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Abstract
Cancers consist of a heterogeneous populations of cells that may respond differently to treatment through drug-
resistant sub-populations. The scarcity of these resistant sub-populations makes it challenging to understand how to
counter their resistance. We report a label-free microfluidic approach to separate cancer cells treated with
chemotherapy into sub-populations enriched in chemoresistant and chemosensitive cells based on the differences in
cellular stiffness. The sorting approach enabled analysis of the molecular distinctions between resistant and sensitive
cells. Consequently, the role of multiple mechanisms of drug resistance was identified, including decreased sensitivity
to apoptosis, enhanced metabolism, and extrusion of drugs, and, for the first time, the role of estrogen receptor in
drug resistance of leukemia cells. To validate these findings, several inhibitors for the identified resistance pathways
were tested with chemotherapy to increase cytotoxicity sevenfold. Thus, microfluidic sorting can identify molecular
mechanisms of drug resistance to examine heterogeneous responses of cancers to therapies.

Introduction
Chemotherapy is one of the most common modalities of

cancer treatment1,2, but its use is complicated by innate
and acquired resistance of cancer cells to commonly used
anticancer drugs3. To address the problem of drug resis-
tance, modern genomic, proteomic, and functional ana-
lytical techniques have identified novel genes and
signaling networks that determine the responsiveness of

tumors to a particular drug treatment1,2,4,5. These
approaches interrogate clinical samples as a whole and
identify molecular signatures and genotypes that predict
overall responses to certain drugs. However, determina-
tion and prediction of drug response for individual
patients is stymied due to complexities caused by cancer
cell heterogeneity1,2,4,5. Resistance to treatment of a small
subset of cancer cells can have a crucial role in cancer
progression and disease recurrence in multiple malig-
nancies6. The small population of resistant cells can elude
chemotherapy in many ways and thus their specific study
is needed to identify effectual treatments in precision
medicine7,8. Since drug-sensitive cells can be orders of
magnitude more prevalent than the resistant cells,
methods to sort and isolate resistant cells for their study
distinct from sensitive cells may enable the discovery of
resistance biomarkers and the prediction of alternative
treatments to circumvent drug resistance9,10. Although
fluorescent labels of viability or apoptosis can be used to
isolate sensitive and resistant cells, labeling cells with
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fluorescent tags is time consuming and may alter the
properties of the cells and interfere with downstream
analyses. For instance, fluorescently labeled caspase inhi-
bitor assay (FLICA)-based reagents not only detect, but
also irreversibly inhibit caspase activity, which sub-
stantially alters biology of probed cells and seriously limits
their use for future studies11,12. Therefore, new technol-
ogies for label-free functional testing of cells are needed to
scrutinize heterogeneous response to drugs.
The biophysical properties of cell responses have been

effectively exploited previously for sorting and enhanced
detection of numerous malignant cells in microfluidic
platforms13–16, as well as for sorting cells by viability17. In
this article, a microfluidic device has been used to sort
drug-resistant and sensitive leukemia cells by differences
in their stiffness that result after treatment with che-
motherapy, which was previously identified as an early
biophysical response of cells to toxic agents17–20. Sepa-
rated populations were tested to determine their differ-
ential gene expression in response to chemotherapy. The
microchannel device uses periodic diagonal ridges orien-
ted skew to the direction of fluid flow to compress and
sort cells by stiffness and is shown to be highly accurate
to separate apoptotic cells25,26. The schematic of the
process is shown in Fig. 1a and a micrograph of the device
is shown in Fig. 1b. Flowing cells are translated perpen-
dicular to the channel axis based on cell biomechanical
properties as shown in Fig. 1c.
As a proof of concept, the chemotherapeutic agent

daunorubicin was applied to the leukemia cell lines K562

and Jurkat, and a small population of surviving (resistant)
cells was isolated using microfluidics. Gene expression
differences between sensitive and resistant cells were
determined using the quantitative polymerase chain
reaction (qPCR). On the basis of a network analysis of
gene expression data, several molecular pathways were
identified as significant to resistance. Inhibitors of these
resistance pathways were then confirmed to increase the
cytotoxicity of daunorubicin. Cell stiffness was thus
identified as a biomarker that can be used to isolate and
study resistant cells. Biophysical sorting introduces a
novel opportunity to examine the heterogeneous response
of cells to therapies to better address drug resistance and
design effective precision treatments against cancer cells.

Results and discussion
Characterization of chemotherapy-treated and -untreated
cells
AFM analysis was conducted on both untreated and

daunorubicin-treated K562 and Jurkat cell populations.
Cells were treated with 1 µM and 2 µM daunorubicin for
~2 h. The Young’s modulus of K562 and Jurkat cells
before and after drug treatment are shown in Fig. 2a and
b, respectively. The average Young’s modulus of untreated
K562 and Jurkat cells were 0.42± 0.38 and 0.29± 0.21
kPa, respectively. After 2 µM drug treatment the average
Young’s modulus increased threefold to 1.51± 1.29 and
1.10± 1.08 kPa, respectively (p-value< 0.001). The
increase of stiffness after the application of chemotherapy
is consistent with several previously reported studies18,21–

Fig. 1 Experimental setup and cell sorting using ridge based microfluidic device. a Schematic diagram of the experimental setup showing the
sorting of drug-treated cells using microfluidic device and subsequent characterization of gene expression and phenotypic characteristics; b optical
micrograph of a three-outlet device; c representative trajectories of resistant and sensitive cells flowing inside the device
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23. The stiffness of a cell is associated to the apoptotic
response of cells, and include the dynamic changes in the
actin cytoskeleton, reduction in cytoplasmic constituents,
and cross-linking of the membrane with cytoskeletal
structures18,22,24.
Untreated and daunorubicin-treated cells were sepa-

rately flowed through the microfluidics device at various
flow rates to optimize their trajectories for sorting
experiments. Video microscopy showed that untreated
cells followed flow streamlines consistent with cell
softness and resulted in a net negative transverse dis-
placement with respect to the direction of fluid flow25,26.
Untreated (soft) and chemotreated (stiff) cells migrated to
opposite sides of the ridged microchannel and sorted
according to their differences in mechanical stiffness14.

Sorting of cell mixtures treated and untreated with
chemotherapy
K562 and Jurkat cells were treated with 1 µM and 2 µM

daunorubicin for 2 h and stained with red cell tracker.
Untreated cells were stained with green cell tracker, and
mixed with treated cells of the same type at a ratio of 1:1.
The mixture was sorted using the three-outlet micro-
fluidic device at a flow rate of 0.03 ml/min, which was
determined to optimize differential trajectories17. The
device processed ~500 cells/s. The purity of the sorted
cells for untreated and daunorubicin-treated cells was
dependent on the concentration of daunorubicin for both
K562 and Jurkat of cells. For K562 cells and 1 µM drug
concentration, the purity was 82.7% of untreated and
80.0% of treated cells in soft and stiff outlet, respectively.
For 2 µM concentration, the purity increased to 93.7% and
89.5% in soft and stiff outlet (Fig. 3a–c), corresponding to
an enrichment factor of 14.34 and 9.64, respectively,
which is consistent with a larger stiffness difference
between treated and untreated cells. In the study of Jurkat
cells, the purity of recovered untreated and daunorubicin-

treated populations of cells (at 2 µM) was found to be 93%
and 89% (Fig. 3d, e) with enrichment factor of 13.6 and
9.0, respectively.

Stiffness of sorted cells
To validate that the sorting mechanism was dependent

upon mechanical stiffness, AFM analysis was performed
on the sorted cells. After sorting mixtures of untreated
and daunorubicin (2 µM)-treated cells, the average
Young’s modulus of the cells collected from soft outlets
was significantly lower compared to the stiffer outlets (p-
value< 0.01), as shown in Fig. 3f and g.

Assessment of apoptosis of sorted cells
K562 cells treated with 2 µM daunorubicin for 2 h were

mixed with untreated cells at a ratio of 1:1, and sorted
using the 3-outlet microfluidic device. Viability of the cells
collected from soft outlet was found to be 94.7% as
untreated cells were primarily directed to this outlet. The
stiff outlet was found to be enriched for daunorubicin-
treated cells and showed a viability of only 7.3%, shown in
Fig. 4a. Representative results obtained from flow cyto-
metry analysis are shown in Fig. S1. For the lower con-
centration of 1 µM, cell viability was 84.9% and 20.15% in
soft and stiff outlets, respectively. Similar results of Jurkat
cell viability was observed and shown in Fig. 4a. By
reducing the concentration of daunorubicin, the decrease
in stiffness difference resulted in a decrease in purity of
cells in both the outlets and consequently, a lower viability
difference in the sorted the cells. The sensitivity and
specificity of the device is shown in Table S1 and the
diagnostic odd ratio (DOR) is shown in Fig. S2.
Treatment with daunorubicin also induced apoptosis,

which was confirmed by increased caspase-3/7 activity
(Fig. S3). Daunorubicin causes DNA synthesis inhibition,
free radical formation, and lipid peroxidation, DNA
binding and the accumulation of DNA damage via the

Fig. 2 Stiffness of untreated and daunorubicin-treated cells are presented by Young’s moduli. The stiffness of individual cells is shown by
individual dots (N = 25 for each cell type). The bars and shaded regions are representing mean and standard error of mean (SEM), respectively. a The
stiffness of untreated K562 cells was significantly lower (p < 0.005) than the stiffness of treated cells for both concentrations of daunorubicin; and b
the stiffness of untreated Jurkat cells was also significantly lower (p < 0.001) than stiffness of treated cells for both concentrations of daunorubicin
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inhibition of topoisomerase II27. For both K562 and Jurkat
cells, the percentage of cells that showed caspsase-3/7
activity was equivalent to the percentage of nonviable
cells, indicating that the nonviable cells followed an
apoptotic cell death upon treatment with daunorubicin
(Fig. 4b).

Assessment of ABCB1 expression of sorted cells
ABCB1, a member of the ABC-transporter family

responsible for the extrusion of some drugs, is associated
with multidrug resistance of cancer cells through aberrant
expression of its product MDR128,29. ABCB1 is reported
to have low expression in K562 cells which was also

observed in this study (Fig. 4c). However, after treating
the cells with both the 1 µM and 2 µM daunorubicin,
the expression of ABCB1 increased markedly. Untreated
and chemotreated cells were mixed at 1:1 ratio and sorted.
For K562 cells treated with 2 µM daunorubicin, the
ABCB1 expression was detected in 8.95% and 95.45% cells
from soft and stiff outlets, respectively (Fig. S4). Similar
experiments were performed with Jurkat cells and ABCB1
was expressed in over 40% untreated Jurkat cells. The
Jurkat cells treated with 2 µM of daunorubicin and sub-
sequently sorted showed 47.25% and 96.25% cells ABCB1
expression in soft and stiff outlets, respectively. The
results are summarized in Fig. 4c.

Fig. 3 The data obtained by sorting untreated and daunorubicin-treated cells using 3-outlet microfluidic devices. Flow cytometry data from
a inlet; b soft outlet; and c stiff outlet; the summarized data of sorted K562 and Jurkat cells at outlets d purity of untreated cells in soft outlets and
chemotherapy-treated cells in stiff outlets; e enrichment of untreated and chemotherapy-treated cells in soft and stiff outlets, respectively, with error
bars showing standard deviation (N = 2). Stiffness of sorted cells from three outlets f statistical difference in stiffness of K562 cells among three outlets
were significant (p < 0.005 between any two outlets, N = 20); and g statistical difference in stiffness of Jurkat cells among three outlets were
significant (p < 0.001 between any two outlets, N = 20)
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Sorting of sensitive and resistant cells after drug treatment
K562 cells were treated with a lower dose of daunor-

ubicin (50 nM) for 15 h which resulted in survival of a
minority of cells (<15%). The treated cells were then
sorted through a 5-outlet device (Fig. 1b) and analyzed
using flow cytometry shown in Fig. 5a and b. The 5-outlet
design was used to increase the fractionation of the sorted
populations to result in both improved sensitivity and
specificity17. The stiffest outlet (stiff 1) had only nonviable
cells, whereas the next outlet, stiff 2, had 99.7% nonviable
cells with an enrichment factor of 59.1. Evaluating the
viable cells, the softest outlet soft 1 enriched viable cells to
96.3% purity with an enrichment factor of 143.52. The
next softer outlet, soft 2, had 81.8% viable cells with an
enrichment of 25.27. The activity of caspase-3/7 was also
observed on sorted cells shown in Fig. 5c and the
expression of apoptosis markers was consistent with via-
bility results. Daunorubicin-treated K562 cells collected
from soft 1 outlet were also significantly softer than the
cells from the stiff 1 outlet, as measured with AFM
(Fig. 5d). This result indicates that minority populations
of viable, chemotherapy-resistant cells can be enriched to
high purity. A comparison of the improvement in accu-
racy of the 3-outlet and 5-outlet devices using a DOR
analysis17 is shown in Fig. S2.

Gene expression analysis
To observe whether gene expression differences were

present between chemotherapy-resistant and sensitive

cells, a comparative qPCR analysis was performed upon
cells from stiff and soft outlets. The results of gene
expressions are summarized in Fig. S5. Apoptosis related
genes Casp-3 and Casp-7 were overexpressed in the cells
collected from stiff outlet, indicating that the number of
nonviable cells were higher in the stiff outlet compared to
the soft one30,31. Also, the higher expression of KRT-19, a
member of keratin family, was observed in the cells col-
lected from soft outlet31,32. The keratins are intermediate
filament proteins primarily accountable for the structural
integrity of epithelial cells. Change in the BCL2 gene was
not observed in the cell population after chemotreatment
(Fig. S5), but overexpression of this gene in the small
subset of soft cells suggested increased resistance to
apoptotic cell death33–35. From the similarity of the
expression profile of cells at inlet and stiff outlets in Fig.
S5, we highlight that the sorting allowed us to discover
gene expression differences between sensitive and resis-
tant cells separately not observable in the bulk analysis of
treated cells.
To understand the underlying mechanism for hetero-

geneity of responsiveness of cells in the soft and stiff
outlets, an array of genes related to cancer drug resistance
and metabolism was analyzed. Among 84 examined genes
related to drug resistance from the PCR Array, 27 dif-
ferentially expressed genes were identified, of which 24
were upregulated and 3 downregulated in soft (resistant)
cells (Table S3). A sizable group of upregulated genes (9/
24) is formed by members of the CYP supergene family

Fig. 4 Analysis of sorted cells from soft and stiff outlets for K562 and Jurkat cells using flow cytometry. a Viability analysis using EthD-1 stain;
b activity of Caspase-3/7 gene; c Expression of ABCB1 gene. Error bars are showing standard deviation for all the figures (N = 2)
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that encode cytochrome P450 monooxygenases
(CYP450). CYP450 enzymes are responsible for 80% of
phase I drug oxidation reactions36, and these reactions
can activate or inactivate numerous anticancer drugs. For
instance, CYP3A4, which metabolizes about half of all
marketed drugs, was found upregulated in soft/resistant
cells. CYP3A4 and CYP2C8, which are both upregulated
in soft cells, are major CYP450 enzymes responsible for
oxidation and inactivation of anticancer drug taxol37.
The finding of upregulated CYP1A1 and CYP1A2 in

soft (resistant) cells is consistent with the findings38 that
CYP450 genes are significantly upregulated in
doxorubicin-resistant cells developed from a MCF-7
breast cancer cell line. Upregulation of antiapoptotic
gene BCL2 and downregulation of pro-apoptotic gene
BAX, detected in soft (resistant) vs. stiff (sensitive) cells,
are known to desensitize various cancer cells to apoptosis,
which is consistent with a drug-resistant phenotype39.

Another gene identified as upregulated in soft (resistant)
cells is CDKN1A, which encodes a cyclin-dependent
kinase inhibitor p21(WAf1/CIP1). Upregulation of CDKN1A
was previously shown to protect colon cancer cells against
apoptosis induced by doxorubicin (a structural analog of
daunorubicin) through inhibition of caspase-3 activa-
tion40. Interestingly, upregulation of CDKN1A also
reportedly inhibits apoptosis induced in chronic myelo-
genous leukemia (CML) cells upon treatment with tar-
geted therapeutic agent imatinib41.
Upregulation of transporter gene ABCC1 was detected

in soft (resistant) cells relative to stiff cells. This gene
encodes multidrug resistance-associated protein 1
(MRP1), an ABC transporter with unusually broad sub-
strate specificity42. MRP1 is capable of extruding a wide
variety of neutral hydrophobic compounds and con-
tributes in this way to the defense against xenobiotics,
endogenous toxic metabolites, and oxidative stress.

Fig. 5 Viability and stiffness analysis of sorted K562 cells after daunorubicin treatment. Viability analysis performed with EthD-1 of sorted K562
cells after treatment with daunorubicin using 5-outlet device, showing the a inlet and b outlets. c Apoptotic marker showing caspase-3/7 activity at
different outlets. d Stiffness of treated K562 cells after separation to two different outlets (p < 0.00001, N = 25)
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EGFR was found upregulated in soft (resistant) cells.
Deregulation of EGFR through various mechanisms,
including overexpression of EGFR gene, has been
demonstrated in various solid tumors and associated with
poor prognosis in some tumor types43. EGF also acts as a
survival factor, and deregulated EGFR-signaling inhibits
apoptosis through downstream effectors PI3K/Akt and
MEK/Erk44. Inhibition of EGFR would be reasonably
expected to reverse the observed deregulation of Bcl-2
and Bax and increase drug sensitivity of resistant cells45.
The inverse association between CYP3A4 and ABCB1/

MDR1 is intriguing. Specifically, resistance to daunor-
ubicin in leukemia cells is associated with upregulation of
ABCB1 gene46, while the soft (resistant) cells in our study
display downregulation of the ABCB1 gene, which
encodes for the multidrug resistance protein 1 (MDR1, P-
glycoprotein). However, downregulation of MDR1 in soft
cells does not necessarily imply increased sensitivity to
daunorubicin because increased expression of CYP3A4 is
likely enhancing metabolism and inactivation of the drug
in soft cells. Most compounds that are substrates of
CYP3A4 are also substrates or inhibitors of MDR147. In
addition, both CYP3A4 and ABCB1 gene encoding for
MDR1 protein are transcriptionally regulated by pregnane
X receptor (PXR) that acts as a xenobiotic sensor reg-
ulating various phase I and phase II drug metabolizing
enzymes and transporters48. Thus, the downregulated
ABCB1 gene does not imply increased sensitivity of cells
to MDR1 substrates as these agents can be metabolized
and inactivated by upregulated CYP3A4. Consequently,
upregulation of CYP3A4 may counteract downregulation
of MDR1, as both these resistance factors are known to
protect cells against many of the same cytotoxic agents.
To identify high-level regulators of gene expression that

can be responsible for the observed differences in gene
expression between soft (resistant) and stiff (sensitive)
cells, we performed various systems level analyses that
included interactome analysis, network building and
topological scoring with pathway enrichment analysis.
Interactome analysis identified 127 transcription factors
in the entire MetaCore human protein interaction net-
work (N= 40,221 network objects) that display significant
overconnectivity to 27 genes differentially expressed
between soft and stiff cells (Supplemental File 1). At least
some of these 127 overconnected transcription factors,
selected with stringent criteria (FDR= 0.001), represent
regulator genes likely involved in gene expression changes
observed between soft and stiff cells. Of them, three
transcription factors: ESR1, NF-kB, and PPARA are
overconnected, as well as upregulated, in the soft vs. stiff
cells.
The implied relevance of ESR1 (estrogen receptor 1;

ERα) in soft cells is unexpected considering the fact that
this receptor is usually involved in sex-specific tissue

cancers (breast, ovarian, endometrial, and prostate).
Building networks from 27 differentially expressed genes
using the “Transcription Regulation” algorithm produced
a prioritized list of 30 transcription factor-centric net-
works (Supplemental File 2). Intriguingly, the network
centered on ESR1 (Fig. 6a) scores among the top of these
prioritized transcription factor-centric networks. This
finding further implicates estrogen receptor 1 in the
observed gene expression changes. Regarding ESR1, a
prior gene expression study of chronic myelogenous
leukemia (CML) has uncovered that genes upregulated in
CML were significantly enriched with genes regulated by

Fig. 6 Gene expression analysis of resistant and sensitive cells. a
Transcription factor-centric network around ESR1 built from genes
differentially expressed between soft and stiff cells. Red circle:
upregulated gene; blue circle: downregulated gene; green edge:
transcriptional activation; red edge: transcriptional repression; b
custom map produced from genes differentially expressed between
soft and stiff cells and topologically relevant genes for differentially
expressed set. Edges represent direct transcriptional regulation or
influence on expression between map objects. Red thermometer:
genes upregulated in soft (resistant) cells; blue thermometer: genes
downregulated in soft (resistant) cells; yellow thermometer: genes
topologically relevant to set of upregulated genes in soft (resistant)
cells (for additional legend: https://portal.genego.com/legends/
MetaCoreQuickReferenceGuide.pdf)
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estrogen receptor. The effect of estrogen signaling was
seen in a data set that included CML specimens from men
and women of various ages. In addition, the enrichment
for ERα-regulated genes was seen in a subset of known
CML-associated genes. Taken together, these findings
implied the role of estrogen receptor activity in CML,
even in men and postmenopausal women49.
Upregulation of genes NFKB1 and NFKB2, encoding

NF-κB family members p100/52 and p105/50, was found
in soft cells. Activation of NF-κB signaling is known to
occur upon treatment with anticancer drugs and cause
resistance in cancer cells50, but upregulation of NFKBIB51

and NFKBIE52 genes in soft cells, which both encode
inhibitors of NF-κB signaling, lowers the confidence in the
role of NF-κB signaling in resistance of soft cells. Never-
theless, activation of NF-κB signaling is supported by
results of interactome analysis and transcription regula-
tion network building (Supplemental Files 1 and 2).
Interestingly, soft cells in our study also displayed

upregulation of ESR2 gene that encodes ERβ receptor.
Significant enrichment of pathway map “Regulation of
actin cytoskeleton by Rho GTPases” further supports the
role of differences in actin cytoskeleton between soft and
stiff cells in our study (Fig. S6).
Taken together, the data suggest that activation of ESR1

(ERα) can be directly or indirectly involved in several
differences in gene expression observed between soft and
stiff cells (Fig. 6b). The expression signature of ER-
signaling has been found in CML specimens49, and acti-
vation of ER-signaling reportedly decreased stiffness of
osteoblasts and endothelial cells53,54. Other differences in
gene expression can be attributed to genes identified as
topologically relevant or overconnected to the set of our
differentially expressed genes (Fig. 6b; Supplemental
File 1). Our results suggest a possible role of multiple
mechanisms involved in the drug resistance of soft cells,
including decreased sensitivity to apoptosis, enhanced
phase I metabolism of anticancer drugs and their
enhanced extrusion from cells by an ABC transporter.
Nevertheless, ERα seems to be critically involved in at
least some of these diverse mechanisms and its modula-
tion may at least in part decrease drug resistance and
increase cell stiffness, which can result in cancer cells that
display less resistant/less aggressive phenotype. Addi-
tional details of the gene expression data are described in
the Supplement “Gene Expression Pathways” section.

Experimental validation of the role of ESR1, NF-κB, and
CYP3A4 in the resistance of K562 cells
To experimentally validate the pathways identified by

gene expression and in silico analyses as potentially
responsible for drug resistance of K562 cells, including
ESR1, NF-κB, CYP3A4, and PXR, products of genes were
inhibited by treatment of cells with low-molecular weight

inhibitors at concentrations/times that did not influence
cell viability. Cells with inhibited ESR1, NF-κB,
or CYP3A4 activity subsequently displayed significantly
increased sensitivity to cytotoxic effects of daunorubicin
(Fig. 7), reducing the number of surviving cells up to
sevenfold, and supporting our prediction of the role of
identified pathways in drug resistance of leukemia K562
cells. The control experiments of the nontoxic antagonist
treatments are shown in Fig. S7. Thus, the microfluidic
sorting of resistant cells can potentially solve the unmet
challenge in individualized therapy to choose supporting
agents in combination therapy with improved activity
against dysregulated pathways in leukemic cells to pro-
duce long-lasting remissions55.
Here we showed that differential cell stiffness can be an

effective biomarker for rapid and non-destructive
separation of resistant cells from sensitive leukemia cells
after chemotherapy treatment for comparative analysis of
their genetic/phenotypic properties and determination of
the underlying mechanisms through network analyses.
The purity of the isolated resistant cells was over 95%.
Thus, microfluidics processing can examine gene
expression differences between sensitive and resistant
cells accurately in spite of the small initial percentages of
resistant cells. The plausible mechanisms related to drug
resistance were identified. The roles of estrogen receptor
signaling, NF-κB signaling and CYP3A4 activity in resis-
tance of K562 cells have been experimentally validated by
testing their inhibitors in combination with chemother-
apy to reduce drug resistance. As a result, cell sorting by
biophysical properties can be used to examine hetero-
geneous responses of cells to chemotherapy treatments
with possible future application in precision medicine
approaches to improve chemotherapy selection and use.

Fig. 7 Viability of inhibitors and chemotherapy treated K562
cells. Average viability with standard deviation of inhibitors and
chemotherapy-treated K562 cells after (N = 3), with p-values are
calculated with respect to only daunorubicin-treated cells in which *
represents p < 0.05 and ** represents p < 0.0005
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Materials and methods
Fabrication of microfluidic device
The microfluidic device was fabricated using replica

molding of polydimethylsiloxane (PDMS) on a SU-8
patterned silicon wafer13–15. All devices tested were
designed in AutoCAD and simulated the flow trajectories
in ANSYS Fluent. The molds for the device were fabri-
cated on a silicon wafer by spin coating SU-8 2007 (SU-8
2007, Microchem Corp.) using a two-layer photo-
lithography process. The dimensions of the molds, parti-
cularly the ridge heights, were measured with
profilometry (Dektak 150 profiler) and optical micro-
scopy. Several device parameters influence cell trajec-
tories, which include ridge gap distance, number of ridges,
inter-ridge spacing, and angle of ridges. The effects of
ridge angles, ridge gap, ridge spacing, and number of
ridges was studied previously13–15. The ridge angle, ridge
number, ridge spacing, and ridge gap were chosen to be
30°, 14 ridges, 200 µm, and 9 µm, respectively17. The ridge
gap was chosen to be small enough to compress the cells
sufficiently without clogging the device and compares to
an average cell diameter of 15 µm. Three and five outlet
devices were tested to evaluate the accuracy of fractio-
nation of the heterogeneous cells to isolate target cell
types. The mold pattern was translated to poly-
dimethylsiloxane (PDMS), inlet and outlet holes were
punched with biopsy punch, and the chip bonded to
glass13,14,17. To prevent non-specific cell adhesion to the
microfluidic channel walls, the device was coated with
bovine serum albumin (Sigma Aldrich) at a concentration
of 10 mg/ml and incubated at 4 °C overnight.

Cell culture and treatments
Jurkat (CRL-1990) and K562 (CCL-243) cells were

purchased from ATCC. The cells were cultured and
maintained in RPMI-1640 medium (Sigma) with the
addition of 10% FBS and 1% penicillin streptomycin. All
cells were incubated at 37 °C in humidified air with 5%
CO2. Cells were expanded to 80% confluency in non-
treated cell culture flasks over two days. Cells were treated
with daunorubicin at concentrations of 0.05 µM, 1 µM,
and 2 µM for 2 and 15 h of exposure.

Experimental setup
The accuracy of sorting was tested by mixing fluores-

cently labeled daunorubicin-treated cells with untreated
cells, sorting using the microfluidic device, and analyzing
the outlets using flow cytometric analysis. Gene expres-
sion differences of resistant cells were determined by
treating all cells with daunorubicin and sorting using
microfluidics. In all cases, cells were washed and resus-
pended in PBS at a concentration of ~1 million cells/ml
and infused into the microfluidic device using a syringe
pump (PHD 2000, Harvard Apparatus) at specified flow

rates. The device flow was formed by three inlet streams,
which included two sheath streams to hydrodynamically
focus the stream containing the cells. The cell trajectories
were observed by an inverted bright-field microscope
(Eclipse Ti, Nikon) and recorded by high-speed camera
(Phantom v7.3, Vision Research) at a frame rate of 2000
frames per second13,17. The stiffness of cells before and
after separation experiments was measured using atomic
force microscopy (AFM, MFP-3D, Asylum Research56,57)
in suspension-like condition to retain rounded morphol-
ogy and similar indentation range as microfluidics. To
improve cell stability during the AFM measurement, a
monolayer of Cell-Tak (BD Biosciences) was applied to
gently attach cells to the glass substrate. Beaded silicon
nitride cantilevers (spring constant 37.1 pN/nm) were
used to indent the center of the cells at a rate of 1.5 μm/s.
Sufficient force was applied to achieve at least 5 μm
deformation such that compression was in close compar-
ison with the microfluidic experiments. Cell Young’s
modulus values were calculated from the force-
indentation curves and fit to a Hertzian model to com-
pute the average Young’s modulus. One-way analysis of
variance (ANOVA) was performed between Young’s
modulus of chemotherapy-treated and -untreated cells to
determine statistical significance.

Flow cytometry analysis
To differentiate in flow cytometry, cells were labeled

with 2 µM with CellTracker™ red (chemotherapy-treated
cells) and green (untreated cells) (Molecular Probes Inc.)
for ~1 h in 37 °C. After loading the cells with the dye, the
accuracy of sorting could be quantified. From flow cyto-
metry results, the enrichment factor was calculated from
that using the following equation:

Number of green cells=Number of red cellsð ÞOutlet
Number of green cells=Number of red cellsð ÞInlet

:

The sensitivity and specificity at different outlets, as well
as the DOR was determined as described previously17,57.
The sensitivity measures the proportion of positive cells
that are correctly identified and specificity measures the
proportion of negatives that are correctly identified from a
sample. A confusion matrix was used to determine con-
dition positive outcomes, which were untreated cells in
the in the soft outlet and treated cells in stiff outlet,
whereas negative outcomes were defined as untreated
cells in stiff outlet and treated cells in soft outlet, resulting
in frequencies of true positives, false positives, false
negatives, and true negatives (TP, FP, FN, and TN,
respectively). Cell viability of microfluidic sorted cells and
control cells that were not processed by microfluidics was
tested by flow cytometry analysis using 2 µM ethidium
homodimer-1 (EthD-1) (Molecular Probes Inc.)17,58,59.
EthD-1 is a cell impermeable nucleic acid stain that shows
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strong fluorescence at 635 nm when bound to DNA in
dead cells with disintegrated cell membranes. Apoptosis
was determined by flow cytometry analysis through acti-
vation of caspase-3/7 using Cell Event Caspase-3/7 Green
flow cytometry assay kit (Invitrogen)60,61. To determine
the expression of the ABC-transporter protein ABCB1,
cells were incubated with P-glycoprotein antibody (UIC2)
conjugated with PE (ThermoFisher Scientific) for 1 h,
washed, and resuspended in PBS to analyze by flow
cytometry28,62,63. Flow cytometry analysis was performed
using BD Accuri C6 flow cytometer (BD Biosciences).

qPCR
For chemosensitive and chemoresistant cells, ~10,000

cells were collected from stiff and soft outlets and total
cellular RNA was isolated using a RNA isolation kit
(Macherey-Nagel) according to the instructions provided
by the manufacturer. Thereafter, RNA was reverse-
transcribed to cDNA using the kit purchased from Ther-
moFisher Scientific (Catalog number 4387406) following
the manufacturer’s instruction. qPCR was used to analyze
expression of transporter, apoptosis, structural integrity,
and resistance related genes using the 2×TaqMan® Pre-
Amp Master Mix (Applied Biosystems, PN 4391128) and
Fluidigm Biomark system. The primers were designed
using Primer 3 Plus website (http://www.bioinformatics.
nl/cgi-bin/primer3plus/primer3plus.cgi) and “BLAT” tool
from UCSC genome browser website (http://genome.ucsc.
edu/). The list of primers is given in Table S2.
In addition, expression of genes related to apoptosis,

xenobiotic metabolism and drug resistance was investigated
using a commercially available PCR array ExProfile™
Human Cancer Drug Resistance & Metabolism Related
Gene qPCR Array (Catalog Number: QG007-B6, Geneco-
pedia, Inc.), using the StepOnePlusTM instrument from
Applied Biosystems. The array tested for expression of 84
genes relevant to drug resistance and drug metabolism, as
well as endogenous control genes. GAPDH gene was used
for normalization of gene expression. Soft and stiff sub-
populations separated from the same daunorubicin-treated
populations of K562 cells were analyzed as matched-pairs.
Genes that were selected as differentially expressed showed
a two-tailed p-value< 0.05 using the matched-pair t-test
and an absolute fold change (FC) values ≥ 1.5. The use of
multiplicity correction by FDR found that q-values ≤ 0.074
for all genes selected as significantly differentially expressed.

Identification of resistance pathways with systems biology
analysis of gene expression
Differentially expressed genes were analyzed with

MetacoreTM suite v 6.31 build 68930 (Thomson Reuters)
using the following approaches: (i) enrichment analysis in
GeneGO canonical “Pathway Maps” functional ontology,

(ii) build networks using “Transcription Regulation”
algorithm, and (iii) interactome overconnectivity (one-
step) analysis for transcription factors. One-way analysis
of variance (ANOVA) was performed between soft and
stiff outlets to determine statistical significance in gene
expressions. The topological significance analysis (TSA)
of gene expression profile was performed using online
tool provided by GeneGO, Inc. (http://topology.genego.
com/zcgi/topology_scoring.cgi). Enrichment analysis was
employed to identify GeneGO signaling pathway maps
significantly enriched by differentially expressed genes.
Transcriptional regulation network building tool pro-
duces networks with central transcription factors con-
nected to several differentially expressed genes largely
one-step away. One-step interactome analysis for tran-
scription factors determines the relative connectivity of all
known transcription factors from MetaCore global
interactome to the set of differentially expressed genes
and identifies direct neighboring transcription factors
with significant connectivity64. TSA further extends one-
step interactome analysis and identifies “hidden nodes” as
genes that occupy topologically significant positions in
MetaCore global interactome with respect to differentially
expressed genes (without limiting to local interaction
neighborhood)65,66. Topologically significant genes (p<
0.01) were identified for all genes upregulated in soft cells
relative to stiff cells using the “transcriptional activation
paths from all nodes” algorithm and subsequently mapped
to GeneGO human signaling pathway maps as described
above. Multiple testing correction was performed using
false discovery rate with the adaptive threshold set to
permit no more than one pathway incorrectly predicted as
significantly enriched. Insight generated from analytical
approaches described above was used to build a custom
signaling map representing simplified model that could
explain changes in gene expression observed between soft
and stiff cells (Map Editor tool in MetaCore; Thomson
Reuters).

Effect of ESR1, NF-κB, and CYP3A4 on the resistance of
K562 cells
The effect of inhibition of genes identified as likely

involved in differences between soft and stiff cells on
anticancer activity of daunorubicin was tested using spe-
cific small molecule inhibitors. K562 cells were treated
with caffeic acid phenethylester (inhibitor of NF-κB, 5
µM), fulvestrant (selective estrogen receptor down-
regulator, 1 µM), clarithromycin (CYP3A4 inhibitor, 25
µM), and ketoconazole (PXR inhibitor, 1 µM) (Abcam) for
15 h and then the viability of cells was assessed. Con-
centrations of these inhibitors were selected based on
preliminary results showing no significant loss of viability
in K562 cells treated with the inhibitors alone at these
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concentrations. For combined treatment with all four
inhibitors together, the concentration was optimized for
caffeic acid phenethylester, fulvestrant, clarithromycin,
and ketoconazole as 1.2, 0.25, 6.2 and 0.25 µM, respec-
tively. Cells have been experimentally validated by testing
antagonists in combination with chemotherapy to reduce
drug resistance. As a result, cell sorting by biophysical
properties can be used to examine heterogeneous
responses of cells to chemotherapy treatments with pos-
sible future application in precision medicine approaches
to improve chemotherapy selection and use.
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