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Abstract: The purpose of this study was to examine the acute effect of foam rolling and vibration
foam rolling on drop jump performance. The optimal time interval between warm-up using foam
rolling or vibration foam rolling and drop jump performance was identified. This study included
16 male NCAA Division I college volleyball athletes. Three interventions were performed in a
randomized order: the foam rolling exercise (FRE), vibration foam rolling exercise (VFRE), and
static rest (control). The drop jump was performed before interventions, as well as 2 and 5 min after
interventions. The FRE exhibited higher values for drop jump height (DJH) (p = 0.001; η2 = 0.382;
statistical power = 0.964) and mean power generation at the hip joint (p = 0.006; η2 = 0.277; statistical
power = 0.857) at 2 min compared with before intervention but not at 5 min (p > 0.05). However,
the VFRE showed no significant changes in DJH (p > 0.05), and found that hippower was decreased
at 5 min (p = 0.027; η2 = 0.214; statistical power = 0.680). The FRE completed in 2 min before rapid
single action competition (sprint, long jump, triple jump, etc.) could increase sports performance.

Keywords: warm-up; self-massage; volleyball athletes; foam-roller

1. Introduction

The fast stretch-shortening cycle (FSSC) performance has important practical impli-
cations because many competitive sports require rapid movement performance, such as
agility, sprinting, and approach jumping [1]. The drop jump (DJ) is often used to examine
FSSC performance, which involves dropping down from a box and performing a verti-
cal jump as quickly as possible after landing [1,2]. Recently, it has been suggested that
high-intensity muscle contraction conditions, such as resistance exercise [3,4], plyometric
exercise [1], and whole-body vibration [5] as a warm-up protocol produce a subsequent
increase in FSSC performance. This phenomenon has been called post-activation perfor-
mance enhancement (PAPE) [6,7]. However, reviews of studies have also indicated that
the practical applicability problem of PAPE was limited due to required equipment in a
practical setting [7,8]. Based on the above, PAPE is inapplicable at the site of competition
or training.

In recent years, foam rolling exercise (FRE) and vibration foam rolling exercise (VFRE)
have been used as a new warm-up option that is highly regarded by coaches, conditioning
professionals, and athletes [9] because of their convenience and ease of practice in the
various sites of competition or training [10,11]. FRE and VFRE are self-massage techniques
performed using foam and vibrating foam rollers, respectively, rather than a massage by a
physical therapist or trainer [9,12]. Most studies have found no effect on countermovement
jump (CMJ) and squat jump performance after FRE [10,13–15], but other studies found
an increased CMJ performance after FRE [14,16]. The FSSC requires more elastic energy
contribution than a slow stretch-shorting cycle (SSSC) [2]. Hence, these results suggested
that the FRE will likely produce greater positive effects in the FSSC than in the SSSC, based
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on the assumption that the FRE can induce moderate muscle compliance due to increased
muscle temperature induced by prolonged rolling, which increases musculotendinous unit
storage and/or generates elastic energy [14,17]. Furthermore, if the VFRE induces vibration
stimulation and enhances neural potentiation by tonic vibration reflex as described by
Lamont, et al. [18], then the VFRE could be expected to show greater improvements on
FSSC than the FRE [19]. Previous studies have found that neither FRE nor VFRE affects
CMJ performance [20], but another study found that both the FRE and VFRE had similar
benefits on CMJ performance [21]. These studies have only focused on the effects of the
FRE and VFRE on SSSC, such as CMJ performance; no known published studies have
examined the acute effects of the FRE and VFRE on FSSC (i.e., DJ).

It is crucial to determine the optimal time interval between completing the warm-up
protocol and competition initiation. It would allow coaches and conditioning professionals
a time reference for improving sports performance. Previous studies have indicated the
time after an acute bout of FRE and VFRE and collected multiple testing measures at
individual time points [11,14,22], including flexibility [11,20,22], vertical jump [11,14,22],
muscle strength [11,22], agility tests [10] joint proprioception [9], 10 min running test [14],
and balance [9]. However, these studies lack the optimal time interval between post-FRE
or post-VFRE and competition.

Therefore, this study aimed to investigate the acute effect of FRE and VFRE on DJ
performance and to determine the optimal time interval between post-FRE or post-VFRE
and competition. Based on the previous literature, we hypothesized that FRE would
subsequently increase DJ performance, and VFRE would improve DJ performance more
than FRE.

2. Materials and Methods
2.1. Subjects

The study included 16 male NCAA Division I college volleyball players (177.56 ± 5.05 cm,
69.37 ± 6.66 kg, 21.5 ± 1.15 years). Inclusion criteria included having more than 5 years of
experience in plyometric and resistance training. In contrast, exclusion criteria included
lower extremity surgery, respiratory disease, catastrophic illness, or lower extremity injury
within the past 6 months, as these conditions could affect normal DJ motion. The subject
was instructed to maintain a normal diet and to abstain from medications, alcohol, and
additional supplementation throughout the study. Before completing the testing protocol,
all the subjects read and signed informed consent document. The Antai Medical Care
Corporation Institutional Review Board approved this study (File number 19-011-B).

2.2. Design and Procedures

In this randomized within-subject study design, subjects reported to the laboratory
for 4 separate sessions, separated by 24 h between them. During the first session, subjects
were informed of the benefits and risks of the investigation, informed consent documents
were collected, and body mass and height data were obtained. Moreover, the subjects
were taught how to perform DJ and FRE and were familiarized with all the testing pro-
cedures. During the second, third, and fourth sessions, all subjects wore tight shorts and
identical shoes of the same brand with their appropriate size (Maximizer16; Mizuno Tai-
wan Corporation, Taipei, Taiwan) and then performed 5 min of light aerobic jogging as
a warm-up. The 21 reflective markers were placed bilaterally over the anterior-superior
iliac spines, posterior–superior iliac spine, anterior thighs and shank, lateral and medial
knee, lateral and medial ankle, heel, and the fourth metatarsal heads; the sacrum received
only one marker. All reflective markers were measured using a three-dimensional motion
analysis system (Motion Analysis Corporation, Santa Rosa, CA, USA). Immediately after
the reflective markers were placed, the subjects performed 3 DJs from 40 cm as a pre-test
(PRE). The rest period between each jump was 30 s. The subjects were instructed to keep
their hands on their hip and to drop from a 40-cm-high box onto two force plates. They
were instructed to perform a maximal vertical jump as quickly as possible after ground
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contact, maintaining the hips, knees, and ankles in a fully extended position throughout
the entire jump [23]. The subjects performed control (Con), VFRE, and FRE randomized
for the second, third, and fourth sessions. For the Con, the subjects were instructed to sit
on a chair for 15 min of passive rest. However, the subjects performed the VFRE using a
vibrating foam roller constructed with a vibrating generating motor center surrounded by
polypropylene (Vyper By Hyperice 2.0, Irvine, CA, USA). The VFRE was applied to eight
muscle regions in the bilateral lower limb in the following order: quadriceps with flexed
knee, quadriceps with extended knee, gluteus, biceps femoris, tibialis anterior muscle,
gastrocnemius, fasciae latae, and plantar fascia. First, the subject rolled a muscle region
in the right lower limb; subsequently, the same muscle region in the left lower limb was
rolled. Each unilateral muscle region was rolled for 1 min. Bilateral plantar fasciae were
rolled simultaneously for 1 min. The total VFRE time was 15 min. The subjects were
instructed to put their body weight on the vibrating foam roller (of 45 Hz) as much as
possible. The rolling frequency was set at 40 beats per minute (bpm) using an electronic
metronome. Each rolling cycle (distal to proximal and return) was about 3 s. The entire
process was supervised by a strength and conditioning coach. This protocol was based on
previous studies’ reports [9,22]. The high frequency (45 Hz) of VFRE was used because
the participants were elite volleyball players. The FRE employed the same method for the
VFRE, except that the vibrating motor was turned off. This study used the same roller in
both protocols to control varying surface levels in different foam rollers. Post-test measures
were performed in the same manner as the PRE measure at 2 (POST2) and 5 (POST5) min-
utes after the intervention. The 3 DJs (POST2) were performed between 2 and 3 min after
intervention. The 3 DJs (POST5) were performed between 5 and 6 min after intervention.
A schematic diagram of the experimental procedure is shown in Figure 1.
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Figure 1. Schematic diagram of the experimental procedures.

2.3. Instrumentation

Kinetic and kinematic data were simultaneously captured by two force platforms
(AMTI Inc., Watertown, MA, USA) (2000 Hz) and a 10-camera three-dimensional (3D)
motion analysis system (Motion Analysis Corporation, Santa Rosa, CA, USA) (200 Hz).
The right leg data was collected by one force platform, while the left leg data was collected
by another force platform. The EVaRT (Version 4.6, Motion Analysis Corporation, Santa
Rosa, CA, USA) software was used to record the kinetic and kinematic data.

2.4. Data Analyses

All raw kinetic and kinematic data from the dominant leg were analyzed using custom
MATLAB software (The MathWorks, Inc., Natick, MA, USA). The dominant leg was defined
as the leg regularly used to kick a ball [24]. The first ground contact phase was defined
as the instance between the first foot contact after drop-off from a 40 cm box and take-off
of the foot from the force platforms. The first ground contact phase was divided into the
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landing and take-off subphases. The landing subphase was described as the period from
the instant of first foot contact (t1) to peak knee flexion (t2) and the take-off subphase as the
period from peak knee flexion (t2) to the take-off of the foot from the force platforms (t3).
Additionally, the flight subphase was defined as the period from the take-off of the foot
from the force platforms (t3) to the instant of second foot contact (t4). Figure 2 illustrates the
phases of the DJ. The instant of the first and second foot contact (t1 and t4) and take-off of
the foot from the force platforms (t3) was determined by assessing the 30 Newton vertical
ground reaction force threshold.

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 4 of 9 
 

 

defined as the instance between the first foot contact after drop-off from a 40 cm box and 
take-off of the foot from the force platforms. The first ground contact phase was divided 
into the landing and take-off subphases. The landing subphase was described as the pe-
riod from the instant of first foot contact (t1) to peak knee flexion (t2) and the take-off sub-
phase as the period from peak knee flexion (t2) to the take-off of the foot from the force 
platforms (t3). Additionally, the flight subphase was defined as the period from the take-
off of the foot from the force platforms (t3) to the instant of second foot contact (t4).  
Figure 2 illustrates the phases of the DJ. The instant of the first and second foot contact (t1 
and t4) and take-off of the foot from the force platforms (t3) was determined by assessing 
the 30 Newton vertical ground reaction force threshold.  

 
Figure 2. Illustrates the phases of DJ. 

The formula:  gT2 (g = 9.81 m/s-2; T = t4 − t3) was used to calculate drop jump height 
(DJH) [25,26]. The mechanical power of the hip, knee, and ankle joints was calculated by 
inverse dynamics and normalized by body weight. The joint power generated by the joint 
muscle and tendon was defined as positive mechanical power [26]. The joint power was 
averaged in the take-off subphase. The following formula was used to calculate reactive 
strength index (RSI) of DJ: 	 	 . The ground contact time (GCT) was calculated by the 
time between t1 and t3. The representative value of each dependent variable was calculated 
by averaging the data obtained from the three trials. 

2.5. Statistical Analyses 
Data were analyzed using SPSS software (Version 12.0, SPSS Inc., Chicago, IL, USA). 

All results are reported as mean ± standard deviation (SD). All dependent variables were 
analyzed using a two-way repeated-measures analysis of variance (3 time points [PRE vs. 
POST2 vs. POST5] × 3 protocols [CON vs. VFRE vs. FRE]) followed by Bonferroni post 
hoc analysis. The significance level was set at p ≤ 0.05. The partial eta squared was classi-
fied using the following scale: small = 0.01, medium = 0.06, large = 0.15 [27]. The intraclass 
correlation coefficient (ICC) was computed for PRE, POST2, and POST5 (each protocol) 
for all variables. The ICC was classified using the following scale: values less than 0.4 
(poor), between 0.40 and 0.59 (fair), between 0.60 and 0.74 (good), and between 0.75 and 
1.00 (excellent) [28]. The coefficient of variation (CV) was calculated across three PRE 
measurements [29,30]. The acceptable CV was below 10.8% [29]. 

3. Results 
The DJH was found to have excellent reliability at PRE, POST2, and POST5 in all the 

three protocols (ICC = 0.791–0.929). The CV was 10% for DJH. The DJH time × protocol 
interaction was significant (p = 0.022; η2 = 0.171; statistical power = 0.781). Simple main 
effects showed significant improvements in DJH after FRE at POST2 when compared with 

Figure 2. Illustrates the phases of DJ.

The formula: 1
8 gT2 (g = 9.81 m/s−2; T = t4 − t3) was used to calculate drop jump height

(DJH) [25,26]. The mechanical power of the hip, knee, and ankle joints was calculated by
inverse dynamics and normalized by body weight. The joint power generated by the joint
muscle and tendon was defined as positive mechanical power [26]. The joint power was
averaged in the take-off subphase. The following formula was used to calculate reactive
strength index (RSI) of DJ: DJH

t3 − t1 . The ground contact time (GCT) was calculated by the
time between t1 and t3. The representative value of each dependent variable was calculated
by averaging the data obtained from the three trials.

2.5. Statistical Analyses

Data were analyzed using SPSS software (Version 12.0, SPSS Inc., Chicago, IL, USA).
All results are reported as mean ± standard deviation (SD). All dependent variables were
analyzed using a two-way repeated-measures analysis of variance (3 time points [PRE
vs. POST2 vs. POST5] × 3 protocols [CON vs. VFRE vs. FRE]) followed by Bonferroni
post hoc analysis. The significance level was set at p ≤ 0.05. The partial eta squared was
classified using the following scale: small = 0.01, medium = 0.06, large = 0.15 [27]. The
intraclass correlation coefficient (ICC) was computed for PRE, POST2, and POST5 (each
protocol) for all variables. The ICC was classified using the following scale: values less
than 0.4 (poor), between 0.40 and 0.59 (fair), between 0.60 and 0.74 (good), and between
0.75 and 1.00 (excellent) [28]. The coefficient of variation (CV) was calculated across three
PRE measurements [29,30]. The acceptable CV was below 10.8% [29].

3. Results

The DJH was found to have excellent reliability at PRE, POST2, and POST5 in all the
three protocols (ICC = 0.791–0.929). The CV was 10% for DJH. The DJH time × protocol
interaction was significant (p = 0.022; η2 = 0.171; statistical power = 0.781). Simple main
effects showed significant improvements in DJH after FRE at POST2 when compared with
PRE (p = 0.001; η2 = 0.382; statistical power = 0.964), but the Con and VFRE were not
significant (p > 0.05). In addition, simple main effects showed no significant difference
between Con, VFRE, and FRE at PRE (p > 0.05) (Table 1).
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Table 1. The DJH of DJ (cm); mean ± SD †.

PRE POST2 POST5

Con 28.29 ± 5.86 28.38 ± 6.05 28.67 ± 5.73
VFRE 28.26 ± 5.10 27.96 ± 5.58 28.14 ± 5.30
FRE 26.68 ± 5.66 27.82 ± 5.29 * 27.16 ± 5.45

† = interaction (time × protocol); * = compare to PRE (p < 0.05).

The RSI was found to have good reliability at PRE, POST2, and POST5 in all the three
protocols (ICC = 0.642–0.780). The CV was 9.3% for RSI. The time × protocol interaction
for RSI was significant (p = 0.029; η2 = 0.163; statistical power = 0.753) (Table 2). However,
both FRE (p = 0.000; η2 = 0.539; statistical power = 0.995) and Con (p = 0.005; η2 = 0.298;
statistical power = 0.868) showed that POST2 and POST5 were higher than PRE, and the
FRE showed that POST2 was higher than POST5. The VFRE was found higher than FRE
and Con at PRE (p = 0.003; η2 = 0.358; statistical power = 0.945), and higher than FRE at
POST5 (p = 0.026; η2 = 0.215; statistical power = 0.683) (Table 2).

Table 2. The RSI of DJ (cm·s−1); mean ± SD †.

PRE POST2 POST5

Con 90.46 ± 15.33 95.52 ± 18.40 * 93.82 ± 17.39 *
VFRE 100.16 ± 13.96 a 100.34 ± 16.94 101.16 ± 16.38 b

FRE 89.53 ± 16.88 95.90 ± 16.55 *,# 92.88 ± 16.44 *

† = interaction (time × protocol) (p < 0.05); a = compare to Con and FRE at PRE (p < 0.05); b = compare to FRE at
POST5 (p < 0.05); * = compare to PRE (p < 0.05); # = compare to POST5 (p < 0.05).

The GCT was found to have good reliability at PRE, POST2, and POST5 in the three
protocols (ICC = 0.877–0.917). The CV was 7.2% for GCT. For ground contact time, the time
× protocol interaction was not significant (p > 0.05). A significant main effect was seen for
time (p = 0.000; η2 = 0.452; statistical power = 0.992). The Con, VFRE, and FRE showed that
POST2 and POST5 were lower than PRE, and POST2 was lower than POST5. A significant
main effect was seen in the protocol (p = 0.003; η2 = 0.328; statistical power = 0.912). The
VFRE was lower than Con (Table 3).

Table 3. The GCT of DJ (s); mean ± SD +.

PRE POST2 POST5

Con 0.321 ± 0.081 0.306 ± 0.078 *,# 0.316 ± 0.083 *
VFRE ‡ 0.287 ± 0.066 0.283 ± 0.068 *,# 0.284 ± 0.068 *

FRE 0.304 ± 0.066 0.297 ± 0.064 *,# 0.299 ± 0.063 *

+ = significant main effect for time and protocol (p < 0.05); ‡ = difference was found between VFRE and Con
(p < 0.05); * = compare to PRE (p < 0.05); # = compare to POST5 (p < 0.05).

The hippower was between fair to good reliability at PRE, POST2, and POST5 in the
three protocols (ICC = 0.542–0.973). The CV was more than 10.8% for hippower. The time ×
protocol interaction was significant for the hippower, (p = 0.000; η2 = 0.317 statistical power
= 0.991). Simple main effects showed significant improvements in the hippower after FRE
at POST2 when compared with PRE (p = 0.006; η2 = 0.277 statistical power = 0.857), but
the VFRE showed that POST5 was lower than PRE (p = 0.027; η2 = 0.214; statistical power
= 0.680). In addition, simple main effects showed no significant difference between Con,
VFRE, and FRE at PRE (p > 0.05) (Table 4).
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Table 4. The hippowe of DJ (W/BW); mean ± SD †.

PRE POST2 POST5

Con 0.059 ± 0.065 0.066 ± 0.071 0.063 ± 0.075
VFRE 0.058 ± 0.047 0.050 ± 0.037 0.050 ± 0.042 *
FRE 0.062 ± 0.052 0.078 ± 0.064 * 0.068 ± 0.056

† = interaction (time × protocol) (p < 0.05); * = compare to PRE (p < 0.05).

The kneepower was between fair to excellent reliability at PRE, POST2, and POST5
between the three protocols (ICC = 0.558–0.928). The CV was more than 10.8% for kneepower,
and the time × protocol interaction was significant (p = 0.047; η2 = 0.147 statistical power
= 0.692). However, simple main-effects testing failed to identify significant pairwise
differences among time and protocols (p > 0.05) (Table 5).

Table 5. The kneepower of DJ (W/BW); mean ± SD †.

PRE POST2 POST5

Con 0.01 ± 0.06 0.004 ± 0.06 0.008 ± 0.06
VFRE 0.02 ± 0.04 0.02 ± 0.04 0.02 ± 0.04
FRE 0.03 ± 0.05 0.02 ± 0.06 0.03 ± 0.06

† = interaction (time × protocol) (p < 0.05).

The reliability of anklepower at PRE, POST2, and POST5 was between fair to excellent
in the three protocols (ICC = 0.593–0.826). The CV was more than 10.8% for anklepower, and
the time × protocol interaction was not significant (p > 0.05). (Table 5). A significant main
effect was seen for protocol (p = 0.032; η2 = 0.205; statistical power = 0.655). The VFRE was
higher than Con (Table 6).

Table 6. The anklepower of DJ (W/BW); mean ± SD +.

PRE POST2 POST5

Con 0.58 ± 0.21 0.64 ± 0.23 0.62 ± 0.23
VFRE ‡ 0.69 ± 0.28 0.69 ± 0.28 0.70 ± 0.28

FRE 0.61 ± 0.25 0.62 ± 0.27 0.61 ± 0.25

+ = significant main effect for protocol (p < 0.05); ‡ = difference was found between VFRE and Con (p < 0.05).

4. Discussion

This study aimed to compare the acute effect of FRE versus VFRE on DJ performance
and to determine the optimal time interval between post-FRE or post-VFRE and compe-
tition. The present results show that the FRE significantly increased DJH and hippower at
POST2; however, there was no significant change at POST5. Furthermore, no significant
changes in DJH, and hippower were decreased at 5 min after VFRE. In terms of RSI and
GCT, no significant improvements were observed for FRE and VFRE at POST2 and POST5.
We hypothesized that both FRE and VFRE would subsequently increase DJ performance,
and VFRE would produce more increase in DJ performance than that of FRE. This initial
hypothesis was partly supported by the present result.

This study found that the DJH was increased after FRE. This study confirmed that
when 60 s FREs were performed for each unilateral muscle region, this protocol can increase
DJH. This result might be explained by the fact that the FRE can induce moderate muscle
compliance to increase the ability of the musculotendinous unit to store and/or generate
elastic energy [14,17]. In contrast, most studies found that the FRE had no effect on SSSC
muscle performance, such as CMJ and SJ [10,13–15]; only a few studies found a positive
effect on SSSC [14,16], and this may be attributed to the requirement of more storage and
generation of elastic energy in DJ than CMJ and SJ; thus, the FRE was limited in increasing
SSSC muscle performance [2].
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The RSI was influenced by DJH and GCT and was often used to examine jump
performance during a rapid jump movement [26]. In the current study, even though the
RSI was not improved after FRE, the GCT was unchanged, and DJH was increased when
examining the two components of RSI separately. This means that the FRE-increased-DJ is
a quick movement with very short (0.297–0.304 s) GCT. Besides, the GCT may be mainly
influenced by the jumping strategies adopted [31]. Specifically, all subjects were instructed
to perform a maximal vertical jump as quickly as possible after ground contact during DJ.

The present investigation confirms that FRE simultaneously performed with local
vibration (VFRE) could not influence DJH. While the authors of this study are not aware
of another VFRE study that examines DJ performance, this study’s result was consistent
with results reported in previous investigations which reported that 5 min VFRE did not
affect CMJ performance [20]. However, compared to previous studies, it was found that
30 s VFRE can increase CMJ performance [21]. It seems reasonable to speculate that 60 s
VFRE is an excessive duration to induce fatigue. Specifically, the vibration stimulation not
only induces PAPE by neural potentiation but also induces fatigue, which was dominant
after vibration stimulation, negatively affecting subsequent performance [18]. Besides, the
hippower was decreased at 5 min after VFRE. This implied that the fatigue wound influences
the hip mechanism adaptation.

Previous studies have indicated that moderate muscle compliance was probably
enhanced by the FRE [14,32]. The underlying physiological mechanism of this adaptation
may be due to the acutely altered balance between the viscous and elastic property of the
fascia; the fascia becomes more elastic through heat from rolling friction in FRE [14,32].
This physiological mechanism has contributed to the change in biomechanical properties
that resulted in better power generation of the hip [14,32]. This implies that increasing the
hippower is one of the main factors associated with increased DJH after FRE [33]. However,
this study found that kneepower and anklepower were not influenced by the FRE. This result
may be due to the gluteus being rolled while in a sitting position which resulted in more
pressure than other muscle groups and induced more moderate muscle compliance than in
other muscle groups.

This study found that FRE significantly increased DJH at POST2 when compared with
PRE. However, this improvement was not maintained at POST5. Although other investiga-
tors have evaluated different times and found positive effects on CMJ performance [14,16],
those studies did not provide an accurate time interval between post-FRE and competition.
Our results are important because this study established a 2-min interval time between
post-FRE and competition. Furthermore, this study also found that the hippower increased
at 2 min after FRE, but not at 5 min. This would imply that the elasticity properties of
the muscle and connective tissue were increased at 2 min after FRE; however, this benefit
dissipated at 5 min after FRE. This may help explain why DJH was increased at POST2 but
not at POST5.

This study had four limitations. First, the subjects were male college volleyball players
and elite athletes, which inhibits the generalizability of the results to the population; future
studies should examine other populations, such as female and teen-aged elite athletes.
Second, the testing measurement is the DJ; future studies should examine other FSSC
testing measurements, such as the sprint, approach jump, and agility. Third, the lack of
ultrasound did not allow us to examine the acute effect of FRE on the connective tissue
characteristics. Fourth, the lack of electromyography did not allow us to examine the
different mechanisms behind the FRE and VFRE.

5. Conclusions

The findings of the present study demonstrate that DJH and hippower were increased
at 2 min after FRE in elite athletes, although this improvement cannot be extended to
5 min. However, there was no significant difference in DJH, and hippower was decreased at
5 min after VFRE. Based on these findings, the FRE can improve subsequent competitive
sports performance that requires rapid movement. This study suggests the athletes of
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rapid movement single action, such as in the 100 m race, long jump, triple jump etc., who
complete the protocol 2 min before the competition might benefit from the FRE.
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