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Abstract

Objective

We aimed to identify a novel panel of biomarkers predicting renal function decline in type 2
diabetes, using biomarkers representing different disease pathways speculated to contrib-
ute to the progression of diabetic nephropathy.

Research Design and Methods

A systematic data integration approach was used to select biomarkers representing differ-
ent disease pathways. Twenty-eight biomarkers were measured in 82 patients seen at an

outpatient diabetes center in The Netherlands. Median follow-up was 4.0 years. We com-

pared the cross-validated explained variation (R?) of two models to predict eGFR decline,

one including only established risk markers, the other adding a novel panel of biomarkers.
Least absolute shrinkage and selection operator (LASSO) was used for model estimation.
The C-index was calculated to assess improvement in prediction of accelerated eGFR de-
cline defined as <-3.0 mL/min/1.73m?/year.

Results

Patients’ average age was 63.5 years and baseline eGFR was 77.9 mL/min/1.73m?. The
average rate of eGFR decline was -2.0 + 4.7 mL/min/1.73m?/year. When modeled on top
of established risk markers, the biomarker panel including matrix metallopeptidases, tyro-
sine kinase, podocin, CTGF, TNF-receptor-1, sclerostin, CCL2, YKL-40, and NT-proCNP
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improved the explained variability of eGFR decline (R? increase from 37.7% to 54.6%;
p=0.018) and improved prediction of accelerated eGFR decline (C-index increase from
0.835 to 0.896; p=0.008).

Conclusions

A novel panel of biomarkers representing different pathways of renal disease progression
including inflammation, fibrosis, angiogenesis, and endothelial function improved prediction
of eGFR decline on top of established risk markers in type 2 diabetes. These results need to
be confirmed in a large prospective cohort.

Introduction

The growing prevalence of type 2 diabetes is a great global health problem. Type 2 diabetes is
the leading cause of chronic kidney disease (CKD) in the United States and is associated with
high cardiovascular risk [1, 2]. Optimizing treatment has been shown to improve life expectan-
cy, reduce costs, and lower the risk of death in patients with type 2 diabetes [3, 4]. Despite im-
portant progress in improving therapy, many patients are still at risk for renal disease.

Early identification of patients with type 2 diabetes at risk for progressive renal function
loss during the early stages of disease may lead to better patient outcomes. In clinical practice,
estimated glomerular filtration rate (eGFR) and albuminuria are used to assess renal function
when gold-standard measured GFR is not feasible or practical. The search for novel biomark-
ers that improve risk prediction models on top of established risk markers has been a priority
of many researchers for many years. Various studies have assessed the performance of single
biomarkers representing a single, disease-associated pathway to predict progression of renal
function loss in type 2 diabetes [5, 6]. However, because type 2 diabetes is a multifactorial dis-
ease, several pathways involving pro-inflammatory, pro-fibrotic, and angiogenic processes,
among others, are activated during the course of the disease [7]. Given the complexity of the
multiple pathophysiological processes involved in progression of type 2 diabetes together
with the intra-individual variability of biomarkers, it is questionable if a single biomarker
may possess useful diagnostic and prognostic power. Alternatively, a combination of bio-
markers that capture different pathways of renal damage may provide a more realistic picture
of a patient’s actual pathophysiological status and hence may yield better assessment of dis-
ease prognosis performance.

Therefore, we aimed to identify a novel panel of biomarkers representing different disease
pathways that are speculated to contribute to the progression of renal disease in type 2 diabetes,
and to evaluate their combined predictive performance of accelerated renal function decline.

Research Design and Methods
Patients and methods

This observation cohort study was performed in Caucasian patients from Zwolle, The Nether-
lands, who participated in the PREvention of DIabetic ComplicaTIONS (PREDICTIONS)
study [8]. Patients aged 35-75 with type 2 diabetes with a documented duration of >5 years
were eligible for the PREDICTIONS study. Type 2 diabetes was defined according to World
Health Organization criteria [9]. A total of 82 patients were recruited in 2007-2008 and fol-
lowed for a median of 4.0 [1*!, 3™ quartile 3.7 to 4.4] years. Follow-up information on urinary
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albumin:creatinine ratio (UACR), serum creatinine, cholesterol, and glycated hemoglobin
(HbA,.) was obtained from electronic patient files from visits to the outpatient diabetes clinic
during their annual visit to the diabetes specialist.

Ethics Statement

The PREDICTIONS study was approved by the ethical review boards of the medical ethics
committees of the Isala Clinics in Zwolle and of the University Medical Center in Groningen,
The Netherlands and was conducted in accordance with the guidelines of the Declaration of
Helsinki. All patients gave written, informed consent.

Selection of biomarkers, sample collection, preparation, and
measurement

Twenty-eight biomarkers were selected for testing using three distinct approaches, namely a lit-
erature review [10], identification of molecular processes and pathways [7], and ranking of
consolidated Omics signatures [11]. A complete list of biomarkers is presented in Table 1, and
the biomarker selection procedure is described in S1 Appendix.

Fasting serum and plasma samples were stored at -80°C. All samples were stored for 4-5
years and did not undergo any freeze-thaw cycles. Biomarkers were assayed on baseline sam-
ples by enzyme-linked immunosorbent assay (ELISA) or multiplex assay by Biomarker Design
Forschungs GmbH (BDF), in Vienna, Austria, except for connective tissue growth factor
(CTGEF). CTGF was measured using specific antibodies (FibroGen Inc., San Francisco, USA)
directed against distinct epitopes in the amino-terminal fragment of CTGF, as described previ-
ously [12]. All assays were used according to manufacturer’s instructions. A complete list of as-
says, and information on stability and determination of limits of detection are available in S2
Appendix. All biomarker analyses were performed blinded, and the results were then reported
back to the study center for analysis.

Statistical analysis

Analyses were performed with SAS software (version 9.2; SAS Institute, Cary, NC) and R ver-
sion 3.0.2 [13] using the packages mice and glmnet [14, 15]. Data are presented as mean (stan-
dard deviation) or median [1%, 3¢ quartile] for skewed variables. Graphical techniques were
used to detect outliers. The natural logarithm of UACR and the binary logarithm of all bio-
markers were used to normalize their distributions. Log transformed variables were used in all
regression analysis. Values below the detection limit were set to the detection limit. Variables
with missing values were multiply imputed using chained equations [16]. Five of the twenty-
eight biomarkers had values with >10% missing or >25% below the detection limit were not
used in analysis. Details on our implementation of multiple imputation can be found in S3 Ap-
pendix. All p-values were two-tailed, and values < 0.05 were considered statistically significant.

The outcome of interest was eGFR decline, defined as the within-patient annual eGFR
slope. EGFR decline was calculated using a minimum of 3 serum creatinine measurements dur-
ing follow-up by fitting a straight line through the eGFR values using linear regression. The
eGFR value at each time-point was estimated using the 4-variable Modification of Diet in
Renal Disease (MDRD) Study Equation [17].

Statistical modeling consisted of several steps. First, established risk markers were selected
as best predictors of eGFR decline using least absolute shrinkage and selection operator
(LASSO) selection [18]. The LASSO is advantageous for small samples sizes because it places
restrictions on the absolute sizes of the regression coefficients in the model while optimally se-
lecting the subset of variables that best predicts the outcome. This restriction also controls for
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Table 1. Concentrations of biomarkers* and univariate and multivariable associations of single biomarkers with eGFR decline.

Concentrations

Univariate association

Multivariable association’

Pathway Biomarker Median [1%¢, 3" quartile] B 95% ClI p-value B 95% ClI p-value
Inflammation
Monocyte 316.2 [258.3, 386.4] -1.1 -3.6,1.5 0.41 0.1 -2.0,2.3 0.89
chemoattractant protein-
1 (CCL2) (pg/mL)
Tumor necrosis factor 3.8[3.1,6.7] -3.2 -5.2,-1.2 <0.01 2.1 -4.0,-0.3 0.03
receptor-1 (TNFR1)
(ng/mL)
Tumor necrosis factor 317.6 [248.3, 475.0] 2.4 -3.8,-0.9 <0.01 2.2 -4.6, 0.3 0.08
receptor-2 (TNFR2)
(pg/mL)
Chitinase 3-like 1 (YKL- 36.5[21.1, 87.1] -1.1 -1.9,-0.2 0.01 -0.5 -1.3,0.3 0.20
40) (ng/mL)
Chemokine (C-X-C motif) 80.0[71.1,94.7] 1.6 -1.7,4.8 0.33 -0.2 -3.0,2.6 0.88
1 (CXCL1) (pg/mL)
Chemokine (C-X-C motif) 80.6 [58.1, 121.7] -0.5 -1.7,0.6 0.35 -0.5 -1.4,0.5 0.35
10 (CXCL10) (pg/mL)
Fibrosis
Connective tissue growth 1.0[0.8, 1.5] -3.4 -7.8,0.3 0.07 -3.8 -7.7,0.1 0.05
factor (CTGF) (nmol/L)
Matrix metallopeptidase 1 767.4[470.0, 1315.5] -0.4 -1.4,0.7 0.49 0.2 -0.8,1.2 0.72
(MMP1) (pg/mL)
Matrix metallopeptidase 2 38.3 [36.1, 40.0] 9.6 0.4,18.7 0.04 5.6 -1.9,13.1 0.14
(MMP2) (ng/mL)
Matrix metallopeptidase 7 1.6 [0.6, 3.0] -1.4 -2.1,-0.7 <0.01 -0.8 -1.5, -0.04 0.04
(MMP7) (ng/mL)
Matrix metallopeptidase 8 2.4[1.5,4.8] 0.1 -0.8,0.7 0.88 0.3 -0.3, 0.9 0.34
(MMP8) (ng/mL)
Matrix metallopeptidase 120.0 [108.5, 142.4] -1.2 -3.0,0.7 0.23 -0.7 -2.4,1.0 0.40
13 (MMP13) (pg/mL)
Podocin (NPHS2) 0.9[0.3, 1.2] -2.9 -5.0,-0.7 0.01 -0.9 -3.0,1.3 0.44
(ng/mL)
Leptin (LEP) (ng/mL) 15.9 [10.1, 33.3] 0.2 -0.6, 0.9 0.66 -0.3 -1.1,0.6 0.54
Angiogenesis
Endostatin (Frag. 7.6[6.3,9.7] -2.6 -5.0,-0.3 0.03 -1.3 -4.4,1.7 0.39
COL18A1) (pmol/L)
Tyrosine kinase (TEK) 666.9 [315.7, 1275.8] -0.6 -1.6,0.3 0.18 -0.9 -1.7,-0.1 0.03
(pg/mL)
Vascular endothelial 66.7 [30.6, 155.9] -0.5 -1.1,0.2 0.13 -0.2 -0.8,0.4 0.49
growth factor-A
(VEGF-A) (pg/mL)
Hepatocyte growth factor 65.9 [35.0, 120.3] -0.7 -1.5,0.2 0.11 -0.2 -0.9,0.5 0.61
(HGF) (pg/mL)
Endothelial Dysfunction
Amino terminal pro C- 2.9[2.3,4.3] -1.3 -2.9,0.3 0.12 -0.7 -2.4,0.9 0.38
type natriuretic peptide
(NT-proCNP)(pmol/L)
Mineral metabolism
Fibroblast growth factor 4.0[2.6, 5.5] -0.8 -2.1,0.5 0.24 -0.2 -1.3,1.0 0.78
23 (FGF23) (pmol/L)
Sclerostin (SOST) 42.7 [33.4, 52.2] -0.1 24,23 0.96 0.3 -1.6,2.3 0.75
(pmol/L)
Lipid metabolism
(Continued)
PLOS ONE | DOI:10.1371/journal.pone.0120995 May 14,2015 4/16
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Table 1. (Continued)

Concentrations Univariate association Multivariable associationt
Pathway Biomarker Median [1%¢, 3" quartile] B 95% ClI p-value B 95% ClI p-value
Zinc-binding alpha- 13.4 9.0, 20.2] -1.1 -2.5,0.4 0.14 -0.6 -1.8,0.7 0.37
2-glycoprotein 1 (AZGP1)
(ng/mL)
Glomerular damage
Growth hormone 1 (GH1) 330.8 [63.4, 994.2] -0.2 -0.7,0.3 0.38 -0.3 -0.7, 0.1 0.14
(pg/mL)

*Concentrations of nephrin (NPHS1), neuropilin-1 (NRP1), interleukin-1 alpha (IL1A), interleukin-1 beta (IL1B), and epidermal growth factor (EGF) were
missing in 10% of observations or undetectable in >25% of observations, and these biomarkers were therefore not used in analysis.

TAdjusted for established risk markers: baseline UACR, current vs. never smoker, sex, systolic blood pressure, use of oral diabetic medication, diastolic
blood pressure, and baseline eGFR.

doi:10.1371/journal.pone.0120995.1001

multicollinearity. LASSO involves the estimation of a tuning parameter controlling the amount
of restriction, which was optimized by minimizing the leave-one-out cross-validated mean
squared error of prediction. The established risk markers listed in Table 2 were considered as
potential predictors of eGFR decline. All established risk markers were first included in a multi-
variable model using LASSO regression. The best predictors of eGFR decline were then identi-
fied from the multivariable model and are reported in the results section. Second, univariate
linear models were fit for each of the novel biomarkers to assess a single biomarker association
with eGFR decline. Third, multivariable models were then fit by linear regression with single
novel biomarkers adjusting for the selected established risk markers. Fourth, a multivariable

Table 2. Baseline characteristics in patients with type 2 diabetes (n = 82).

Risk marker Baseline values
Age (years) 63.5+9.4
Male Gender (%) 44 (53.7)
Current smoker (%) 8 (9.6)
Body mass index (kg/m°) 324+6.3
Systolic blood pressure (mmHg) 135.2+16.3
Diastolic blood pressure (mmHg) 72.7£10.5
Duration of diabetes (years) 15.7+7.3
Baseline laboratory measurements
UACR (mg/mmol) 1.2[0.5, 57.7]
Serum creatinine (umol/L) 88.4 £ 33.5
eGFR (mL/min/1.73m?) 77.9+22.6
HDL Cholesterol (mmol/L) 1.3+04
LDL Cholesterol(mmol/L) 2.0+0.6
HbA ¢ (%) 7713
Medication use
RAAS* (%) 27 (42.9)
Insulin* (%) 58 (92.1)
Oral diabetic medication* (%) 35 (55.6)

Data are reported as mean * standard deviation or number (percent) or median [1%!, 3" quartile].
*Data available for n = 63.

doi:10.1371/journal.pone.0120995.t002
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model including the selected established risk markers and all biomarkers was fit using the
LASSO selection in order to find the best subset of predictors.

Bootstrap validation was performed to determine the validity of the model to assess the abil-
ity of the biomarker panels to predict renal function decline. The bootstrap (N = 1000) was
used to evaluate selection probabilities of each biomarker, and to construct 95% confidence in-
tervals and two-sided p-values for the regression coefficients by the percentile method. A global
p-value testing the global null hypothesis of no added value of the biomarkers was constructed
by counting the number of bootstrap resamples in which the multivariable biomarker model
led to a smaller cross-validated mean squared error (MSE) than a model based on the estab-
lished risk markers alone. In a simple bootstrap validation, LASSO models were fit to the 1000
bootstrap resamples, each time optimizing the cross-validated MSE as described above. These
models were then applied to the original data without modification. The resulting MSE was cal-
culated by averaging the squared average difference between the original outcome and the pre-
dicted outcome for each patient. This was done for models only considering the established
risk markers, and for models considering clinical and biomarker predictors. From the MSEs,
R® measures were finally derived in order to determine whether the biomarkers significantly
improved prediction.

The added value of the biomarker panel was also evaluated using the discriminative index
(C-index) by dichotomizing the observed outcome variables into accelerated or non-accelerated
renal function decline (eGFR decline <-3 or >-3 mL/min/1.73m?/year, respectively) and com-
paring this with predicted probabilities of eGFR decline (see S3 Appendix). The C-index was
also calculated using the simple bootstrap validation scheme, and the differences in the C-index
between a model of only established risk markers and a model of established risk markers plus
biomarkers were assessed. The threshold of -3 mL/min/1.73m* was based on prior studies and
its concurrence with the high quartile of eGFR decline [19, 20].

Results
Baseline characteristics and association with eGFR decline

Baseline characteristics are presented in Table 2. The average age of the cohort was 63.5 (SD
9.4) years and 53.7% were male. Type 2 diabetes was well established in the study population
with average diabetes duration of 15.7 (SD 7.3) years. Renal function was relatively preserved
in the cohort with an average eGFR of 77.9 (SD 22.6) mL/min/ 1.73m? at baseline. Median
UACR was 10.6 [1°*, 3™ quartile: 4.42, 510.1] mg/g. The average rate of eGFR decline over the
median of 4.0 [1%, 3" quartile: 3.7, 4.4] years of follow-up was -2.1 (SD 4.5) mL/min/ 1.73m?/
year.

The following best predictors of eGFR decline were selected from the LASSO selection: base-
line UACR, current vs. never smoker, sex, systolic and diastolic blood pressure, use of oral dia-
betic medication, and baseline eGFR (S1 Fig).

Biomarker concentrations and associations with eGFR decline

Baseline biomarker concentrations and univariate associations of the single biomarkers with
eGFR decline are reported in Table 1. Higher concentrations of the individual biomarkers ma-
trix metallopeptidases 2 (MMP2) (p = 0.04), matrix metallopeptidases 7 (MMP7) (p < 0.01),
chitinase 3-like 1 (YKL-40) (p = 0.01), tumor necrosis factor receptor-1 (TNFR1) (p < 0.01),
podocin (NPHS2) (p = 0.01), and endostatin (frag. COL18A1) (p = 0.03) were significantly as-
sociated with eGFR decline. When single biomarkers were modeled adjusting for established
risk markers, MMP?7, tyrosine kinase (TEK), and TNFR1 were independently associated with
eGFR decline (Table 1). For every two-fold increase in the log concentration of MMP7, TEK,
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or TNFRI, a corresponding decrease of eGFR of 0.77 (p = 0.04), 0.90 (p = 0.02), and -2.1 (p =
0.03) mL/min/1.73m?/year, respectively, was observed.

When these three biomarkers were modeled on top of the established risk markers, they
did not improve the explained variability (R®) of eGFR decline (35.7% compared to 37.7% of
the reference model; p = 0.988). The three biomarkers also did not increase the C-index for
prediction of accelerated renal function decline (0.860 compared to 0.835 of the reference
model; p =0.262).

Selection of optimal combination of established risk markers and
biomarkers

Although most individual biomarkers were not found to be independently associated with
eGFR decline, we hypothesized that the combination of biomarkers representing different dis-
ease pathways may improve prediction of eGFR decline. In a multivariable LASSO selection,
the optimal model for prediction of eGFR decline was achieved after inclusion of 19 variables
(Fig 1). The model included a subset of 13 novel biomarkers representing fibrosis, angiogenesis,
inflammation, mineral metabolism, and endothelial function that, when added to the estab-
lished risk markers, more accurately predicted the rate of eGFR decline (Table 3). The ex-
plained variability of the model (R?) markedly increased from 37.7% to 54.6% (p = 0.018) and
predicted a higher probability of accelerated renal function decline (Fig 2). There was also a
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Fig 1. LASSO selection of optimal model of established risk markers and biomarkers: cross validated
mean squared error (Y-axis; red bullets; MSE) vs. amount of restriction (X-axis; log(Lambda)). Vertical
bars refer to standard errors across the 82 cross-validations. The best cross-validated MSE was obtained
after inclusion of 19 variables (step 31), which included baseline UACR, MMP7, current vs. never smoker,
sex, TEK, MMP2, systolic blood pressure, baseline eGFR, TNFR1, NPHS2, CTGF, use of oral diabetic
medication, YKL-40, MMP1, MMP13, MMP8, SOST, CCL2, and NT-proCNP.

doi:10.1371/journal.pone.0120995.g001
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Table 3. Optimal model of established risk markers and biomarkers, results from LASSO selection and bootstrap resampling (N = 1000).

Variable

Baseline UACR
Systolic blood pressure
MMP2

TEK

Baseline eGFR

CTGF

MMP7

Current vs. never smoker
MMP8

NPHS2

MMP1

TNFRA1

SOST

Oral diabetic medication
MMP13

Sex

CCL2

YKL-40

NT-proCNP

mean 8 95% CI* p Selection probability™
-0.509 -0.834, -0.159 0.002 0.999
0.049 0.010, 0.085 0.012 0.994
7.382 0.010, 0.085 0.018 0.993
-0.793 -1.416, -0.139 0.018 0.993
-0.072 -0.130, -0.014 0.026 0.987
-5.911 -10.358, -0.913 0.026 0.987
-0.540 -1.191, 0.0 0.078 0.966
-1.593 -3.905, 0.0 0.144 0.943
0.472 0.0, 1.036 0.134 0.935
-1.509 -3.667, 0.0 0.206 0.908
0.392 -0.081, 1.051 0.298 0.897
-1.618 -4.037, 0.0 0.228 0.889
0.983 -0.014, 2.556 0.278 0.888
-1.060 -2.673, 0.0 0.274 0.884
-0.363 -1.835, 1.020 0.798 0.820
0.792 -0.905, 2.814 0.592 0.785
0.461 -1.228, 2.672 0.854 0.781
-0.405 -1.358, 0.019 0.518 0.771
0.756 -0.002, 2.452 0.568 0.742

*95% confidence interval, estimated from the 2.5™ and 97.5" percentiles of the bootstrap distribution.
TThe relative frequency of the marker being included in the model across 1000 bootstrap resamples.

doi:10.1371/journal.pone.0120995.1003

significant improvement in the C-index of the optimal model for prediction of accelerated
renal function decline (0.896 compared to 0.835 of the reference model; p = 0.008) (Fig 3).

To investigate the importance of each of the predictors in the optimal model, we omitted,
one by one, variables from the full model. If a variable was omitted from the model, the other
predictor variables could be selected instead. Only the omission of UACR or systolic blood
pressure resulted in relevant inclusions of other novel biomarkers (S1 Table).

Discussion

In this study, we established that a combination of different biomarkers representing different
pathways that are speculated to be involved in the progression of renal disease improves pre-
diction of eGFR decline. Although some biomarkers were not independently associated with
eGFR decline, when combined into a multi-biomarker model, the combination of biomarkers
improved renal risk stratification, suggesting that these biomarkers may possess synergistic ef-
fects in predicting renal function loss.

Diabetic kidney disease is characterized by the functional impairment and structural remod-
eling of the kidney and is linked to the changes in the kidney. Diabetic nephropathy is well
characterized by glomerular hypertrophy and hyperfiltration, inflammation of glomeruli and
tubuliointerstitial regions, and reduction of cell number by apoptosis and accumulation of ex-
tracellular matrix (ECM). Each of the biomarkers selected in the optimal model has been asso-
ciated with one of these pathophysiological processes involved in diabetic nephropathy.

First, chronic inflammation has long been identified in the pathogenesis of type 2 diabetes
and progression of diabetic nephropathy, and inflammation is well represented by the bio-
markers included in the optimal model. Tumor necrosis factor alpha is a key mediator of
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Fig 2. Predicted probability of accelerated renal function decline (eGFR decline <-3 or >-3 mL/min/
1.73m?/year) in patients with type 2 diabetes.

doi:10.1371/journal.pone.0120995.g002

inflammation and plays a role in apoptosis. It mediates its signal via two distinct receptors,
TNFR1 and TNFR2. Circulating forms of both TNF receptors were recently shown to predict
ESRD in type 2 diabetes[6]. Monocyte chemoattractant protein-1 (CCL2), another marker of
inflammation, is a potent C-C chemokine for monocyte/macrophages and T cells. Increased
amounts of CCL2 have been detected in renal biopsies and urine from patients with diabetic
nephropathy [21], and CCL2 has been shown to be a marker of late stage diabetic nephropa-
thy [22]. Currently there are a couple of clinical trials ongoing that target CCL2 receptor as a
means to delay progression of diabetic nephropathy (www.clinicaltrials.gov identifier
NCTO01712061, NCT01752985). Results of these studies will provide more insight whether
CCL2 is a causal factor or consequence of renal function loss. Additionally, YKL-40, a proin-
flammatory marker, has been identified as an independent factor associated with albuminuria
in early stage nephropathy in type 2 diabetes and might have a useful role as a noninvasive
marker for the early diabetic nephropathy detection [5, 23]. High YKL-40 levels have been
shown to predict mortality in patients with type 2 diabetes [24]. Future mechanistic studies
exploring the interplay between different inflammatory markers will help determine which
markers are causal factors or consequences in the progression of diabetic kidney disease.
Second, the optimal model included several biomarkers linked to pro-fibrotic processes. Fibro-
sis, resulting from expansion and change in composition of ECM in the kidney, is a well-known
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Fig 3. C-index for prediction of accelerated renal function decline (¢GFR decline <-3 or >-3 mL/min/
1.73m?/year) for a) established risk markers (reference model: baseline UACR, current vs. never
smoker, sex, systolic and diastolic blood pressure, use of oral diabetic medication, and baseline
eGFR) (C-index = 0.835), b) 3-biomarker model (MMP7, TEK, and TNFR1 on top of reference model) (C-
index = 0.835; p = 0.262 compared to reference model), and c) Optimal model (baseline UACR, MMP?7,
current vs. never smoker, sex, TEK, MMP2, systolic blood pressure, baseline eGFR, TNFR1, NPHS2,
CTGF, use of oral diabetic medication, YKL-40, MMP1, MMP13, MMP8, SOST, CCL2, and NT-proCNP)
(C-index = 0.896; p = 0.008 compared to reference model).

doi:10.1371/journal.pone.0120995.g003

pathologic feature of diabetic complications. Altered expression of matrix metalloproteinases
(MMPs) have been implicated in the progression of diabetic nephropathy by affecting the break-
down and turnover of ECM. In mice, the overexpression of MMP-9 has been shown to induce
podocyte dedifferentiation, interrupt podocyte cell integrity, and promote podocyte monolayer
permeability to albumin and extracellular matrix protein synthesis [25]. In humans, serum
MMP?7 has been shown to be increased in diabetic renal disease and diabetic diastolic dysfunction
[26]. In support of this, our study showed that higher concentrations of MMP7 were indepen-
dently associated with eGFR decline. CTGF is another well investigated pro-fibrotic biomarker
that was included in the optimal model. CTGF, which is upregulated in diabetic nephropathy
and contributes to extracellular matrix accumulation, has been associated with both early and
late stage diabetic nephropathy [12, 22]. Down-regulation of CTGF and vascular endothelial
growth factor-A (VEGF-A) in diabetic nephropathy is speculated to be a result of podocyte loss
[27]. Our data, in conjunction with data from literature, support the importance of fibrotic path-
ways in the initiation and progression of diabetic kidney disease.
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Third, we included a marker representing angiogenesis. Angiogenesis is the formation of
new blood vessels from pre-existing vasculature. Neovascularization has been implicated in the
genesis of diverse diabetic complications such as retinopathy, impaired wound healing, neu-
ropathy, and diabetic nephropathy. In both physiological and pathological angiogenesis, tyro-
sine kinase (TEK) plays a key role. TEK is principally expressed in endothelial cells and inhibits
vascular permeability and tightens preexisting vessels [28]. Additionally, TEK plays a critical
role in the angiogenesis of endothelial cells via binding to angiopoietin [29].

Finally the model included a marker representing endothelial function. Endothelial dys-
function is considered an initial step of the atherosclerotic process because diabetes substantial-
ly impairs vasodilating properties of the endothelium which leads to impaired vasodilation and
ultimately endothelial dysfunction [30]. C-type natriuretic peptide (CNP), a member of the na-
triuretic peptide family, is produced in vascular endothelium. Our study implies that natriuret-
ic (NT)-proCNP, the N-terminal fragment of the C-type natriuretic peptide precursor,
contributes to prediction of eGFR decline. NT-proCNP has been shown to be associated with
arterial stiffness, endothelial dysfunction, and early atherosclerosis [31], however the link of
NT-proCNP to type 2 diabetes and nephropathy is still under investigation.

In our study, most biomarkers were not able to individually predict eGFR decline after ad-
justment for established risk markers, and the model of 3 biomarkers did not statistically im-
prove prediction. Rather, the optimal model of 13 biomarkers yielded best and significant
improvements in the C-index. Advancing laboratory techniques allowing simultaneous mea-
surement of many biomarkers are becoming more and more realistic in clinical practice.
Whether the biomarkers identified are either involved in the causal pathway contributing to
CKD progression, or are markers of its risk, or are merely the end-product of existing patho-
logical processes, remains an important and unresolved question that requires further explora-
tion. A future study on etiology to examine the causal relationship between these biomarkers as
risk factors of renal disease would be appropriate, and issues of confounding could then be ad-
dressed. Testing for confounding was beyond the scope of this prediction study; however, we
were able to investigate the importance of each of the predictors in the optimal model. Baseline
UACR was found to have the largest impact on eGFR decline, and only the omission of base-
line UACR or systolic blood pressure allowed inclusions of other novel biomarkers into the
model. The combination of multiple biomarkers in the final, optimal model appears to be
more accurate in risk stratification for accelerated renal function decline in patients with type
2 diabetes.

There are some studies in literature that use a multi-biomarker approach for risk prediction
in CKD. A recent study showed that the combination of a panel of biomarkers including in-
flammation, fibrosis, and cardiac stretch and injury improved prediction of death in a Canadi-
an CKD cohort; however, this study was conducted in a cohort with different CKD etiology
[32]. Additionally, in another study of multiple protein biomarkers, 17 urinary and 7 plasma
biomarkers were evaluated to predict progression. C-terminal FGF-23 and VEGF-A were
found to be associated with the end point independent of urine albumin/creatinine. In that
study many biomarkers were tested one by one, but did not use a combined biomarker ap-
proach to predict renal disease progression [33]. Furthermore, a panel of multiple urinary cyto-
kines was found to predict rapid renal function decline in overt diabetic nephropathy [34].
However, that study included a heterogeneous population of patients with both type 1 and type
2 diabetes. Finally, in a post-hoc study from the IRMA-2 trial showed that multiple biomarkers
of endothelial dysfunction and possibly inflammation were predictors of progression to diabet-
ic nephropathy in patients with type 2 diabetes and microalbuminuria independent of tradi-
tional risk markers [35].
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Advances in high throughput analytical methods has fueled novel biomarker discovery.
Two such platforms, namely proteomics and metabolomics, have shown promise in multi-bio-
marker discovery for the diabetic CKD. A urinary peptide classifier, consisting of 273 defined
urinary peptides, was recently discovered as a good classifier in patients with CKD [36] and
validated in an independent cohort as a predictor of albuminuria progression in patients with
type 2 diabetes [37]. Furthermore, a panel of 13 metabolites linked with mitochondrial metabo-
lism was significantly reduced in CKD patients with diabetes compared to healthy controls
[38], and the combination of plasma metabolites butenoylcarnitine and histidine, and urine
metabolites glutamine, tyrosine, and hexoses were able to predict the progression from micro-
to macroalbuminuria in patients with type 2 diabetes [39].

Interestingly in our study, HbA ;. and duration of diabetes were not strong predictors of
eGFR decline, whereas albuminuria was identified as the strongest predictor. The exclusion
of HbA,. and duration of diabetes from the reference model may be due to small variations
in these parameters within this population. Regarding albuminuria, there is evidence that
demonstrates albuminuria as a strong risk predictor of renal function loss in patients with
type 2 diabetes [40-43]. Moreover, experimental data show that increased albumin exposure
to the tubuli causes tubulo-interstitial damage through activation of pro-inflammatory medi-
ators, which leads to a progressive decline in glomerular and tubular function, ultimately cul-
minating in end-stage renal disease [44, 45]. Our data on albuminuria as a strong predictor
of eGFR decline are in line with this and highlight the importance of screening for high albu-
minuria to identify individuals at risk of progressive renal function loss. At the same time, it
may be interesting to explore the predictive ability of urine biomarkers alongside albumin-
uria for renal disease progression as urine is considered quite a suitable substrate to measure
biomarkers linked to kidney disease due to the practical advantages of collecting urine com-
pared to blood samples. Since our study measured biomarkers in blood, we are unable to
speculate if urine biomarkers, or the combination of both blood and urine markers, would
yield similar predictive capabilities.

There are strengths and limitations to this study. A clear strength is the use of a multi-
marker, multi-pathway approach for identifying and testing biomarkers in a population of
patients with type 2 diabetes over approximately 4 years of follow-up. The clear limitation is
the measurement of multiple biomarkers in a small sample size. However, as advancing labo-
ratory techniques generate larger amounts of data, methods of data analysis to accommodate
“big data” with smaller sample sizes are needed. The rigorous statistical method of the
LASSO regression allowed for modeling many biomarkers in the small sample size, and mul-
tiple imputation was used to avoid truncating observations due to missing data. The true pre-
dictive capacity of the model could have been overestimated due to the prediction model
being developed and tested in the same sample, and we do agree that external validation is
necessary. In the absence of external validation, we performed internal bootstrap validation
in an attempt to minimize this limitation [46]. GFR was estimated using a serum creatinine-
based equation instead of by direct measurement, which may have contributed to misclassifi-
cation bias. However, this could have only resulted in an underestimation of the strength of
the reported associations. We chose to omit five biomarkers from our analysis due to many
missing or below LOD values. While the exclusion of these biomarkers from our analysis
may have resulted in an underrepresentation of pathways, the omission of biomarkers could
have only underestimated the predictive ability of the biomarker panel. Additional limita-
tions include the lack of information concerning insulin use, diet, and renin-angiotensin-
aldosterone system medication type and dose, which clearly represent unmeasured con-
founders in our study.
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In conclusion, novel biomarkers may provide deeper understanding into the pathophysiolo-
gy of CKD or diabetic nephropathy but identification of progression-associated molecular
pathways via biomarkers as proxy may also help to identify novel therapeutic targets. We iden-
tified a novel panel of biomarkers representing different pathways of renal damage, including
inflammation, fibrosis, angiogenesis, and endothelial function. This combined panel improved
prediction of accelerated renal function decline in patients with type 2 diabetes on top of estab-
lished risk markers. The results of this study need to be validated in a large, prospective cohort
to validate and assess its applicability in a broad type 2 diabetes population.
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