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Abstract
Peroxisomes are arguably the most biochemically versatile of all eukaryotic organelles. Their metabolic
functions vary between different organisms, between different tissue types of the same organism and even
between different developmental stages or in response to changed environmental conditions. New functions
for peroxisomes are still being discovered and their importance is underscored by the severe phenotypes
that can arise as a result of peroxisome dysfunction. The β-oxidation pathway is central to peroxisomal
metabolism, but the substrates processed are very diverse, reflecting the diversity of peroxisomes across
species. Substrates for β-oxidation enter peroxisomes via ATP-binding cassette (ABC) transporters of
subfamily D; (ABCD) and are activated by specific acyl CoA synthetases for further metabolism. Humans
have three peroxisomal ABCD family members, which are half transporters that homodimerize and have
distinct but partially overlapping substrate specificity; Saccharomyces cerevisiae has two half transporters
that heterodimerize and plants have a single peroxisomal ABC transporter that is a fused heterodimer and
which appears to be the single entry point into peroxisomes for a very wide variety of β-oxidation substrates.
Our studies suggest that the Arabidopsis peroxisomal ABC transporter AtABCD1 accepts acyl CoA substrates,
cleaves them before or during transport followed by reactivation by peroxisomal synthetases. We propose
that this is a general mechanism to provide specificity to this class of transporters and by which amphipathic
compounds are moved across peroxisome membranes.

Introduction

Peroxisome functions and the requirement for
transport
Peroxisomes are single membrane-delimited organelles found
in almost all eukaryotic cells. Originally named for their
peroxidative metabolism, it has now become appreciated
that they possess multiple, diverse metabolic capabilities and
that these vary between organisms and even between cell
types or developmental stages of the same organism [1,2]
New functions for peroxisomes are still being discovered [3–
5]. One conserved function of peroxisomes is β-oxidation, a
pathway by which acyl groups are degraded two carbons at
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a time following activation to the corresponding acyl CoA
thioester by a specific acyl CoA synthetase. Many different
substrates can be processed by peroxisomal β-oxidation. The
degradation of fatty acids by β-oxidation occurs exclusively
in the peroxisome in fungi and plants whereas, in mammals,
peroxisomes handle degradation of branched, very long chain
and dicarboxylic acids which are exported to mitochondria
as C-16 units for completion of catabolism [1,2]. Peroxisomal
β-oxidation is also important for synthesis of some bioactive
molecules such as docosahexaenoic acid in mammals [2] and
the plant hormone jasmonic acid (JA) which is synthesized
from its precursor 12-oxophytodienoic acid (OPDA) by
three rounds of β-oxidation [6].

The metabolic activities of peroxisomes require that many
substrates, products and cofactors have to cross the peroxi-
somal membrane to and from the cytosol. A channel-forming
protein, PXMP2 (peroxisomal membrane protein 2), which
is present in the peroxisomal membrane, has been shown
in vitro to allow transmembrane passage of small solute
molecules with a molecular mass below 400 Da [7,8]. Based
on this finding, it has been postulated that small molecules
below 400 Da can cross the peroxisomal membrane passively
via this protein, whereas others suggest a regulated process
[9]. Similarly, plant peroxisome membranes possess a pore-
forming activity [10]. For bulky solute molecules (>400 Da);
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however, the peroxisomal membrane is an impermeable
barrier and transporter proteins are required [7].

Relatively few peroxisomal transporters have been iden-
tified but it is well-established that peroxisome localized
members of ATP-binding cassette (ABC) subfamily D
mediate uptake of substrates for β-oxidation [10]. The ABCD
family also includes the human endoplasmic reticulum
(ER)/lysosome localized PMP69 (69kDa peroxisome mem-
brane protein)/ABCD4 which is implicated in cobalamin
transport [11] and an Arabidopsis protein AtABCD2 which
is in the chloroplast but for which there is little functional
information [12]. However, this review will focus on the
peroxisomal members of this family.

Yeast ABCD transporters
In S. cerevisiae, two half transporters, termed Pxa1p
(peroxisomal ABC transporter1) and Pxa2p (peroxisomal
ABC transporter2) are involved in long chain fatty acyl-CoA
transport across the peroxisomal membrane [13–16]. Single
knockouts pxa1Δ and pxa2Δ cannot utilize oleate (C18:1)
as a sole carbon source and display reduced β-oxidation
[13,14]. The double mutant pxa1/pxa2Δ does not have an
enhanced phenotype in comparison with the single mutants
and protein–protein interaction studies demonstrated that
the two half size transporters heterodimerize to form a fully
functional transporter [15], with the central domain of the C-
terminal region in Pxa2p being required for the dimerization
process [17].

Non-esterified fatty acids can enter the peroxisome
independently of the ABC transporter and are activated
by the peroxisomal acyl-CoA synthetase, Faa2p (fatty
acid activation protein 2), prior to β-oxidation [14], a
process which requires the activity of the peroxisomal ATP
carrier, Ant1p (adenine nucleotide transporter1) [18,19].
Interestingly, a peroxisomal ABC transporter homologous
to ScPxa1/2p is not essential for the growth of the oleaginous
yeast, Yarrowia lipolytica on fatty acids, but growth is
impaired when YlPxa1/2p and YlAnt1p are deleted [20].

Plant ABCD transporters
Arabidopsis AtABCD1 is the most studied and best
understood plant peroxisomal ABC transporter and was
identified and named independently by at least four different
groups [CTS (COMATOSE), PXA1 (peroxisomal ABC
transporter1), PED3 (peroxisome defective 3) and ACN2
(acetate non utilizing 2)] [21–24]. The CTS gene is expressed
throughout the plant and encodes a full-sized transporter
with two homologous but distinct halves fused in a
heterodimer in the arrangement [TMD1] (the transmembrane
domain)–[NBD1] (nucleotide-binding domain)–[TMD2]–
[NBD2] (Figure 1). cts Mutants are defective in lipid
mobilization, require an exogenous carbon source for
seedling establishment and accumulate acyl-CoAs [22],
suggesting that CTS mediates the transport of fatty acyl-
CoAs into the peroxisome.

CTS has also been implicated in the import of a wide range
of other substrates: the JA precursor, OPDA [6,25], acetate
[24], the auxin precursors 2,4-dichlorophenoxybutyric acid
and indole butyric acid (IBA) [21,23], precursors of
ubiquinone synthesis [3] and cinnamic acid which is required
for the synthesis of benzoic acid [4]. In Arabidopsis, the
CTS (COMATOSE) locus was identified in genetic screens
for positive regulators of germination [22]. Subsequent
studies demonstrated that OPDA accumulation underlies the
germination defect through up-regulation of a transcription
factor, ABI5 (ABA insensitive 5) which inhibits seed coat
rupture [25,26]. Although the presumptive substrates for
CTS appear superficially dissimilar in size and shape, they
all share a common feature in having an acyl chain of at
least four carbons terminating in a carboxy group that is
potentially esterified to a CoA. Taken together, these data
indicate that CTS acts as a gateway into the peroxisome
for β-oxidation, influencing a wide range of metabolic and
signalling processes.

In contrast with dicotyledonous plants, cereals contain two
ABCD1 homologues arising from a gene duplication that
occurred prior to the divergence of the Gramineae [27]. Func-
tional studies in barley (Hordeum vulgare) suggest these two
genes are in the process of undergoing neofunctionalization.
Whereas both HvABCD1 and 2 are involved in fatty acid
and IBA metabolism, only HvABCD2 could complement
the Arabidopsis cts germination phenotype, pointing to a role
for the latter in OPDA metabolism [28]. ABCD1 proteins are
also implicated in control of seed size in Arabidopsis, barley
and tomato, since mutants in all these species have reduced
seed weight, but the biochemical basis for this is currently
unclear [28,29].

Human ABCD transporters
In mammalian cells, peroxisomes are involved in a number
of important metabolic pathways, including the α- and
β-oxidation of fatty acids and the biosynthesis of ether
phospholipids and bile acids [2]. Mammalian peroxisomes
contain three members of the ABC family: ABCD1
[adrenoleukodystrophy protein (ALDP); 30], ABCD2
[adrenoleukodystrophy-related protein (ALDR); 31] and
ABCD3 [70 kDa peroxisomal membrane protein (PMP70);
32]. All three proteins are half-ABC transporters and need to
dimerize to constitute a full, active transporter.

Expression of the human (Hs) peroxisomal ABC trans-
porters in yeast followed by functional characteriszation
has shown that the ABCD transporters have distinct but
overlapping specificities for different acyl-CoA esters. Most
hydrophobic C24:0-CoA and C26:0-CoA esters are pref-
erentially transported by HsABCD1, whereas C22:0-CoA,
C22:6-CoA and C24:6-CoA are preferentially transported
by HsABCD2. Substrates such as long-chain unsaturated
acyl-CoAs, 2-methyl branched-chain acyl-CoAs including
pristanoyl-CoA and long-chain dicarboxylic CoA esters
are preferentially transported by HsABCD3. Although
an active heterodimer of ABCD1 and ABCD2 has been
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Figure 1 Molecular models showing putative inward and outward conformations of Arabidopsis CTS

Models of CTS are based on the structures of (A) ABCB10 [52], with bound AMP–PCP (β,γ -methylene adenosine

5′-triphosphate) (green spheres) in an inward-facing conformation [2YL4.pdb replaced in database by 4AYT.pdb; the two

structures can be superimposed with a RMSD of 0.19 Å (1 Å=0.1 nm)] and (B) Sav1866 [53] open-outward ADP-bound

complex in which the two NBDs (blue and purple) are closely packed with two nucleotides (green spheres), sandwiched

between them (2HYD.pdb). The NBDs face the cytosol [39], views are from side-on (top image) and bottom-up (bottom

image) and an angled view to show the pore, the possible site of substrate release, created in the open conformation. Note

the domain swapping where TMD2 (yellow) contacts NBD1 (blue) and TMD1 (green) contacts NBD2 (purple).

reported [33], these yeast studies also demonstrated that
HsABCD1, HsABCD2 and HsABCD3 can function as
active homodimers [34].

The overlapping activities of the peroxisomal ABC
transporters are also evident from the residual C26:0-
CoA β-oxidation activity that is found in fibroblasts of
patients with X-linked adrenoleucodystrophy (X-ALD), the
most common peroxisomal disorder caused by mutations
in the ABCD1 gene [35]. This ABCD1 defect causes
impaired peroxisomal β-oxidation of very long-chain fatty
acids (VLCFAs, �C22:0) and consequently, accumulation of
VLCFAs especially in brain and adrenal glands. The residual
C26:0-CoA β-oxidation activity is mediated by ABCD3. In
addition, the VLCFA β-oxidation activity in fibroblasts from
X-ALD patients can be rescued by overexpression of ABCD2
or ABCD3 [35]. Ferdinandusse et al. [5] recently described a
new peroxisomal disorder caused by mutations in the ABCD3
gene. A patient with hepatosplenomegaly and severe liver
disease had a striking accumulation of bile acid intermediates

DHCA (dihydroxycholestanoic acid) and THCA, indicating
a role of HsABCD3 in the transport of these compounds. The
comparatively high expression level of ABCD3 in organs such
as liver, heart, kidney, muscle and brain [35], suggests that
HsABCD3 is also (indirectly) involved in fatty acid oxidation
as an energy generating process [34]. In line with this, it
was shown that overexpression or silencing of ABCD3 in
fibroblasts alters palmitate β-oxidation activity accordingly
[35,36].

Mechanism of fatty acid transport
Both human and plant ABCD genes can partially rescue
the β-oxidation and growth phenotypes of the pxa1/pxa2Δ

double mutant, reflecting aspects of conserved function with
respect to fatty acid metabolism [28,37–39]. However, human
ABCD1 cannot complement the cts plant mutant phenotype
and human ABCD2 can only complement the germination
defect supporting the notion that the plant transporters

C©2015 Authors; published by Portland Press Limited



962 Biochemical Society Transactions (2015) Volume 43, part 5

have a broader substrate specificity [40]. The precise nature
of the molecular species recognized by the transporters
and the mechanism of transport have been controversial.
Accumulating evidence supports the notion that ABCD
proteins transport the CoA esters of fatty acids across
the peroxisomal membrane [13,22,34,37–39,41]. Owing to
their fragile nature, transport experiments with isolated
peroxisomes are challenging; however, RNAi mediated
suppression of Trypansoma brucei ABCD transporter Gat1
(glycosomal ABC transporter1) reduced incorporation of
14C-C18:1-CoA into purified glycosomes [41] and isolated
human fibroblast peroxisomes could oxidize C26:0-CoA
[42]. Two models have been described for acyl-CoA
transport: in the first model, esterified fatty acids are delivered
directly to the peroxisomal matrix [42], whereas in the
other model acyl-CoA is hydrolysed during transport and
re-esterified in the peroxisomal lumen by an acyl-CoA
synthetase [43–45].

Interestingly, HsABCD1 and HsABCD2 could only
complement pxa1/pxa2Δ for β-oxidation of C22:0 and C24:0
if the peroxisomal long chain fatty acid peroxisomal synthase
Faa2p was present [43]. When expressed in yeast, Arabidopsis
CTS showed ATPase activity that could be stimulated by
fatty acid acyl CoA (FA-CoA) derivatives and the ability
to complement the yeast pxa1pxa2Δ mutant for growth
on oleate as a sole carbon source [27,39]. CTS was also
dependent upon the presence in the peroxisome of Faa2p or
the equivalent Arabidopsis long chain acyl CoA synthetases
(LACS)6 and/or LACS7 for functional complementation
of the pxa1/pxa2/faa2Δ mutant [45], which is consistent
with the in planta requirement for LACS6 and 7 for fatty
acid breakdown during Arabidopsis seedling establishment
[44]. Overall, the requirement for a peroxisomal activation
step suggested that the CoA moiety is cleaved off during
the transport cycle (Figure 2), which was confirmed in
experiments using isotopic labelling of yeast cells with 18O,
although this study could not reveal the origin of the
thioesterase activity [43]. Evidence that it is the ABCD trans-
porter itself came from experiments with membranes from
insect cells expressing CTS. These showed ATP stimulated
thioesterase activity that was much decreased in membranes
from cells expressing a non-functional mutant. This is
strongly suggestive of a thioesterase activity intrinsic to the
ABC transporter, although there is no domain with homology
to either α/β hydrolases or hot-dog fold thioesterases [45].
Whereas a soluble Arabidopsis α/β hydrolase, CGI-58 has
been proposed to stimulate the activity of CTS in planta, cgi-
58 mutants do not exhibit defects in germination or seed oil
mobilization [46].

At first sight, cleavage and reactivation of the acyl CoA
appears energetically wasteful, since the equivalent of two
molecules of ATP are used per activation reaction. However
such a mechanism could provide a solution to the problem
of how diverse substrates are accepted if the CoA moiety
is an important determinant for recognition and cleavage
potentially enables separate permeation pathways for the
polar (CoA) and hydrophobic (fatty acid) moieties of β-

Figure 2 Proposed transport mechanism for CTS

Fatty acids are released from oil body stores of triacylglycerol by lipolysis.

Cytosolic or microsomal acyl CoA synthetases activate non-esterified

fatty acids to the corresponding acyl-CoA esters. CTS accepts acyl-CoAs;

once bound, the intrinsic thioesterase activity of the transporter releases

fatty acids which may be flip-flopped in the membrane and released

into the peroxisome, where they are re-esterified by the activity of

LACS6 and 7. A pool of LACS6/7 protein is physically associated with CTS

on the lumenal side of the membrane [45] and ATP for the activation

reaction is provided by peroxisomal adenine nucleotide carriers PNC1/2.

The CoA moiety is thought to be imported into the peroxisome via the

ABC transporter or alternatively may be released into the cytosol.
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oxidation substrates. Where CoA is released and whether and
if so how it enters peroxisomes remains to be determined. At
750 kDa, it is too large to utilize the general pore; so, some
means of transport must be necessary to maintain the supply
of CoA for β-oxidation. Furthermore, different substrates
require different intraperoxisomal synthetases for activation,
potentially lending further specificity. Nevertheless why
mammals have three ABCD proteins with distinct but
overlapping specificity whereas most plants and yeast have
a single one with apparently broad substrate specificity is
unclear.

Symmetry and asymmetry in ABCD
transporters
A curious feature of the ABCD family is that it contains both
homodimeric and heterodimeric transporters which mediate
similar transport functions and apparently share the same
unusual mechanism. This has implications not only for ATP
binding and hydrolysis but also for binding and translocation
of the transported substrates. It is well established that the
NBDs of ABC transporters form a sandwich dimer with
two composite ATP-binding sites comprising the Walker A,
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Figure 3 Molecular model showing asymmetry in the two nucleotide binding sites of CTS

(A) Nucleotide binding between the Walker A (cyan), Walker B (blue) and H-loops (orange) motifs of NBD2 (dark grey) and

the signature motif (purple) of NBD1 (light grey). (B) In the wild-type protein, the upper site is formed from the signature

motif of NBD1 and the Walker motifs and H loop of NBD2 and the lower site is formed from the Walker motifs and H loop

of NBD1 and the signature motif of NBD2. In the upper site, the conserved H of the H loop is replaced by Q leading to a

degenerate site whereas the lower site has all the consensus amino acids. Mutation of the Walker B aspartate (D606N) in

NBD1 leads to two degenerate sites and loss of function whereas the equivalent mutation in NBD2 (D1276N) still retains

one consensus site and is functional [48].

Walker B and H-loops of one NBD and the signature motif
of the other [47]; Figures 1 and 3. By definition, these sites
are identical in homodimeric transporters such as ALDP but
they differ in heterodimeric peroxisomal transporters found
in yeast and plants. Based on sequence comparisons, Pxa1/2p
and CTS have one consensus and one degenerate site and
analysis of an allelic series of cts mutants demonstrated that
the NBDs of CTS are not functionally equivalent (Figure 3B)
[48]. Asymmetry appears to have evolved several times
independently in the ABC protein superfamily, although the
functional consequences of substitutions in conserved motifs

have not been investigated in all cases [49]. In CFTR (cystic
fibrosis transconductance regulator) and multidrug resistance
protein1 (MRP1), nucleotide hydrolysis is rapid at the
consensus site whereas nucleotide is bound but turned over
slowly at the degenerate site [50,51]. Numerous mutagenesis
studies have shown that an efficient ATP hydrolysis cycle at a
single consensus site is sufficient to provide all the necessary
conformational changes for substrate transport [49].

CTS and Pxa1/2p also exhibit sequence asymmetry in
TMDs (Figure 1) which potentially influences binding and
translocation of substrates. This may underpin the broader
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substrate specificity of the heterodimeric transporters
although the substrate-binding sites of ABCDs remain to be
identified. Intriguingly, both homodimeric and heterodimeric
ABCD transporters appear to share a thioesterase-dependent
transport mechanism [43,45], so it will be interesting to
determine whether there is one or two thioesterase sites in
symmetrical transporters such as ALDP.

Concluding remarks
In recent years, much progress has been made in un-
derstanding the physiological functions and biochemical
roles of peroxisomal ABC transporters, with the emergence
of exciting, novel mechanistic insights. Future challenges
include elucidating the transport mechanism in further detail
and relating this to the as yet elusive structure of ABC
subfamily D proteins.
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