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Abstract: A severe form of myopia defined as pathologic/high myopia is the main cause of visual
impairment and one of the most frequent causes of blindness worldwide. It is characterized by at
least 6 diopters or axial length (AL) of eyeball > 26 mm and choroidal neovascularization (CNV) in 5
to 10% of cases. Ranibizumab is a humanized recombinant monoclonal antibody fragment targeted
against human vascular endothelial growth factor A (VEGF-A) used in the treatment of CNV. It
acts by preventing VEGF-A from interacting with its receptors (VEGFR-1 and -2) encoded by the
FLT1 and KDR genes. Several studies found that the KDR and FLT1 genotypes may represent predic-
tive determinants of efficacy in ranibizumab-treated neovascular age-related macular degeneration
(nAMD) patients. We performed a retrospective study to evaluate the association of single nucleotide
polymorphisms (SNPs) in VEGFR coding genes with the response rate to ranibizumab in patients
with high myopia and CNV. In the association study of genotypes in FLT1 with the response to
ranibizumab, we found a significant association between two FLT1 variants (rs9582036, rs7993418)
with ranibizumab efficacy at the 12-month follow-up. About the KDR gene, we found that two KDR
variants (rs2305948, rs2071559) are associated with best-corrected visual acuity (BCVA) improvement
and KDR (rs2239702) is associated with lower rates of BCVA worsening considering a 12-month
follow-up period.

Keywords: pharmacogenetics; myopia; ranibizumab; precision medicine; VEGFR; anti-VEGF; FLT1; KDR

1. Introduction

Myopia is an eye disease with a varied geographic prevalence. In Asian countries,
its prevalence is up to 70–90%, whereas in western Europe, it is 25–50% [1–3]. The most
severe form of myopia, defined as pathological/high myopia, is the main cause of visual
impairment and one of the most frequent causes of blindness worldwide [4]. Patients
with pathological myopia are characterized by an axial length ≥26 mm or a refractive
error of −6.0 diopters or more [1,5,6]. These patients have progressive and excessive
globe elongation with retinal and choroidal thinning, peripheral retinal degeneration,
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and an increased risk of retinal detachment, cataracts, glaucoma, and myopic choroidal
neovascularization (mCNV) [7,8].

mCNV develops in 5–10% of pathological myopia patients and it is one of the most
vision-threatening complications of these patients [1,9,10]. Furthermore, pathologic/high
myopia is the most common cause of CNV in individuals aged 50 years or younger and the
second cause of CNV after nAMD [11].

mCNV is characterized clinically by retinal hemorrhage with or without exudation.
This hemorrhage, after its resolution, may leave an area of chorioretinal atrophy or a grayish-
white pigmented scar (Fuchs spot). mCNV is different in young or aged patients. Young
patients usually show small classic lesions located close to the fovea. These lesions can
cause rapid visual loss with or without metamorphopsia and/or central scotoma. Moreover,
in aged individuals, mCNV is more extensive and exudative; it may lead to chorioretinal
scar formation similar to nAMD. Some cases of mCNV may regress spontaneously with
minimal impact on vision; however, without appropriate treatment, most eyes will have a
poor visual outcome [11].

The most common treatment for mCNV includes thermal laser photocoagulation,
verteporfin photodynamic therapy (vPDT), and surgery, specifically removing the
mCNV [12–14]. Laser photocoagulation treatment can result in permanent retinal damage,
causing scotoma increase, scarring, and visual loss over time. Moreover, recurrent CNV
may arise at the margins of previously laser-treated areas. This may be due to rupture of
the retinal pigment epithelium and Bruch’s membrane stimulating new CNV lesions in
some patients [15,16].

In 2001, the results of the VIP study based on the use of vPDT in mCNV were published,
which showed that it was capable of maintaining visual acuity (VA) at 12 months [17],
although no significant difference was observed in the primary outcome at 24 months [18].
Furthermore, the development of long-term chorioretinal atrophy based on the use of vPDT
in mCNV was observed in another study [19]. The results of the surgery were not good
either [14].

The VEGF is a potent proangiogenic factor that stimulates CNV development. Follow-
ing binding to VEGFR, endothelial cells are stimulated to proliferate, migrate, and express
matrix-degrading proteases, causing vascular instability, leakage, and finally angiogene-
sis [11].

The introduction of monoclonal antibodies directed against VEGF in the treatment
of mCNV was a real breakthrough. Ranibizumab (Lucentis®, Novartis Pharma AG; Stein,
Switzerland) is a humanized recombinant monoclonal antibody fragment targeted against
human VEGF-A. It binds with high affinity to VEGF-A, thereby preventing binding of
VEGF-A to VEGFR-1 and -2 at the endothelial cell surface, thus inhibiting cell division,
migration, and angiogenesis; increasing apoptosis; and reducing the permeability/leakage
of the vasculature [20,21].

The RADIANCE, a phase III, 12-month study that evaluated Ranibizumab and PDT
(verteporfin) in mCNV, proved that ranibizumab has good efficacy and safety, with a
significant and maintained gain in VA. Furthermore, a relatively low number of injections
are required to treat most patients with mCNV. Over 60% of patients did not require any
injections from month 6 onwards, and more than 50% required only 1 or 2 injections over
12 months. Although, 34.5% required 3–5 injections, and 14.7% needed 6–12 injections
during the 12-month study period. This suggests a need to understand factors such as ge-
netic influence that may predict treatment response and the development of individualized
treatment regimens [22].

Ranibizumab binds VEGF-A, impeding its action on VEGFR-1 and -2. VEGFR-1 and
-2 are encoded by FLT1 and KDR, respectively (Figure 1).
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Figure 1. Ranibizumab’s action on VEGF receptors (VEGFR).

Cobos et al. [23] found that FLT1 (VEGFR-1 coding gene) rs7993418 is associated with the
ranibizumab treatment response in nAMD patients. Furthermore, Beuselinck B. et al. [24,25]
and Dornbusch J. et al. [26] found that for sunitinib, used in the treatment of neoplastic
pathologies such as metastatic kidney cancer by inhibiting neoangiogenic processes, FLT1
(rs9582036) is a predictive biomarker of treatment response.

The VEGFR-2 receptor, encoded by the KDR gene, is a high-affinity receptor tyrosine-
kinase responsible for most of the angiogenic- and permeability-enhancing effects of VEGF-
A. Thus, KDR (VEGFR-2 coding gene) variants are candidates for a possible genetic influ-
ence susceptibility to anti-VEGF therapy [27]. Even Lazzeri et al. [27] found that the KDR
(VEGFR-2) rs2071559 genotype may be a predictive determinant of short- and long-term
functional and anatomical outcomes in ranibizumab-treated nAMD patients. Hermann
et al. [28] concluded that genetic polymorphisms in the KDR gene significantly influence
the visual outcome in patients receiving ranibizumab treatment for nAMD.

Among our patients, when diagnosed with mCNV and treated with ranibizumab,
ARMS2 (rs10490924) and CFH (rs1061170) SNPs were associated with response [29]. The
ARMS2 (rs10490924) G allele and GG genotype led to a better response to ranibizumab at
the 6-month follow-up. In contrast, the CFH (rs1061170) T allele and TT genotype were
associated with higher rates of BCVA worsening at the 1-month follow-up.

In summary, ranibizumab is used in the treatment of high myopia and CNV patients.
It binds VEGF-A, impeding its binding to VEGFR-1 and -2, encoded the by FLT1 and
KDR genes. Thus, the genetic polymorphisms in both genes previously associated with
interindividual differences in drug responses may also affect the ranibizumab response
in mCNV.

This study aimed to evaluate the association of SNPs in the VEGFR (VEGFR-1 (FLT-1)
and VEGFR-2 (KDR)) coding genes with the response rate to ranibizumab in patients
with mCNV.

2. Materials and Methods

In this study, we assessed the same cohort of patients as the previous study by
Blánquez-Martínez et al. [29] but with a 12-month follow-up period.
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In summary, we carried out a retrospective study, recruiting patients between 2014
and 2019 with high myopia and CNV treated with ranibizumab at our hospital. Among
these patients, we assessed the association of genetic polymorphisms in KDR and FLT1
with the response (BCVA improvement and worsening) to ranibizumab. We also recruited
a control group with high myopia but no CNV to take care of the association of the included
SNPs with the disease instead of the response to ranibizumab.

Specific characteristics about the inclusion/exclusion criteria, considered criteria for
high myopia diagnosis, patient management, data management including definitions of
BCVA “improvement” and “worsening”, and DNA extraction and genotyping have been
previously published in the study by Blánquez-Martínez et al. [29].

This study was conducted in accordance with the Declaration of Helsinki and ap-
proved by the Ethics Committee of Granada (Spain) “CEIM/CEI Provincial de Granada”
(approval code: 0085-N14; 26 May 2014).

2.1. Procedures for the Inclusion of Genetic Variants in the Study

We considered for inclusion those genetic variants in genes encoding the VEGFR-1
and -2 (KDR and FLT1) that had previously been proved to affect drug efficacy or toxicity.
To do this, we searched PharmGKB for information about both genes. We considered
for inclusion those genetic variants with a related annotation reporting the association
with drug responses (efficacy or toxicity) in at least one publication and excluded those
genetic variants with a minor allele frequency (MAF) lower than 10%. This means that we
considered for inclusion the KDR rs2071559, rs2239702, rs1870377, rs34231037, rs2305948,
and rs7667298 variants; and FLT1 rs664393, rs7993418, rs9554320, and rs9582036. Finally,
we excluded KDR rs34231037 since it was the only one with a known MAF lower than 10%
in the Iberian Peninsula population.

2.2. DNA Extraction and Genotyping

For genotyping, we took 4 saliva samples with sterile cotton swabs from each recruited
patient. We isolated the DNA using standard procedures and DNA extraction was carried out
following the method by Freeman et al. [30] with modifications by Gomez-Martín A. et al. [31].
We genotyped SNPs using KASP assay technology (LGC Genomics, Hoddesdon, Hertford-
shire, UK) following the manufacturer’s instructions and these were analyzed with the
KlusterCaller Software (LGC Genomics, Hoddesdon, Hertfordshire, UK). The call rate for all
tested SNPs was >98%. Quality control for the genotyping results was achieved with negative
controls and randomly selected samples included as duplicates.

2.3. Statistical Analysis

First, we carried out a descriptive analysis of the clinical parameters (Table 1) and
calculated the distribution (number of patients and percentage) of genotypes and the minor
allele frequency (MAF) of the included SNPs for both the control and study groups (Table 2).
Then, we studied the Hardy–Weinberg (H-W) equilibrium of each SNP by group and for
the total number of patients, and we performed an LD analysis of the genetic variants in
each gene. Finally, the distribution of genotypes between the control and study groups was
compared to assess the association of each SNP with CNV.

The main aim was to study the association of included SNPs and BCVA improvement
or worsening at the 12-month follow-up. In this regard, we carried out both allele and
genotype comparison analyses. In the genotype analysis, we used each genetic model
(recessive, dominant, co-dominant, and log-additive). We also performed a haplotype
association study.
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Table 1. Baseline and follow-up descriptive analysis.

Variable
Ranibizumab

Mean ± SD or n (%)

Study Control

Baseline characteristics

Total eyes (n) 112 219
Mean age (years) 57.5 ± 13.9 57.5 ± 15.1
Sex (Male:Female; %) 25:75 32:68
Mean SERE (Diopters) 12.1 ± 5.4 12.3 ± 4.9
Mean AL (mm) 28.8 ± 2.1 28.3 ± 1.9

Affected eye
RE 61 (54.5)
LE 51 (45.5)

CNV Location
Subfoveal 30 (26.8)
Juxtafoveal 74 (66.1)
Extrafoveal 8 (7.1)

Previous treatment
None 103 (92)
LP 8 (7.1)
PDT 1 (0.9)

BCVA (logMAR) at BL 0.62 ± 0.48

12-month follow-up characteristics

BCVA (logMAR) 0.34 ± 0.38
BCVA change (logMAR) −0.28 ± 0.37

BCVA improvement:
Improvement 81 (72.3)
Non improvement 24 (21.4)
Worsening 7 (6.3)

SERE = spherical equivalent refractive error; BCVA = best-corrected visual acuity; BL: baseline; CNV = choroidal
neovascularization; AL = axial length; LE = left eye; logMAR = logarithm of the minimum angle of resolution;
LP = laser photocoagulation; PDT = photodynamic therapy; RE = right eye; SD = standard deviation.

We used the Chi-square test or Fischer exact test. We calculated the odds ratio (OR) and
p-values. p-values < 0.05 were considered statistically significant. The Bayesian information
criterion (BIC) and Akaike information criterion (AIC) were calculated for each genetic
model and SNP–response association study.

The descriptive analysis (Table 1), MAFs, genotypic distribution, and its comparison
among groups (Table 2) were performed using R commander. The association studies and
H–W equilibrium analysis were conducted using the SNPstats online tool [32].

The sample size calculation was based on that shown in the previous research article
evaluating the influence of VEGFR variants on ranibizumab response in non-high myopia
patients [23–28]. Furthermore, we recruited the total number of patients with high myopia
and treated with ranibizumab in our hospital for five years. Both the sample size and statis-
tical influence of SNPs on genetic diseases were studied in several works that investigated
the impact on pathological phenotypes [33–36].
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Table 2. Genotype distribution, minor allele frequency, and Hardy–Weinberg equilibrium analysis for each studied SNP in our population.

SNP

TOTAL
n = 215

Control Group
n = 116

Study Group
n = 99

Control vs.
Study

Genotypes
n (%) MAF H-W

Genotypes
n (%) MAF H-W

Genotypes
n (%) MAF H-W p-Value

Wt Het Hom Wt Het Hom Wt Het Hom

KDR G > A 114 90 11
0.261 0.29

59 51 6
0.272 0.35

55 39 5
0.247 0.79 0.783rs2239702 (53.02) (41.86) (5.12) (50.9) (44.0) (5.2) (55.6) (39.4) (5.1)

KDR C > T 166 48 1
0.116 0.32

92 24 0
0.103 0.61

74 24 1
0.131 1 0.445rs2305948 (77.21) (22.33) (0.47) (79.3) (20.7) (0.0) (74.7) (24.2) (1.0)

KDR C > T 52 115 48
0.491 0.34

26 66 24
0.491 0.19

26 49 24
0.490 1 0.555rs7667298 (24.19) (53.49) (22.33) (22.4) (56.9) (20.7) (26.3) (49.5) (24.2)

KDR T > A 125 79 11
0.235 0.85

63 45 8
0.263 1

62 34 3
0.202 0.76 0.289rs1870377 (58.14) (36.74) (5.12) (54.3) (38.8) (6.9) (62.6) (34.3) (3.0)

KDR C > T 51 116 48
0.493 0.28

25 68 23
0.491 0.10

26 48 25
0.495 0.84 0.329rs2071559 (23.72) (53.95) (22.33) (21.6) (58.6) (19.8) (26.3) (48.5) (25.3)

FLT1 C > T 183
(85.12)

31 1
0.077 1

96 19 1
0.091 1

87 12 0
0.061 1 0.430rs664393 (14.42) (0.47) (82.8) (16.4) (0.9) (87.9) (12.1) (0.0)

FLT1 A > G 128 80 7
0.219 0.23

68 43 5
0.228 0.79

60 37 2
0.207 0.23 0.639rs7993418 (59.53) (37.21) (3.26) (58.6) (37.1) (4.3) (60.6) (37.4) (2.0)

FLT1 C > A 73 103 39
0.421 0.78

33 65 18
0.435 0.19

40 38 21
0.404 0.06 0.035rs9554320 (33.95) (47.91) (18.14) (28.4) (56.0) (15.5) (40.4) (38.4) (21.2)

FLT1 A > C 100 98 17
0.307 0.34

51 56 9
0.319 0.29

49 42 8
0.293 1 0.684rs9582036 (46.51) (45.58) (7.91) (44.0) (48.3) (7.8) (49.5) (42.4) (8.1)

SNP = single nucleotide polymorphism; Wt = wildtype genotype; Het = heterozygous genotype; Hom = homozygous genotype; MAF = minor allele frequency; H-W = p-value for the
Hardy–Weinberg equilibrium analysis.
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3. Results

In this study, we assessed the same cohort of patients published by Blánquez-Martínez
et al. [29], including new genetic variants and extending the follow-up period to 12 months.

As commented in this previous study [29], we recruited n = 100 patients and n = 113 eyes
diagnosed with high myopia and CNV that were treated with ranibizumab. We did not find
an adequate DNA concentration for genotyping in one patient (n = 1 eye). Finally, n = 99
patients and n = 112 eyes were included in the study. Among the patients in the study
group, 75% were women, with a mean age of 57.5 ± 13.9 years. Most of the studied eyes
showed a juxta foveal CNV location (66.1%) and were not previously treated with LP/PDT
(92%). On the other hand, n = 30 (26.8%) and n = 8 (7.1%) eyes presented a sub-foveal and
extra-foveal location, respectively, and n = 8 (7.1%) had been treated with LP and n = 1
(0.9%) with PDT. The mean BCVA (logMAR) at baseline was 0.62 ± 0.48 and 0.34 ± 0.38 at
the 12-month follow-up.

Regarding the control group, we recruited n = 116 patients and n = 219 eyes. In this
group, n = 7 eyes could not be assessed. Among them, in 4 patients (n = 4 eyes), we
could not obtain an adequate DNA concentration to investigate the needed genotypes; in
n = 2 patients (n = 2 eyes), saliva samples were lost; in and 1 patient (n = 1 eye), mCNV was
diagnosed one month after being recruited. This patient was transferred from the control
to the treatment group.

The baseline characteristics of the recruited patients (study and control group) and the
follow-up characteristics of the study group are shown in Table 1.

3.1. Genotypic Distribution, H–W Equilibrium, Association of Genetic Variants with High Myopia
and CNV, and Linkage Disequilibrium Analysis

Among the included genetic variants, FLT1 C > T (rs664393) was the only one that
showed a minor allele frequency (MAF) lower than 0.1, with no patients carrying the
recessive homozygous genotype in the study group. None of the studied SNPs showed
significant differences in the H–W equilibrium analysis, and the FLT1 C > A (rs9554320)
was the only one that showed differences in the comparison of the genotypic distribution
between the control and study groups (Table 2).

In the linkage disequilibrium (LD) analysis, regarding the FLT1 variants, we found that
rs664393 was not linked to any other variant; however, three other included variants were
linked among them (D’ > 0.97; p < 0.001) (Figure S1). Among the KDR variants, rs2305948
was not linked to any other variant and the other four variants were linked among them
(p < 0.01) (Figure S2).

3.2. Association of Genetic Polymorphisms with Response to Ranibizumab
3.2.1. Genotype Association Study with Response

In the association study of the genotypes in FLT1 with the response to ranibizumab
(Table 3), we found that the FLT1 (rs9582036) CC genotype was associated with lower rates
of BCVA improvement at the 12-month follow-up (recessive model: CC vs. CA or AA;
OR = 0.2; 95%CI = 0.04–0.9; p = 0.032). On the other hand, we did not find a significant
association between the FLT1 (rs9582036) CC genotype with higher rates of worsening.
Additionally, in FLT1, we found that the FLT1 (rs7993418) AA genotype was associated
with higher rates of worsening (dominant model: AA vs. AG or GG; p = 0.013). Finally, we
found no significant association of FLT1 (rs9554320) with BCVA improvement or worsening
at the 12-month follow-up. We do not provide results about FLT1 (rs664393) since we did
not identify patients who were carrying the recessive homozygous genotype.
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Table 3. Association study of FLT1 genotypes with BCVA improvement/worsening at 12 months.

SNP Genotype
Improvement

YES
n (%)

NO
n (%)

Genetic Model
(Reference) OR (95%CI) p-Value AIC BIC

FLT1 A > G
rs7993418

A/A 50 (61.7) 18 (58.1) Codominant (AA) a 1.11 (0.47–2.62)
0.770 137.6 145.8G/A 30 (37) 12 (38.7) Codominant (AA) b 2.78 (0.16–46.78)

G/G 1 (1.2) 1 (3.2) Dominant (AA) 1.16 (0.50–2.70) 0.720 136 141.4
Recessive (GG) 0.38 (0.02–6.19) 0.500 135.7 141.1
Log-additive 0.82 (0.38–1.78) 0.610 135.9 141.3

FLT1 C > A
rs9554320

C/C 33 (40.7) 11 (35.5) Codominant (CC) c 1.16 (0.45–3.01)
0.820 137.7 145.9C/A 31 (38.3) 12 (38.7) Codominant (CC) d 1.41 (0.48–4.17)

A/A 17 (21) 8 (25.8) Dominant (CC) 1.25 (0.53–2.95) 0.610 135.9 141.3
Recessive (AA) 0.76 (0.29–2.01) 0.590 135.8 141.3

Log-additive 0.84 (0.49–1.44) 0.530 135.7 141.2

FLT1 A > C
rs9582036

A/A 41 (50.6) 15 (48.4) Codominant (AA) e 0.81 (0.33–1.99)
0.091 133.3 141.5C/A 37 (45.7) 11 (35.5) Codominant (AA) f 4.56 (0.97–21.44)

C/C 3 (3.7) 5 (16.1) Dominant (AA) 1.09 (0.48–2.50) 0.830 136.1 141.5
Recessive (CC) 0.20 (0.04–0.90) 0.032 131.6 137
Log-additive 0.69 (0.36–1.33) 0.270 134.9 140.4

SNP Genotype
Worsening

YES
n (%)

NO
n (%) Genetic model OR (95%CI) p-value AIC BIC

FLT1 A > G
rs7993418

A/A 6 (100) 62 (58.5) Codominant (AA) g NA (0.00-NA)
0.045 46.6 54.7G/A 0 (0) 42 (39.6) Codominant (AA) h NA (0.00-NA)

G/G 0 (0) 2 (1.9) Dominant (AA) NA (0.00-NA) 0.013 44.6 50
Recessive (GG) 0.00 (0.00-NA) 0.640 50.6 56
Log-additive 0.00 (0.00-NA) 0.013 44.6 50

FLT1 C > A
rs9554320

C/C 3 (50) 41 (38.7) Codominant (CC) i 0.98 (0.19–5.12)
0.210 49.7 57.8C/A 3 (50) 40 (37.7) Codominant (CC) j NA (0.00-NA)

A/A 0 (0) 25 (23.6) Dominant (CC) 1.59 (0.31–8.23) 0.580 50.5 55.9
Recessive (AA) 0.00 (0.00-NA) 0.077 47.7 53.1

Log-additive 0.51 (0.15–1.77) 0.260 49.5 55

FLT1 A > C
rs9582036

A/A 4 (66.7) 52 (49.1) Codominant (AA) k 1.77 (0.31–10.11)
0.510 51.4 59.6C/A 2 (33.3) 46 (43.4) Codominant (AA) l NA (0.00-NA)

C/C 0 (0) 8 (7.5) Dominant (AA) 2.08 (0.36–11.83) 0.400 50.1 55.5
Recessive (CC) 0.00 (0.00-NA) 0.340 49.9 55.3
Log-additive 0.47 (0.10–2.27) 0.310 49.8 55.2

SNP: Single Nucleotide Polymorphism; OR: Odds Ratio; CI: Confidence Interval; AIC: Akaike information
criterion; BIC: Bayesian information criterion; NA: Not applicable; a: A/A vs. G/A; b: A/A vs. G/G; c: C/C vs.
C/A; d: C/C vs. A/A; e: A/A vs. A/C; f: A/A vs. C/C; g: A/A vs. G/A; h: A/A vs. G/G; i: C/C vs. C/A; j:
C/C vs. A/A; k: A/A vs. C/A; l: A/A vs. C/C; bold: p-value < 0.05 of genetic models explaining the association
between SNP and response.

About the KDR gene (Table 4), KDR (rs2305948) showed a significant association with
BCVA improvement in the log-additive model (p = 0.049). Based on the other genetic
models, it seems that the CC genotype is related to higher rates of BCVA improvement
(dominant model: CC vs. CT or TT; OR = 0.35; 95%CI = 0.11–1.11; p = 0.055). Additionally,
KDR (rs2071559) was associated with BCVA improvement among ranibizumab-treated
patients (over-dominant model: OR = 2.91; 95%CI= 1.19–7.08; p = 0.015). Regarding KDR,
among our patients, the KDR (rs2239702) GG genotype was associated with lower rates
of BCVA worsening (dominant model: GG vs. GA or AA; OR= 0.15; 95%CI= 0.02–1.31);
p = 0.044).

Tables 3 and 4 show the detailed results of the association study with the response
(BCVA improvement or worsening) of all SNPs in KDR and FLT1 included in this study.
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Table 4. Association study of KDR genotypes with BCVA improvement/worsening at 12 months.

SNP Genotype
Improvement

YES
n (%)

NO
n (%)

Genetic Model
(Reference) OR (95%CI) p-Value AIC BIC

KDR
G > A

rs2239702

G/G 44 (54.3) 18 (58.1) Codominant (GG) a 0.89 (0.38–2.10)
0.890 137.9 146.1G/A 33 (40.7) 12 (38.7) Codominant (GG) b 0.61 (0.06–5.85)

A/A 4 (4.9) 1 (3.2) Dominant (GG) 0.86 (0.37–1.98) 0.720 136 141.4
Recessive (AA) 1.56 (0.17–14.52) 0.690 136 141.4

Log-additive 1.18 (0.57–2.43) 0.660 135.9 141.4

KDR
C > T

rs2305948

C/C 57 (70.4) 27 (87.1) Codominant (CC) c 0.37 (0.12–1.17)
0.140 134.1 142.3T/C 23 (28.4) 4 (12.9) Codominant (CC) d 0.00 (0.00-NA)

T/T 1 (1.2) 0 (0) Dominant (CC) 0.35 (0.11–1.11) 0.055 132.5 137.9
Recessive (TT) NA (0.00-NA) 0.420 135.5 140.9
Log-additive 2.82 (0.91–8.76) 0.049 132.3 137.7

KDR
C > T

rs7667298

C/C 19 (23.5) 10 (32.3) Codominant (CC) e 0.48 (0.17–1.31)
0.200 134.9 143.1T/C 44 (54.3) 11 (35.5) Codominant (CC) f 1.06 (0.36–3.13)

T/T 18 (22.2) 10 (32.3) Dominant (CC) 0.64 (0.26–1.60) 0.350 135.3 140.7
Recessive (TT) 0.60 (0.24–1.50) 0.280 135 140.4
Log-additive 0.98 (0.55–1.74) 0.930 136.1 141.6

KDR
T > A

rs1870377

T/T 48 (59.3) 23 (74.2) Codominant (TT) g 0.58 (0.23–1.46)
0.130 134.1 142.2T/A 29 (35.8) 8 (25.8) Codominant (TT) h 0.00 (0.00-NA)

A/A 4 (4.9) 0 (0) Dominant (TT) 0.51 (0.20–1.27) 0.140 133.9 139.3
Recessive (AA) NA (0.00-NA) 0.100 133.5 138.9

Log-additive 2.05 (0.88–4.79) 0.080 133.1 138.5

KDR
C > T

rs2071559

C/C 19 (23.5) 12 (38.7) Codominant (CC) i 0.32 (0.12–0.90)
0.051 132.2 140.3T/C 44 (54.3) 9 (29) Codominant (CC) j 0.88 (0.31–2.53)

T/T 18 (22.2) 10 (32.3) Dominant (CC) 0.49 (0.20–1.18) 0.110 133.6 139.1
Recessive (TT) 0.60 (0.24–1.50) 0.280 135 140.4
Log-additive 1.10 (0.62–1.96) 0.730 136 141.5

Worsening

KDR
G > A

rs2239702

G/G 1 (16.7) 61 (57.5) Codominant (GG) k 0.17 (0.02–1.56)
0.100 48.2 56.4G/A 4 (66.7) 41 (38.7) Codominant (GG) l 0.07 (0.00–1.25)

A/A 1 (16.7) 4 (3.8) Dominant (GG) 0.15 (0.02–1.31) 0.044 46.7 52.2
Recessive (AA) 5.10 (0.48–54.45) 0.240 49.4 54.8

Log-additive 4.03 (1.06–15.28) 0.037 46.5 51.9

KDR
C > T

rs2305948

C/C 5 (83.3) 79 (74.5) Codominant (CC) m 1.65 (0.18–14.74)
0.850 52.5 60.6T/C 1 (16.7) 26 (24.5) Codominant (CC) n NA (0.00-NA)

T/T 0 (0) 1 (0.9) Dominant (CC) 1.71 (0.19–15.29) 0.610 50.5 56
Recessive (TT) 0.00 (0.00-NA) 0.740 50.7 56.1
Log-additive 0.58 (0.07–4.90) 0.590 50.5 55.9

KDR
C > T

rs7667298

C/C 0 (0) 29 (27.4) Codominant (CC) o 0.00 (0.00-NA)
0.160 49.1 57.2T/C 4 (66.7) 51 (48.1) Codominant (CC) p 0.00 (0.00-NA)

T/T 2 (33.3) 26 (24.5) Dominant (CC) 0.00 (0.00-NA) 0.054 47.1 52.5
Recessive (TT) 1.54 (0.27–8.89) 0.640 50.6 56
Log-additive 2.10 (0.61–7.19) 0.220 49.3 54.7

KDR
T > A

rs1870377

T/T 4 (66.7) 67 (63.2) Codominant (TT) q 1.04 (0.18–5.99)
0.800 52.3 60.5T/A 2 (33.3) 35 (33) Codominant (TT) r NA (0.00-NA)

A/A 0 (0) 4 (3.8) Dominant (TT) 1.16 (0.20–6.65) 0.860 50.8 56.2
Recessive (AA) 0.00 (0.00-NA) 0.500 50.3 55.8

Log-additive 0.78 (0.16–3.77) 0.750 50.7 56.1

KDR
C > T

rs2071559

C/C 2 (33.3) 29 (27.4) Codominant (CC) s 0.84 (0.15–4.90)
0.170 49.2 57.3T/C 4 (66.7) 49 (46.2) Codominant (CC) t NA (0.00-NA)

T/T 0 (0) 28 (26.4) Dominant (CC) 1.33 (0.23–7.64) 0.750 50.7 56.1
Recessive (TT) 0.00 (0.00-NA) 0.059 47.2 52.7
Log-additive 0.52 (0.16–1.76) 0.280 49.6 55.1

SNP = single nucleotide polymorphism; OR = odds Ratio; CI = confidence Interval; AIC = Akaike information
criterion; BIC = Bayesian information criterion; NA = not applicable; a: G/G vs. G/A; b: G/G vs. A/A; c: C/C vs.
T/C; d: C/C vs. T/T; e: C/C vs. T/C; f: C/C vs. T/T; g: T/T vs. T/A; h: T/T vs. A/A; i: C/C vs. T/C; j: C/C vs.
T/T; k: G/G vs. G/A; l: G/G vs. A/A; m: C/C vs. T/C; n: C/C vs. T/T; o: C/C vs. T/C; p: C/C vs. T/T; q: T/T
vs. T/A; r: T/T vs. A/A; s: C/C vs. T/C; t: C/C vs. T/T; bold: p-value < 0.05 of genetic models explaining the
association between SNP and response.
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3.2.2. Alleles Association Study with Response

In the allele association study with the response, we found that the KDR (rs2239702) A
allele was associated with higher rates of BCVA worsening (OR = 3.33; 95%CI = 1.03–10.78;
p = 0.035) (Table 5). In contrast, it was the only SNP found to be related to ranibizumab
response (BCVA improvement or worsening) among our patients. On the other hand,
the KDR (rs2305948) T allele and (rs1870377) A allele showed close-to-significant results
(p = 0.073 and p = 0.097, respectively) for their association with BCVA improvement and
ranibizumab treatment.

Table 5. Alleles association study with BCVA improvement/worsening at 12 months.

SNP
Major >
Minor

Allele
Improvement Worsening

YES
n (%)

NO
n (%)

OR
(95%CI) p-Value YES

n (%)
NO

n (%)
OR

(95%CI) p-Value

FLT1
rs664393

C > T

T 10 (6.2) 4 (6.5) 0.95
(0.29–3.16) 1 Fischer

1 (8.3) 13 (6.1) 1.39
(0.17–11.62)

0.548
FischerC 152 (93.8) 58 (93.5) 11 (91.7) 199 (93.9)

FLT1
rs7993418

A > G

G 32 (19.8) 14 (22.6) 0.84
(0.41–1.72) 0.639

0
(0) 46 (21.7) 0

(0.0-NA)
0.133

Fischer
A 130 (80.2) 48 (77.4) 12 (100) 166 (78.3)

FLT1
rs9554320

C > A

A 65 (40.1) 28 (45.2) 0.81
(0.45–1.47) 0.494

3 (25.0) 90 (42.5) 0.45
(0.12–1.72)

0.367
FischerC 97 (59.9) 34 (54.8) 9 (75.0) 122 (57.5)

FLT1
rs9582036

A > C

C 43 (26.5) 21 (33.9) 0.71
(0.38–1.33) 0.277

2 (16.7) 62 (29.2) 0.48
(0.1–2.27)

0.516
FischerA 119 (73.5) 41 (66.1) 10 (83.3) 150 (70.8)

KDR
rs2239702

G > A

A 41
(25.3) 14 (22.6) 1.16

(0.58–2.32) 0.671
6 (50.0) 49 (23.1) 3.33

(1.03–10.78) 0.035
G 121 (74.7) 48 (77.4) 6 (50.0) 163 (76.9)

KDR
rs2305948

C > T

T 25 (15.4) 4 (6.5) 2.65
(0.88–7.94) 0.073

1 (8.3) 28 (13.2) 0.6
(0.07–4.81)

1
FischerC 137 (84.6) 58 (93.5) 11 (91.7) 184 (86.8)

KDR
rs7667298

T > C

C 82 (50.6) 31 (50.0) 1.03
(0.57–1.84) 0.934

4 (33.3) 109 (51.4) 0.47
(0.14–1.62)

0.251
FischerT 80 (49.4) 31 (50.0) 8 (66.7) 103 (48.6)

KDR
rs1870377

T > A

A 37 (22.8) 8 (12.9) 2
(0.87–4.57) 0.097

2 (16.7) 43 (20.3) 0.79
(0.17–3.72)

1
FischerT 125 (77.2) 54 (87.1) 10 (83.3) 169 (79.7)

KDR
rs2071559

C > T

C 82 (50.6) 33 (53.2) 0.9
(0.5–1.62) 0.727

8 (66.7) 107 (50.5) 1.96
(0.57–6.71)

0.376
FischerT 80 (49.4) 29 (46.8) 4 (33.3) 105 (49.5)

OR = odds ratio; CI = confidence interval; NA = not applicable; bold = p < 0.05.

3.3. Haplotype Association Study with Response

In the haplotype association analysis with response to ranibizumab, we found that no
haplotypes for FLT1 were associated with BCVA improvement nor with worsening (Table S1).
For KDR, and according to the allele association study with the response, we found the most
common haplotype (rs2239702 G; rs2305948: C; rs7667298: C; rs1870377: T and rs2071559:
T) was associated with lower rates of worsening (OR= 0.09; 95% CI= 0.01–0.86; p = 0.039)
compared to the ACTTC haplotype, carried by 21.9% of the patients (Table S2).

4. Discussion

Ranibizumab is an anti-VEGF drug used in the treatment of mCNV among other
pathologies. Many genetic polymorphisms have been associated with the response to
this drug. Among AMD patients, CFH (rs1061170) and ARMS2 rs10490924 were re-
lated to interindividual differences in the response to anti-VEGF drugs [37,38]. Addi-
tionally, among AMD patients, genetic polymorphisms in VEGFA (rs3025000, 833069, and
rs699947) [37,39–41], NRP1 (rs2070296) [42], and CXCL8 (rs4073) [27] are associated with
interindividual differences in the response to ranibizumab. Polypoidal choroidal neovas-
cularization is usually considered a sub-type of CNV. In patients with CNV and/or PCV,
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VEGFA (rs2010963) [43], HTRA1 (rs11200638) [44], and especially CFH (rs1061170) and
ARMS2 (rs10490924) [45] were also found to be associated with ranibizumab efficacy.

The influence of genetic polymorphisms on the ranibizumab response among mCNV
patients has not been widely studied. Among our patients, we found in a previous
study [29] that CFH (rs1061170) and ARMS2 (rs10490924) are related to ranibizumab
efficacy at the 1- and 6-month follow-up. The CFH (rs1061170) C allele was associated
with lower BCVA worsening and BCVA improvement, the TT genotype was associated
with BCVA worsening, and the CC genotype was associated with BCVA improvement.
About ARMS2 (rs10490924), the G allele and GG genotype showed an association with
BCVA improvement.

On the other hand, in this previous study, we still found patients that did not
meet the expected progress of the illness based on our results. Thus, we considered a
study of the genetic polymorphism in KDR and FLT1 considering a larger follow-up time
(12 months). SNPs in these genes have not been previously studied in mCNV patients
treated with ranibizumab.

This study had some limitations. It is a retrospective observational study; this means
that we did not assess the clinical impact of the studied genetic polymorphisms on the
ranibizumab response in daily clinical conditions. However, this would not be ethical since
these genetic polymorphisms have not been associated with differences in the ranibizumab
response. We recruited a control group without collecting data about BCVA improve-
ment/worsening because this was only to control the possible association of genetic poly-
morphisms with mCNV, not with ranibizumab efficacy. We recruited n= 100 patients; the
study cohort is low, and it should be increased in further studies. On the other hand, this
was the total number of patients with mCNV treated with ranibizumab in our hospital in
a 5-year period. In the same regard, we did not perform a multivariant analysis consid-
ering the combined genetic and clinical parameters. We did not perform a multiple test
analysis since it would increase the risk of type I errors and the low number of recruited
patients did not allow a Bonferroni correction to be performed. Regarding the assessment
of eyes/patients, we included both eyes of patients with bilateral treatment considering
that they might progress in a different way depending on the expression/silencing of
PGx variants.

Our results still support the need for further studies, considering a clinical trial including
combined PGx, clinical parameters (e.g., previous treatments such as LP and PDT), in a
multivariant analysis, and in a larger cohort that includes patients from different populations.

4.1. FLT1 Genetic Polymorphisms and Ranibizumab

FLT1 (fms-related receptor tyrosine kinase 1) is a protein-coding gene encoding a
member of the VEGFR family that binds to VEGFR-A and VEGFR-B with an important role
in angiogenesis and vasculogenesis. This receptor is expressed in vascular endothelial and
placental trophoblast cells and peripheral blood monocytes. Ranibizumab binds VEGFA;
thus, genetic variants in FLT1 may result in conformational changes in the receptor or
differences in VEGFR1 administration and expression. FLT1 (rs9582036) is an intron variant
and FLT1 (rs7993418) is a synonymous variant. Thus, in both cases, they may affect the
administration or expression of VEGFR1, affecting how VEGFA binds this receptor and, in
some way, how ranibizumab impedes the effect of VEGFA on VEGFR1.

Many genetic variants in FLT1 are associated with interindividual differences in the
response to different treatments, especially in oncological patients [24,25]; however, there
is only one study that has reported results about FLT1 SNPs’ influence on ranibizumab
efficacy [46]. In this study, Lotery et al. assessed the association of FLT1 (rs12877323),
among more than 450 SNPs in different genes with changes in the total retinal thickness
(TRT) at the 3-, 6-, 9-, and 12-month follow-up in AMD patients without finding significant
results. Among our patients, we did not study this SNP since this had not been previously
associated with any drug response.
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As commented above in the results section, among the included SNPs, we found a
significant association between two FLT1 variants (rs9582036, rs7993418) with ranibizumab
efficacy in mCNV at the 12-month follow-up in the genotype association study. Even
FLT1 (rs7993418) showed a significant association with ranibizumab response in the allele
association study (p = 0). In this regard, we did not find patients carrying the FLT1
(rs7993418) G allele and BCVA worsening.

As we can see (Table 2), none of these two SNPs showed differences between the study
and control group and there is a theoretical background supporting the correlation between
this gene and ranibizumab efficacy, thus FLT1 (rs9582036, rs7993418) may be considered a
genetic marker of ranibizumab efficacy in mCNV patients.

4.2. KDR Genetic Polymorphisms and Ranibizumab

KDR (kinase insert domain receptor) is another protein-coding gene encoding a mem-
ber of the VEGFR family. This receptor works as the main mediator of VEGF-induced
endothelial proliferation, survival, migration, tubular morphogenesis, and sprouting. The
KDR (rs2305948) is a missense variant and KDR (rs2239702) is an upstream gene variant.
As ranibizumab binds VEGFA, these variants may result in conformational changes or dif-
ferences in VEGFR1 administration and expression, respectively, leading to interindividual
differences in the response to ranibizumab.

KDR variants, similar to FLT1 variants, were also associated with interindividual differ-
ences in the response to oncological treatments [47–51] and also to clopidogrel response [52].
About ranibizumab, Lazzeri et al. [27] concluded that the KDR (rs2071559) CC genotype
revealed a better functional response as measured by the mean retinal sensitivity (p = 0.034)
in AMD patients. On the other hand, Smailhodzic et al. [37] did not find significant results
about the association of KDR (rs2071559, rs7671745) SNPs with ranibizumab response
at a 3-month follow-up, but the discrepancies with our results may be explained by the
follow-up period (3 vs. 12 months).

Among our patients, considering the 12-month follow-up period, we found that the
KDR (rs2305948) CC genotype was associated with BCVA improvement (log-additive
model: p-value= 0.049; dominant model: CC vs. CT or TT, OR= 0.35; 95%CI= 0.11–1.11;
p = 0.055). Additionally, the KDR (rs2239702) GG genotype was associated with lower rates
of BCVA worsening (dominant model: GG vs. GA or AA; OR= 0.15; 95%CI= 0.02–1.31;
p = 0.044).

Furthermore, in the allele association study with the response, we found some results
supporting this. The rs2239702 A allele was associated with higher rates of BCVA worsening
(p = 0.035), the rs2305948 T allele was almost associated with BCVA improvement (p = 0.073),
and the haplotype combining the rs2239702 A allele and rs2305948 C allele was related to
higher rates of worsening (p = 0.039).

The rs2305948 was the only variant not linked to any of the others included and it was
related to ranibizumab efficacy. Among the other SNPs in KDR included in the analysis,
they were linked among them and we observed different associations with ranibizumab
efficacy. Additionally, in the haplotypes study, we found that the most common haplotype
(rs2239702 G; rs2305948: C; rs7667298: C; rs1870377: T and rs2071559: T) was associated
with lower rates of BCVA worsening (OR = 0.09; 95% CI = 0.01–0.86; p = 0.039) compared to
the ACTTC haplotype, carried by 21.9% of patients. Because of this, we might consider the
ACTTC haplotype as a predictor of a worse response to ranibizumab, not a single analysis
of SNPs.

5. Conclusions

Based on our results, FLT1 (rs9582036, rs7993418) variants may be genetic markers
of ranibizumab efficacy in mCNV patients, and KDR (rs2305948, rs2239702) SNPs may be
single predictors of ranibizumab efficacy in mCNV patients; however, the analysis of the
ACTTC haplotype should be considered.
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association with response.
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