaco-EEG refers to the
qualitative analysis of the effects of chemical substances on the
CNS. Different compounds have been shown to exert varying
effects on brain function, including intermixing theta and/or delta
activity, increasing beta activity, and decreasing the amplitude
and/or frequency of the alpha rhythm.148 Therefore, eBCIs could
potentially be used to monitor the effect of different drugs on brain
function in order to design custom dosage schemes with increased
therapeutic efficacy. Alternatively, different types of meditation
practices, including focused attention (FA) and open monitoring
(OM), could also be used to modulate brain activity. FA and OM
have been shown to enhance theta activity in anterior brain regions
and alpha activity in posterior brain regions, as well as gamma
activity in parietal and occipital regions. Therefore, eBCIs consti-
tute highly versatile alternatives that could enable the therapeutic
modulation of brain activity without the need for conventional
pharmacological strategies. Although eBCIs have been explored
for mood classification based on the detection of changes in brain
activity, the remarkable complexity of human emotions still consti-
tutes a significant challenge. However, recent advances in machine
learning methods to analyze big data in a comprehensive manner
hold great potential for the detection of different emotions such as
sadness, disgust, and amusement, among others.

B. Environmental control, occupational safety,
and security

Diseases that compromise the function of motor neurons, such
as amyotrophic lateral sclerosis, progressive bulbar palsy, and progres-
sive muscular atrophy are characterized by the loss of control over vol-
untary movement.149 In recent years, BCIs have emerged as attractive
strategies to restore the ability of these locked-in patients to interact
with their surroundings. Multiple EEG-based technologies have been
developed to provide patients with severe disabilities with varying
degrees of environmental control.150 For instance, one of the most
widely explored applications of eBCIs is the control of assistive
vehicles such as electrical wheelchairs (Fig. 5).151 Similarly,
EEG-based smart home systems have been developed to provide
control over lighting, air-conditioning systems, televisions, and
other appliances (Fig. 5).151–153

Another advantage provided by technologies that monitor brain
activity continuously and noninvasively is the ability to implement
these tools in the workplace. The remarkable levels of productivity
achieved by modern manufacturing facilities put significant strain on
workers, which has led to increases in the incidence of industrial acci-
dents.154 Although fatigue, stress, and sleepiness constitute significant
factors that impair the performance of workers and increase the risk of
accidents, they are particularly hard to measure in real time with con-
ventional methods. Because of this, several groups have explored the
development of wEEG-based devices to detect abnormal worker
behaviors.155,156 This type of eBCIs could be deployed in mass to pre-
vent the occurrence of accidents and enhance occupational safety in
factories and other workplaces with high rates of incidents.

Current biometric identifiers are based on physical characteris-
tics, including fingerprints and facile features, as well as voice and iris
recognition. More recently, it has been hypothesized that EEG signals
acquired during perception or the execution of a mental task could be
used for accurate subject identification. EEG-based biometric crypto-
systems rely on the comparison of EEG activity from different subjects
following the execution of a defined task, such as breathing, finger
movement, or singing.157 These systems provide remarkably high lev-
els of accuracy and could constitute the basis for future universal

FIG. 4. Different frequency bands representative of brain activity. Variations in brain activity detected by EEG are indicative of different aspects of brain function. The schematic
shows the raw EEG trace decomposed and reconstituted into delta, theta, alpha, and beta time series traces. Reproduced with permission from Ma et al., PLoS One 15(6),
e0232381 (2020). Copyright 2020 Authors, licensed under a Creative Commons Attribution (CC BY) license.142
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biometric security systems that do not rely on a specific body part for
subject recognition.

C. Education, entertainment, and marketing

Technologies that monitor brain activity could be implemented
in the classroom to assess different aspects of the learning experience
and to study the physiological mechanisms that underlie this process.
For instance, previous works have reported that increases in frontal
theta activity are indicative of high mental effort and cognitive
demand,158,159 while decreases in alpha activity are related to long-
term memory processing.160 These EEG biomarkers could be used to
study the effect of cognitive overload and mental fatigue on learning,
which could be used to develop more effective subject training meth-
ods. In this regard, previous groups have used EEG biomarkers to
assess alterations in brain networks induced by cognitive training
interventions, which constitutes a promising approach to objectively
evaluate the improvement of cognitive functions.161 Future eBCIs
could be used to assess classroom performance on a per-student basis
to design custom learning experiences that are based on the capabili-
ties and limitations of individual subjects.

One of the most active areas of eBCI development outside the
clinic is the emerging field of neuro-entertainment. Because of this, a
large number of commercially available wEEG devices are targeted
toward this market. Following the release of the first consumer-grade
EEG system in 2007, NeuroSky (California, USA) developed the game
Mindflex in partnership with Mattel (California, USA), which used
EEG technology to guide a ball around an obstacle. Since then, a wide
variety of consumer-grade wEEG devices have been developed and

marketed toward the entertainment and gaming sector.162,163 These
devices provide basic functionality and are largely based on the use of
dry sensors that stream EEG data via Bluetooth to smart devices, such
as phones and other wearables. Moreover, additional input sources
such as EOG data [Fig. 6(a)]164 or user focusing level [Fig. 6(b)]165

have been incorporated to provide increased level of control. In addi-
tion, eBCIs and gamification-based strategies have also been used for
the management of attention deficit hyperactivity disorder (ADHD)
through NFB, as well as cognitive skill development for the diagnosis
and treatment of cognitive disorders.166 Several companies have
reported investigating the application of eBCI to the mainstream gam-
ing industry, with suggested applications including monitoring player
experience and engagement, syncing gameplay experience with the
player’s emotional state, reduction of vertigo and motion sickness side
effects with virtual reality headsets, and the use of eBCI as an input
controller. Gabe Newell, Co-founder and President of Valve, a soft-
ware/hardware developer and operator of the largest digital distribu-
tion platform for PC gaming, is quoted in a recent interview as saying,
“If you’re in the entertainment business and you’re not thinking about
this, you’re going to be thinking about it a lot more in the future.”167

The ability to objectively monitor the attention span of the user
has also been used to evaluate audience engagement and predict popu-
lation level viewership.168 Therefore, eBCIs could also be used to tailor
viewing experience and to predict the success of programming by
identifying cognitive processes that contribute to audience engage-
ment. Similarly, EEG-based technologies have been extensively used in
the field of neuromarketing, which uses neuropsychology tools to
study consumer behavior.169–171 This emerging field studies how dif-
ferent stimuli influence consumer response and the decision-making

FIG. 5. BCI-mediated environmental control. The monitoring and interpretation of EEG, EOG, and EMG data could be used to operate environmental control systems for
patients with severe motor impairments. Reproduced with permission from Tello et al., IFAC-PapersOnLine 48(19), 136–141 (2015). Copyright 2015 IFAC.153
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process involved in the purchasing of products and services.
Furthermore, owing to the commercialization of cost-effective wEEG
devices, eBCIs hold great promise for the collection of massive
amounts of user data to develop more effective marketing strategies.

VI. FUTURE PERSPECTIVES AND CONCLUSION

With estimated 835 � 106 connected smart devices worldwide,
the ongoing surge in consumer wearables has facilitated their use as
noninvasive tools for ambulatory health monitoring.172 Furthermore,
consumer-grade wEEG devices are becoming increasingly accessible
and are rapidly catching up to the level of accuracy provided by their
clinical counterparts. Recent works have demonstrated that current
commercial systems already constitute valuable diagnostic tools, since
they can supplement classical neurological examination.173,174 In addi-
tion, these platforms greatly enhance user experience and comfort,
which often constitutes the main limiting factor preventing daily usage
by healthy subjects.175 Because of this high degree of performance and
convenience, wEEG devices are of great importance for the dissemina-
tion of eBCI technology among the general population. Moreover, as
these systems become progressively more sophisticated, the seamless
integration of mind and computers will yield unprecedented ways to
interact and engage with the world. However, these breakthroughs
could also bring forth several ethical, legal, and social issues that

fundamentally alter the interrelationships between humans and
technology.

Privacy and agency are two of the most prominent issues often
raised by neuroscientific research groups and expert panels convened
by independent bodies.176 Neural information acquired by eBCIs
could be representative of the overall manner in which users think,
feel, and behave. In turn, these data could be used to infer different
aspects related to user intention, emotional response, and decision
making, as well as conscious and unconscious interest. Because of this,
eBCIs constitute highly appealing tools to enable large-scale collection
of consumer biometric data for commercial research. During the past
five years, various tech companies, including Facebook (California,
USA), Neuralink (California, USA), Microsoft (Washington, EUA),
and multiple dedicated startups have ventured into the development
of BCI technologies.177 In addition, large government programs have
been established to accelerate the emergence and implementation of
novel neurotechnologies, such as the U.S. BRAIN initiative178 and the
Human Brain Project179 from the European Commission. Therefore,
it is anticipated that the throughput of neural big data will increase sig-
nificantly in the near future, which raises several concerns regarding
sharing and ownership. For instance, once neural information is digi-
tized and stored, it becomes susceptible to unauthorized access or mis-
use by third parties, and thus, it is critical to ensure that data are

FIG. 6. The emerging field of neurogam-
ing. Representative images of (a) neuro-
gaming hardware and (b) user interfaces
that rely on eBCI technology. Top panel
reproduced with permission from
Belkacem et al., Comput. Intell. Neurosci.
2015, 653639. Copyright 2015 Authors,
licensed under a Creative Commons
Attribution (CC BY) license.164 Bottom
panel reproduced with permission from
Liao et al., J. Neuroeng. Rehabil. 9(1), 5
(2012). Copyright 2019 Authors, licensed
under a Creative Commons Attribution
(CC BY) license.165

APL Bioengineering REVIEW scitation.org/journal/apb

APL Bioeng. 5, 031507 (2021); doi: 10.1063/5.0047237 5, 031507-12

VC Author(s) 2021

https://scitation.org/journal/apb


handled following strict privacy standards. Furthermore, basic privacy
rights are often surrendered by the average user to various service pro-
viders, such as search engines, app developers, and social media plat-
forms, without a clear understanding of what is being forfeited. To
address this issue, previous authors have suggested that personal neu-
ral data should be legally regarded as an organ or tissue, so it is shared
exclusively by individuals and unable to be commercialized.180

Moreover, sharing of neural data should be carried out through a
secure and encrypted process, using informed consent language that
clearly specifies who will use the information, for what end, and for
how long. Therefore, it is important that researchers, clinicians, manu-
facturers, patients, and other stakeholders become involved in the
development of policies that protect the right to mental privacy, in
order to ensure the adequate handling of neural information.

Sense of agency refers to the subjective awareness of control over
our own actions and, by extension, over events in the external
world.181 In recent years, the manner in which personhood can be
molded by human–computer interaction has gathered significant pub-
lic interest. With the increasing use of machine learning and artificial
intelligence (AI) for shared-control BCIs, it has been questioned if
actuator outputs are invariably and genuinely produced by the
user.14,182 In addition, owing to the lack of proprioception, the human
brain is unable to acknowledge the influence of an external device on
itself,183 which could potentially compromise autonomy and self-
agency. Because of this, users may be liable to mistakenly perceive
ownership over behavioral outputs that are generated by the BCI, as
well as incorrectly attribute causation to it. For instance, brain stimula-
tion techniques have been shown to trigger changes in demeanor and
character traits, which often leads to changes in personal identity.184

Subjects undergoing deep brain stimulation (DBS) could develop
ambiguities in self-agency and become uncertain of whether their
emotional state and behavior are attributable to themselves or to the
BCI.185 Other studies have shown that impulsive-compulsive behav-
iors, such as hypersexuality, pathological gambling, compulsive eating,
or excessive buying, could be exacerbated following DBS treatment in
Parkinson’s disease patients.186 In turn, this diminished agency and
undermined sense of self-could even prevent users from being consid-
ered as autonomous agents with decisional capacity. Therefore, the
design of mass marketed BCIs should aim to prevent impingements
on user autonomy, as well as minimize the risk of dependency and
impaired self-perception. In addition, it is crucial to warrant adequate
oversight and legislation to protect the right to mental integrity by
ensuring the safety of neurotech aimed for the clinic and for the main-
stream market.

With the impending widespread adoption of eBCIs and other
neurotech platforms for nonclinical applications, additional challenges
and risks are bound to emerge.187 Owing to the use of eBCIs to
improve cognitive function, this technology could potentially be used
to produce subjects with artificially enhanced intellectual performance.
Based on the right to cognitive liberty, competent adults should be free
to benefit from neurotech in any way they see fit, as long as this does
not infringe on the liberties of other individuals. However, questions
remain regarding the ethics of neuroenhancement of children and cog-
nitively impaired patients by consenting family members. By establish-
ing a direct connection between computers and the human mind, the
concepts of memory and learning could also be deeply transformed.
Similar to the use of current internet search engines, the capacity for

instant recollection of information could raise several questions
regarding the fundamental nature of knowledge and education. In
addition, the use of neurotech to modulate aspects of personality and
emotion could potentially lead to severe health issues triggered by mis-
use and addiction, analogous to the ongoing opioid epidemic in the
U.S.188

Despite the inherent risks of neurotech in its gestational state,
stringent legislations will ensure that future innovations comply with
safety and neuroethical standards. International policies should also
guarantee the dissemination of this technology with egalitarianism
and accountability to prevent the exacerbation of current socioeco-
nomic inequalities. In addition, further research efforts and public out-
reach by the scientific community are critical to deter the spread of
misinformation, which could delay the advancement of this technol-
ogy and prevent its full realization. In summary, the potential of BCI
technology is beginning to crystalize at a rapid pace, yielding techno-
logical solutions that provide tangible benefits to our quality of life.
Moving ahead, it is important to pre-emptively establish a clear way
forward toward responsible neuroengineering, in hopes of a future
where the human mind and technology can come together seamlessly
to surpass our own biological limits.
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