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Abstract
We propose a model of parameter learning for signal transduction, where the
objective function is defined by signal transmission efficiency. We apply this to
learn kinetic rates as a form of evolutionary learning, and look for parameters
which satisfy the objective. This is a novel approach compared to the usual
technique of adjusting parameters only on the basis of experimental data. The
resulting model is self-organizing, i.e. perturbations in protein concentrations or
changes in extracellular signaling will automatically lead to adaptation. We
systematically perturb protein concentrations and observe the response of the
system. We find compensatory or co-regulation of protein expression levels. In
a novel experiment, we alter the distribution of extracellular signaling, and
observe adaptation based on optimizing signal transmission. We also discuss
the relationship between signaling with and without transients. Signaling by
transients may involve maximization of signal transmission efficiency for the
peak response, but a minimization in steady-state responses. With an
appropriate objective function, this can also be achieved by concentration
adjustment. Self-organizing systems may be predictive of unwanted drug
interference effects, since they aim to mimic complex cellular adaptation in a
unified way.
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Introduction
Signal transduction systems are often modeled as networks of 
biochemical kinetic equations implemented as continuous-time 
dynamical models using differential equations1,2. If we regard a sub-
set of species as inputs, and make sure that the system always con-
verges to equilibrium values by using weakly reversible equations3–5, 
we may transform these models into a set of matrices fulfilling the 
role of input-output transfer functions, i.e. a mapping from sus-
tained input signal levels to steady-state concentrations for all target 
species6. Protein signaling functions (psfs) are a systemic gener
alization of individual dose-response functions, which are usually 
described by Hill equations7. In contrast to Hill equations, which 
are not available for enzymatic reactions, which only calculate 
relative concentrations, and which only work for one reaction in 
isolation, the psf system calculates enzymatic and complex forma-
tion reactions in a complex systemic environment using absolute 
concentrations6. In addition, the reaction times to equilibrium are 
calculated as delay values, and the dynamic shape (“transients”) is 
also available for further analysis.

In this paper, we want to ask the question of optimality of signal 
transduction. From an evolutionary standpoint, we assume that any 
biological signal transduction system is constructed with optimized 
efficiency of signal transmission. Furthermore, we assume that cells 
have the ability to adapt to perturbations of protein concentrations 
and changes in extracellular signaling by reinstating signal trans-
mission efficiency. In the following, we investigate this question 
using a biologically realistic system – beta-adrenergic signaling in 
a submembrane compartment of a mouse embryonic fibroblast for 
a single input scenario, focusing on a selected target species as rel-
evant output or actuator of the system (Figure 1A).

Experimental analysis of signal transduction systems has shown fold-
change responses to changes in input8,9. Accordingly, input-output 

transfer functions usually follow the shape of hyperbolic (saturat-
ing) curves, which are equivalent to sigmoids for logarithmically 
scaled input6. In Figure 1B we show the effect of a knock-out (KO) 
for a RGS protein in an experimental assay in yeast10, and compare 
this with the effect in the model system11. We see that the effects 
of the RGS KO on dose-response signaling efficiency are robust 
across very different cellular systems.

Usually, when we use a computational model to investigate perturba
tions, we only study the effects as reflected in the simulation. By 
utilizing optimization in terms of signaling efficiency, we can make 
the system itself adjust to the perturbation. In this way, we are stud-
ying signal transduction as a self-organizing system, which uses 
objective functions to adapt. This basic idea is extremely powerful, 
and could be used with different kinds of constraints on parameters, 
reaction times, etc. and with different, multiple input scenarios for 
larger systems. To explore this question further is of significant 
importance in assessing cellular health and functioning.

Methods
Example system: GPCR signaling in a submembrane 
compartment
Figure 1A shows the example system, a submembrane compart-
ment with a GPCR (G-protein coupled receptor) pathway from a 
mouse embryonic fibroblast, with ISO as input (extracellular ligand 
to β(2)-adrenergic receptors) and the phosphorylation of a protein 
VASP as output. This model was implemented as an ODE model 
with 23 reactions and 27 molecular species, derived from 12 initial 
concentrations (cf. Table 1, Table 2). The parameters were adapted 
to experimental biological data (not shown11). In this subsystem, the 
central cAMP response often follows a plateau curve, i.e. a rise to 
steady-state, but cAMP transients which are typically observed in 
cytoplasm may also occur11. The dose-response transfer functions 
were derived as in6.

Figure 1. A. Biochemical Reaction System with Selected Input (red) and Output (blue) B. (Top) ISO-pVASP transfer function (with RGS KO, 
red) in the MEF model11 (Bottom) Experimental Response to RGS KO for GPCR signal-response in a yeast model10 C. (Top) Distribution of 
Extracellular Signals Used to Calculate Signal Transmission. From a baseline signal S0 [10nM–900nM] the extracellular signaling level St rises 
to 110%,150% and 200%, but not above 1mM . (Bottom) Transfer Functions for ISO → pVASP. Shown is the original model, optimization by 
delay, by RC,S, and by both.
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Objective function
A biological signal transduction system is defined by its state vari-
able vector x, the set of all kinetic rate and initial concentration 
parameters.

We hypothesize that an efficient signal transmission would max-
imize the response coefficient RC,S (the response of species C to 
input S) defined as

R

C
C
S
S

C,S

t

t
=

−

−

0

0

1

1

with concentration change of target C and input S from baseline 
(t=0) to signal time t. For RC,S, values < 1 show signal loss, with 1 
for perfect transmission, and values > 1 showing signal amplifica-
tion. We may also optimize for the slope s of the sigmoid at half-
maximum concentration. This is equivalent to maximizing RC,S, 
provided that the input signal remains entirely between the upper 
and lower boundaries of the sigmoid (Figure 1C). By optimizing 
for s, additional to RC,S, we may force the system to implement a 
switch-like function instead of a more linear function. However, 
shifting the sigmoid function to the left or to the right is more 
important as the slope in our models.

In addition, we optimize for reaction time (delay to steady-state). 
Steady-state is defined, pragmatically, as relative change of less 
than 2% over 100s. The delay (dS) is computed for 90% (EC90) of 
steady-state. We may now define an aggregate objective function:

to select the system state variables that minimize delay and maxi-
mize response.

In addition to signal transmission from extracellular concentration 
changes onto steady-state concentrations, such as they typically 
occur for temporally integrating proteins like transcription factors, 

Table 2. Initial concentrations (in nM) of species in 
the sample system.

PDE4B 200 b2 100

bARR 500 PKA 500

cAMP 100 AC6 1000

GsaGDP 200 GiGDP 200

RGS 100 VASP 200

PP1 100 ATP 1e+06

Table 1. Kinetic rates of the sample system, adapted from Sabio-Rk25 and Brenda26, adjusted 
to experimental cAMP time-series data11.

kon koff kcat

b2 + L ↔ b2L 0.0003 0.1

b2L + PKAc ↔ b2LPKAc → pb2L + PKAc 0.00026 1 5.4

pb2L → b2L 0.1

GsaGDP + b2L ↔ b2LGsaGDP → GsaGTP + b2L 0.006 0.8 0.2

GsaGTP + RGS ↔ RGSGsaGTP → GsaGDP + RGS 0.0008 1.2 16

GiGDP + pb2L ↔ pb2LGiGDP → GiGTP + pb2L 1.2 0.8 16

GiGTP + RGS ↔ RGSGiGTP → GiGDP + RGS 1.2 0.8 16

GsaGTP + AC6 ↔ AC6Gsa 0.00385 3

GiGTP + AC6Gsa ↔ AC6GsaGi 0.00385 10

AC6Gsa + PKAc ↔ AC6Gsa_PKAc → pAC6Gsa + PKAc 0.00026 1.5 30.4

pAC6Gsa + PP1 ↔ pAC6PP1 → AC6Gsa + PP1 0.0026 3 54

ATP + AC6Gsa ↔ AC6Gsa_ATP → cAMP + AC6Gsa 6e-05 10 80.42

ATP + pAC6Gsa ↔ pAC6Gsa_ATP → cAMP + pAC6Gsa 6e-05 10 8.042

ATP + AC6 ↔ AC6_ATP → cAMP + AC6 0.0001 120 0.142

cAMP + PDE4B ↔ PDE4BcAMP → AMP + PDE4B 0.03 77.44 19.36

1PKA + 2cAMP ↔ 1PKAr2c2cAMP2 3.5e-08 0.06

1PKAr2c2cAMP2 + 2cAMP ↔ 1PKAr2c2cAMP4 2.7e-07 0.28

1PKAr2cAMP4 + 2PKAc ↔ 1PKAr2c2cAMP4 8.5e-08 0.05

V ASP + PKAc ↔ V ASP PKAc → pV ASP + PKAc 0.00026 1.5 30.4

pV ASP + PP1 ↔ pV ASPPP1 → V ASP + PP1 0.0026 3 54

AMP → ATP 1

ATP + AC6GsaGi ↔ AC6GsaGi_ATP → cAMP + AC6GsaGi 6e-05 10 1

b2L + bARR ↔ b2LbARR 0.0006 0.1

f x R x d xx C S S( )= ( ) − ( ) max ,,
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we also look at signal transmission by transients, i.e. peak concen-
tration, in response to extracellular signals. In this case, we mini-
mize the delay to peak value, maximize the response at peak value, 
and minimize the response at steady-state value.

Results
Delay vs. efficiency trade-off
The computation of signal transmission efficiency will be explained 
here for a single input-output pathway of cAMP/PKA-mediated 
transmission in a cellular membrane compartment. It is clear that 
a complex signaling system may have several inputs, and a large 
number of outputs or target proteins, and this is especially the case for 
cAMP-mediated signaling. Nonetheless we will focus on the simple 
case here to explain the basic principle. The input is a membrane 
receptor, a G-protein coupled receptor (GPCR), β(2)AR, which is 
activated by an extracellular pharmacological agonist ISO (isopro-
terenol); the output is a membrane protein, VASP, which promotes 
actin filament elongation. Activation of the receptor selectively 
inhibits VASP by phosphorylating VASP to pVASP via protein 
kinase A (PKA) activation. In Figure 1B the original ISO/pVASP 
transfer function is shown, which we use here for further optimi-
zation. The system was trained for a signal distribution between 
10nM and 1 µM ISO adjusting both kinetic rate and concentration 
parameters (Figure 1A). The optimization method used is a simplex 
algorithm12. Figure 1B shows the transfer function before and after 
adjustment, maximizing for RC,S, dS or the combined function f. The 
results are summarized in Table 3. We see that optimizing for the 
response coefficient alone shifts the function to the right to better 
cover the input range. Optimizing for the delay alone shifts it to 
the left, speeding up signals in the lower range (which are slower). 
Both objectives together (equally weighted) are fairly close to the 
original, biologically validated curve, with an improved RC,S.

In general, biochemical reactions are faster at higher substrate 
concentrations, but the relative concentration change in response 
to an increase in the enzyme or the binding partner is less. This is 
a fundamental trade-off between delay and transmission efficiency 
that may define an optimal operating range for a signaling system 
and be of relevance in disease processes6. The results obtained with 
this experiment are simple, intuitive and encourage continuing to 
explore the basic idea.

Evolutionary learning of kinetic rate parameters
In principle, we may use all parameters in a system, concentrations 
or kinetic rates, to maximize signal transmission. But the evolution 

of protein structure and interactions shows that it is fine-tuning of 
molecular kinetic parameters which is subject to evolutionary learn-
ing, while concentrations are often regulated adaptively in each cell. 
Mass-action kinetics approximate molecular kinetic parameters, 
even though there are significant sources of uncertainty, such as the 
stochastics of molecular interactions. In the following, we explore 
the idea that kinetic rate learning operates on evolutionary time-
scales, and that biologically attested signal transduction pathways 
contain reaction rates which are optimal in terms of signal transmis-
sion efficiency. We use known concentration ranges, specific by cell 
type, together with kinetic rate optimization.

To explore the parameter space, we drew 1662 values for all kinetic 
rate parameters (kon, koff, kcat) from a distribution of 20% to 500% 
of the original parameters, and calculated R

C,S
 and d

S
 for the corre-

sponding models, relative to an improved signal distribution from 
1nM to 1µM (Figure 2A). We find that there are parameter combi-
nations which greatly improve efficiency of the signal transmission 
function. The basic distribution of a uniform low value of R

C,S
 for 

fast d
S
 and a wide variability in R

C,S
 above a certain threshold in d

S
 is 

robust against different types of signaling input (cf. also Figure 3A). 
This may, however, be highly dependent on the reaction network 
that underlies the transfer function. We have not further explored 
this question. To test for robustness of these systems against vari-
ability of concentration, we repeated experiments for 100 systems 
with 20% variation of original concentrations, which corresponds 
to generally accepted noise levels (cf.13,14). As expected, this low 
variation did not significantly affect the quality of a set of kinetic 
rates (Supplementary table).

We further analysed the parameter combinations with different sig-
nal transmission efficiency. In Figure 2B and C, we distinguish low 
and high efficiency signal transmission. Interestingly, we find, with 
respect to signal efficiency of the transfer function, that all param-
eters are “sloppy” (allow a wide variation), there are no “stiff” (low 
variation) parameters15. Standard deviation for all parameters in our 
case is similar (Figure 2B). Since it has been argued that optimiza-
tion to experimental data yields reactions which allow more vari-
ance than others, as an indication of their influence on the signal 
transmission pathway, this analysis seems to contradict this effect. 
Possibly, these results pertain mostly to parameter variation that 
results from matching a networked system with many species to 
selected time-series data for only few species, which may behave 
differently from general optimization.

Co-regulation of protein concentration as an adaptive 
response to perturbation
Co-regulation of protein expression in cellular systems is important 
in disease progression and often a problem in targeted interventions. 
Here we are exploring the question of self-organization of protein 
concentration after a perturbation that reduces one protein to only 
10% of its previous concentration. Keeping kinetic rates fixed, all 
concentrations in the system are allowed to adjust until optimality 
of signal transmission and delay is reinstated. There is a number of 
interesting observations here (cf. Figure 4A), which relate to the 
biological reality. For instance, reducing PDE4B causes much regu-
lation in other proteins, but it is almost never targeted. In contrast, 
reducing PP1 has little effect, but PP1 is frequently responsive to 
other proteins. Reducing PKA, RGS and AC6 leads to widespread 

Table 3. Reaction times (dS) and response 
efficiency (RC,S) in a biological system and under 
optimization.

RC,S dS

original 0.272 423

optimized for Rc,s 0.41 594

optimized for ds 0.11 169

optimized for f 0.34 481

f x R x d x R x d xtransient x C S
p

S
p

C S Smax , , ,, ,
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Figure 2. A. Distribution of systems according to R and d values. ~ 1600 different systems states were randomly generated with k-parameter 
variations (20–500%), RC,S and d values were measured with the signal set shown on top. B. Kd and KM parameters for high efficiency (red, 
f < 2) and low efficiency (green, f > 5) systems. C. Cross-correlation of Kd values.

Figure 3. A. (top) Dynamics of selected systems with low (ftransient < 3, blue) or high (ftransient > 10, red) propensity for a transient response.  
(bottom) Distribution of concentration parameters according to dp, R p

C,S (grey) or RC,S, d (red). B. Concentration changes in response to 
optimizing for transients, with plateau signaling (left) and strong transients (right), sorted by ftransient. C. Concentration shifts (orange=high, 
green=low) in the biochemical reaction network for a high transient system, as averaged from B. Conforming to intuition, we see that the 
earlier, driver complex (G-protein) is high for transients, which increase the on-slope for cAMP production.

Figure 4. A. Concentration changes in response to total protein concentration reduction. Selected concentrations were reduced to 10% 
(shown on the x-axis). Learning was applied until f values were improved (shown on top for each experiment). Colors show the relative 
adjustment of all concentrations on the y-axis. B. Transfer function response to shifts in input signal range (shown on top). C. Concentrations 
changes in response to extracellular signal shift. Matrix is constructed as in A.
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down-regulations, to maintain sensitivity of signaling, but reducing 
the receptor beta-2 leads to up-regulation.

There are many individual adaptations which can be interpreted 
to maintain the sensitivity and responsivity of the small molecule 
cAMP. The results show that protein regulation is highly sensitive 
to positions and roles of individual proteins in the reaction network 
in transmitting the signal. This problem may also be amenable to a 
more principled mathematical analysis16. Another idea would be to 
rank reaction systems defined by kinetic parameters as in Figure 2 
by how well they adapt to perturbations.

In our example, the quality of the readjustment is not always the 
same, but the simple optimization scheme that we use may eas-
ily produce suboptimal solutions (local minima). Concentration 
changes may be caused by genetic up- or down-regulation, secretion 
and re-uptake, increased degradation, RNA interference, etc. and 
are therefore not easy to model from the standpoint of mechanistic 
biological modeling, which would need modules for all biologi-
cally attested processes. A unified perspective by a set of constraints 
and a set of objectives, such as has been envisaged here, may lead to 
better predictive results and may also be used as a guiding principle 
in constructing mechanistic models. Since there are intricate bio-
logical processes of adjusting concentrations, we may assume that 
in the cell optimal solutions are more easily found.

Optimal signal transmission depends on the signaling level
From the standpoint of disease modeling, an unusual protein con-
centration may be an adaptive response where a still functioning cell 
in a dysfunctional external signaling environment struggles to keep 
signal transmission efficient to support cellular function. In such 
a case, targeting this protein by pharmacological intervention will 
lead to co-regulation on other proteins. In general, as well as in real 
biological signaling systems, it is the localization of the input sign-
aling range and the distribution of signals that the system transmits 
which are important for optimization. If we select the signal set that 
we optimize for in the right way, the input range will move towards 
the loglinear range, i.e. between the lower and upper input bounda-
ries (Figure 4B). As a result, a number of internal concentrations 
will change. Figure 4C shows the relative concentration changes 
that result from a shift in input range. Interestingly, the low shift 
requires a strong reduction in RGS, and upregulation for PDE4B, 
among other effects. GsaGDP (the activating G protein) is strongly 
increased, and GiGDP (the inhibitory G protein) is decreased. In 
the high shift, GiGDP and PP1 (the phosphatase which decreases 
pVASP) are stronger, and the beta-2 receptor density is much 
increased. In the future, it will be interesting not only to calculate 
these effects based on different optimization measures, and in mul-
tiple input-output scenarios, but also to compare this with attested 
cases of biological adaptation. By reverse engineering, we may 
infer an optimization measure from a sufficient number of attested 
co-regulations. For instance in addiction, protein co-regulation as 
a form of sensitization is well-attested17, but also in cancer where 
intercellular signaling (e.g. by cytokines18) is affected. Gene expres-
sion data may then be mined not only for evidence of the mechanics 
of genetic regulatory pathways but also for evidence of shifts in 
extracellular signaling, which cause altered protein expression.

Role of transients
The appearance of a transient vs. a plateau signal (or even a damp-
ened oscillation) in response to sustained signaling depends on the 
construction of the biochemical reaction network (negative feedback 
interactions) and its parameters. We show that we can also train a 
system for the appearance of a transient response to a sustained 
signal. This means to search for high response at peak, low delay to 
peak, but also a low response at steady-state (see Section “Objec-
tive function” and Figure 3A). This requirement of invariance for 
the steady-state is sometimes considered a form of “robustness” or 
“homeostatic regulation” of the cellular response19,20, and signaling 
by transients is widely regarded as an important mechanism. Here 
we found that concentration adjustment is quite sufficient to acquire 
a switch from transient to plateau response, with a high variability 
of response shape dependent on concentration, but also on the size 
of the signal (Figure 3A). In Figure 3B we show the distribution of 
concentrations that achieve high or low propensity for transients, as 
indicated by ftransient. We focus on concentrations with fairly uniform 
up- or down-regulation to create an experimental graph in Figure 3C. 
The simplicity of Figure 3C undermines the notion, as proven by 
the random search optimization, that deviations from up- or down-
regulation for individual concentration may not be irrelevant noise, 
but rather part of a guided adaptation process that has many differ-
ent solutions. We may have to consider this complexity to under-
stand concentration adjustments in biological cells.

By using different objective functions for each target, it will be quite 
possible to combine different goals for targets in a multiple-output 
signaling system. Interestingly, a self-organizing cellular signaling 
system may also incorporate adaptive controls as objective func-
tions, in particular when ion channels or membrane transporters are 
targeted. In this case, the goal of the system is to respond to an input 
(e.g. ISO at beta-2 receptors) such that the magnitude of another 
input such as calcium (ion channels as targets) is controlled. Sig-
nal transmission efficiency for such a target is not to be optimized 
to a maximum value, but instead to the appropriate ratio between 
the inputs. We have not followed up on this idea, but it may be 
worth further investigation as an example of natural computation 
for adaptive control.

Discussion
The idea to look for parametric optimization as the basis of realis-
tic cellular properties has been applied with success to metabolic 
fluxes21. In that case, optimization of growth is usually regarded as 
the single objective function. Here we use another objective func-
tion, signal transmission efficiency, to study the adaptive response 
of a signaling system to perturbation in concentrations. This equals 
maximization of concentration change in a target species in response 
to input signal. Optimization of growth and optimization of signal 
transmission are therefore related.

Signal transmission in a cellular system may have multiple func-
tions: transcription factor activation, which may be related to the 
cell cycle, to morphological change or to adjustment of protein 
concentrations, cytosolic kinase/phosphatase activation with multi-
ple cellular targets, membrane protein activation such as ion chan-
nels or receptors, etc. We assume that signal transduction has been 
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optimized by evolution, and that concentration adjustment exists to 
maintain effective signal transmission. We have shown how to opti-
mize a single-input single-output system for both speed and signal 
efficiency due to the basic properties of kinetic equations6. It is easy 
to extend the present discussion to optimize for multiple outputs in 
parallel, and a system could also be optimized for a number of I/O 
functions. In that case, other measures, such as mutual information, 
may also be employed as objectives. We used optimization in a two-
step process: (a) in evolutionary learning, in order to find kinetic 
rates for estimated concentrations (b) in cellular adaptation, in order 
to re-calibrate the model in response to perturbations in concentra-
tions, changes in extracellular signaling, or to effect a transient vs. 
plateau-like response. This also means that we have transitioned 
from a biologically defined system that is built bottom-up from 
available parameters and data to a self-organizing, learning system 
that adjusts to changes on evolutionary or individual time-scales.

Matching models to experimental time-series data is an under-
constrained problem that often yields large ranges of suitable 

parameters15,22. Analysing signals and targets to find optimal trans-
mission parameters may be used to further constrain and investigate 
the parametric space. Signal transmission efficiency in a biological 
system can be measured directly23,24 and be compared to what is 
theoretically possible given a set of equations. During evolution, 
new protein subtypes develop with a different set of interactions 
and regulations. This corresponds to an adjustment of the available 
set of reactions, a type of structural learning to overcome the bot-
tlenecks that are a result of tightly specified molecular kinetics and 
limited adjustment of concentrations.
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Table 4. For 21 systems with RC,S > 0.5 and dS < 800, we re-calculate RC,S and dS < 800 from 
20 variations on concentration values within a 20% interval. Shown are the original, the 
mean and std values.

System no Basic� RC,S Mean RC,S Std RC,S Basic dS Mean dS Std dS

1 0.578 0.582 0.0311 757 779 41.8

2 0.623 0.623 0.0419 723 722 35.4

3 0.575 0.575 0.0483 732 740 34.89

4 0.782 0.792 0.0571 749 768 50.45

5 0.609 0.622 0.099 578 590 46.82

6 0.609 0.615 0.033 728 737 37.05

7 0.612 0.628 0.0636 659 663 18.43

8 0.672 0.666 0.061 658 662 25.36

9 0.703 0.715 0.049 782 812 44.66

10 0.655 0.651 0.0511 761 760 29.3

11 0.576 0.551 0.0698 649 638 44.94

12 0.54 0.56 0.108 664 669 20.91

13 0.694 0.695 0.043 692 695 22.5

14 0.504 0.501 0.0312 726 731 35.70

15 0.522 0.526 0.0594 620 621 24.49

16 0.8 0.806 0.0369 726 742 50

17 0.693 0.7 0.0341 717 724 24.03

18 1.24 1.29 0.221 761 779 59.1

19 0.651 0.63 0.0512 668 666 11.64

20 0.529 0.5 0.045 777 762 43.25

21 0.537 0.534 0.044 752 754 33.42

Supplementary table
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This article reports a new approach to modeling biological signal transduction systems based on the
simple but important assumption that such systems have been evolutionarily optimized for maximum
signal transmission efficiency. By embedding evolutionary optimization into the equations, the author
obtains a self-organizing, evolving model. The approach is not fundamentally novel as the idea comes
from the well-developed field of flux balance analysis. Apparently, however, this methodology has not
been previously applied to signal transduction.

The current article is somewhat too abstract to judge on the ultimate utility of the approach but certainly,
this is a step in an interesting direction.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

 06 November 2013Referee Report

doi:10.5256/f1000research.1276.r2347

 Reimer Kühn
Department of Mathematics, King's College London, London, UK

In this paper the author studies optimization of parameters in a network of bio-chemical reactions for
signal-transduction in a one-input-one-output setting, seeking either to maximize a stationary response
coefficient, or to maximize the slope at half-maximum of the (sigmoid) stationary response function, or to
minimize the delay to steady state. Combinations of these individual criteria are also looked at.
Optimization is performed over the space of kinetic rates and the initial concentrations of reactants of the
set of kinetic equations making up the signal transduction system.

The paper is very interesting and addresses a valid problem. It takes a well tested tenet as its starting
point, viz. that signal transduction - like many other biological processes - “has been optimized by
evolution, and that concentration adjustment exists to maintain effective signal transmission.”

Thus parameters are sought which would optimize a given signal transduction system. The example
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Thus parameters are sought which would optimize a given signal transduction system. The example
studied in the present paper consists of a set of 23 chemical reactions involving 27 molecular species,
and one or a combination of several criteria as mentioned above are used to drive the optimization. This
paradigm, it is argued would naturally give rise to a notion of self-organization of said system, as well as
support adaptability under changing external conditions.

While I find this an attractive proposition in principle, and one that could carry quite far in further attempts
to understand cellular processes, I am not entirely convinced that the way in which it is implemented in the
present paper is the most appropriate.

My main concern is related to the fact that, kinetic coefficients are included in the space of parameters
over which optimization of response coefficients is performed. Kinetic coefficients are, however, largely
given by the chemistry, or rather the physical properties of reactants involved. There is thus only a
restricted scope for varying these parameters; they may be varied to be sure (though not independently!)
by changing temperature, or the pH or the salinity of the solute in which these reactions occur. Since
neither of these conditions would change widely under natural in-vivo conditions, there is thus a question
whether this form of optimization is actually a good model of the one chosen by nature in the evolutionary
process. Differences between optimal and original values of kinetic coefficients are not reported in the
paper. It would be interesting to know whether they are small (hence whether nature has exploited the
given reactions to the full).

Indeed, using minor modifications of the present setup, which would allow to describe the co-variation of
kinetic coefficients with temperature, pH and salinity, one might thus conceivably be able to verify that -
given the set of reactions describing the signalling system - nature is indeed running them under optimal
conditions.

An altogether more ambitious project would consist in implementing a more appropriate model of the
optimization process likely to have been implemented by nature to find precisely these 23 reactions. This
form of optimization would require something of a more combinatorial nature (changing or modifying reac-
tants thus reactions themselves) rather than parameters describing given reactions. Genetic algorithms,
in some sense also implemented by nature, could be the method of choice to go about it.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

Author Response 14 Jun 2014
, Carl Correns Foundation for Mathematical Biology, USAGabriele Scheler

Concerning kinetic coefficients: Often many different variants of a protein, or an enzyme, exist, with
different kinetic properties. Especially in the G-protein coupled pathway, variants for adenylate
cyclase, phosphodiesterase, RGS proteins, G-coupled receptors are on the order of dozens or
more (including splice variants). Accordingly, the actual kinetic rate e.g. for cAMP degradation can
be fine-tuned by the expression level of the different PDE's involved. These protein variants also
often have differentiated expression by cellular compartment and different regulatory interactions.
Still, I believe the potential for kinetic rate learning by evolutionary evolvement of enzymes into
subtypes is present.
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I agree that learning of a set of reactions would be a more ambitious and worthwhile project. 

 No competing interests were disclosed.Competing Interests:
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