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Abstract

The Notch signaling pathway controls numerous cell fate decisions during development and adulthood through diverse
mechanisms. Thus, whereas it functions as an oscillator during somitogenesis, it can mediate an all-or-none cell fate switch
to influence pattern formation in various tissues during development. Furthermore, while in some contexts continuous
Notch signaling is required, in others a transient Notch signal is sufficient to influence cell fate decisions. However, the
signaling mechanisms that underlie these diverse behaviors in different cellular contexts have not been understood. Notch1
along with two downstream transcription factors hes1 and RBP-Jk forms an intricate network of positive and negative
feedback loops, and we have implemented a systems biology approach to computationally study this gene regulation
network. Our results indicate that the system exhibits bistability and is capable of switching states at a critical level of Notch
signaling initiated by its ligand Delta in a particular range of parameter values. In this mode, transient activation of Delta is
also capable of inducing prolonged high expression of Hes1, mimicking the ‘‘ON’’ state depending on the intensity and
duration of the signal. Furthermore, this system is highly sensitive to certain model parameters and can transition from
functioning as a bistable switch to an oscillator by tuning a single parameter value. This parameter, the transcriptional
repression constant of hes1, can thus qualitatively govern the behavior of the signaling network. In addition, we find that
the system is able to dampen and reduce the effects of biological noise that arise from stochastic effects in gene expression
for systems that respond quickly to Notch signaling. This work thus helps our understanding of an important cell fate
control system and begins to elucidate how this context dependent signaling system can be modulated in different cellular
settings to exhibit entirely different behaviors.
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Introduction

Cells continuously receive signals from their microenvironments

– including factors present in the extracellular matrix, soluble

media, and surrounding cells – which collectively influence cell

function and behavior via activating intracellular signal transduc-

tion and gene regulation networks. These networks generally

involve complex, nonlinear interactions of proteins, such as

phosphorylation cascades (reviewed in [1]) and second messenger

signaling systems [2], whose structures feature positive and

negative feedback loops, feed-forward interactions, signal ampli-

fication, and cross-talk with other pathways [3]. Mathematical

models of these interactions are therefore very insightful or even

necessary avenues to analyze and understand the regulation of cell

behavior, as the properties of these networks can exceed an

intuitive understanding [4–6].

Notch is a signaling system required for numerous critical cell

fate specification events during the development of the nervous

system, hematopoietic system, eye, and skin [7–11]. The receptor

for this pathway is the single pass transmembrane protein Notch

that, when bound by its ligands Delta or Jagged, undergoes a series

of cleavage events to release its intracellular domain (NICD)

[9,12]. This NICD then translocates into the nucleus and acts as a

transcriptional upregulator of target genes, including members of

the hes family, through its interaction with the transcription factor

RBP-Jk [13]. In mammals there are four different Notch proteins

(Notch1-4) and 5 ligands (Delta 1, 3, and 4 and Jagged 1 and 2).

For this study, we have focused primarily on the Notch1 signaling

pathway.

In its role as a critical regulator of cell fate [7–11], Notch has

been known to function via lateral inhibition and induction

mechanisms to create fine-grained patterns in undifferentiated

cells, a process required for proper boundary formation and

differentiation of various tissues [14,15]. It can also function as a

binary cell fate switch, for example during differentiation of the

epidermis [16] and endodermal epithelium of the gut [17], to

promote differentiation of one cell type from precursor cells at the

expense of another. Furthermore, in some cases continuous Notch

activity is not required for cell fate specification. For example,

transient Delta-Notch signaling has been shown to be sufficient to
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induce T-cell [18] and NK cell differentiation [19] from their

respective precursor cells, and can induce an irreversible switch to

gliogenesis in neural crest stem cells [20]. Notch signaling also

occurs only transiently in many instances during the development

of Drosophila [21], zebrafish [22,23], and mice [24]. It was also

recently shown that human embryonic stem cells (hESCs) require

activation of Notch signaling to form the progeny of all three

embryonic germ layers, and subsequent transient Notch signaling

enhanced generation of hematopoietic cells from committed

hESCs [25]. The mechanisms by which a short Notch signaling

pulse can permanently switch cell fate are not elucidated.

The Notch system has also been shown to function as an

oscillator. Specifically, the expression levels of members of the hes

family, a group of downstream Notch target genes [26], have been

shown to oscillate with a 2 hour periodicity in some systems during

development, which for example aids in somitogenesis (i.e. the

patterning of somites) [27–29]. Hes1 protein and mRNA

concentrations have also been observed to oscillate with an

approximate 2 hr time period upon serum starvation in various

cultured cell lines including myoblasts, fibroblasts, and neuroblas-

toma cells [30]. Furthermore, oscillations in the Notch network

have been proposed to be important in maintaining neural

progenitor cells in an undifferentiated state [31]. Finally, there is

evidence that such oscillations may also afford cells the

opportunity to repeatedly test for the continued existence of a

signal [32], thereby increasing cellular response sensitivity and

flexibility by allowing the cell to integrate the results of many

periodical evaluations of the signal before making an ultimate cell

fate decision.

The Delta-Notch signaling system has been previously modeled

to elucidate its role in fine-grained pattern formation through the

action of lateral inhibition and induction [33–35]. Collier et al.

developed a simple 2-parameter model that focuses on pattern

formation due to feedback inhibition between adjacent cells via

Delta-Notch signaling [33]. Other models build upon this simple

model by adding more molecular detail at the intercellular level

[34,35]. In addition, several studies have focused on trying to

understand the underlying mechanism of Notch system oscillations

[32,36], where a Hes1 negative feedback loop composed of Hes1

protein repressing hes1 transcription, likely plays a central role

[37]. Delays related to transcription and translation were also

proposed to be important for the observed oscillations [38].

However, while several models have thus been proposed and have

yielded important insights into this system [30,36,38–40], they

have focused exclusively on Hes1 and not analyzed its interactions

with other signaling proteins in the Notch system. Additionally, all

these models focus on a particular aspect or mode of Notch

signaling (e.g. lateral inhibition or oscillation) but do not yet

address how complex, alternative behaviors could arise from the

same network.

Here we mathematically model the Notch signaling system to

analyze how the same network is capable of functioning as a cell

fate switch or an oscillator in different biological contexts. This

model, which includes the regulation of the notch1-RBP-Jk-hes1

gene circuit, predicts that the Notch1-Hes1 system acts as a

bistable switch in certain regions of parameter space, where Hes1

levels can change by 1–2 orders of magnitude as a function of the

input Delta signal. In addition, it predicts that a transient pulse of a

high level of Delta is capable of inducing high Hes1 expression

levels for a duration that would be sufficient to induce a cell fate

switch. Moreover, the model elucidates how the network can be

‘tuned’ to function in different regimes, either as an oscillator or a

cell fate switch, by changing a key parameter. Finally, low

numbers of reactants can lead to significant statistical fluctuations

in molecule numbers and reaction rates, making cells intrinsically

noisy biochemical reactors [41,42]. Stochastic simulations of the

Notch system, which enable the analysis of the effect of biological

noise in the system arising due to stochastic variations in gene

expression, reveal that for systems that respond quickly to Notch

signaling, the network is able to dampen the effects of this

biological noise and function in a manner similar to what is

predicted by the deterministic model. In summary, the model

enables analysis of the different behavioral responses of the Notch

signaling network observed over a broad spectrum of signaling

inputs and parameter values and can be further expanded to study

Notch signaling in numerous contexts.

Methods

We developed a model of Notch signaling to investigate how

this system can function as either an oscillator or as a simple binary

switch capable of responding to steady state or transient inputs.

Brief experimental work revealed that the notch1 promoter is

positively upregulated by its gene product and is downregulated by

Hes1 (Text S1, Fig. S1). We thus examined the behavior of the

notch1, RBP-Jk, and hes1 genes, which form a complex set of

regulatory feedback loops (Fig. 1). A deterministic model

composed of a system of differential equations was developed to

analyze dynamic changes in the levels of the network constituents.

However, since the concentrations of some of the species were low,

stochastic simulations were also conducted to examine whether

noise in the levels of the network components could significantly

impact system behavior, as noise has the potential to undermine

the fidelity of cell fate choices [41,43].

Deterministic Model Development
A set of differential equations was developed to track changes in

the concentrations of various species in the nucleus and cytoplasm

of a cell as a function of time following activation of Notch by its

ligand. The cell is modeled as a 10 mm diameter sphere with a

5 mm diameter nucleus. Numerous processes were modeled as

terms in the differential equation system, including transcription,

Author Summary

The Notch signaling pathway is an evolutionarily con-
served signaling system that is involved in various cell fate
decisions, both during development of an organism and
during adulthood. While the same core circuit functions in
various different cellular contexts, it has experimentally
been shown to elicit varied behaviors and responses. On
the one hand, it functions as a cellular oscillator critical for
somitogenesis, whereas in other situations, it can function
as a cell fate switch to pattern developing tissue, for
example in the Drosophila eye. Furthermore, malfunction-
ing of Notch signaling is implicated in various cancers. To
better understand the underlying mechanisms that allow
the network to function distinctly in different contexts, we
have mathematically modeled the behavior of the Notch
network, encompassing the Notch gene along with two of
its downstream effector transcription factors, which
together form a network of positive and negative feedback
loops. Our results indicate that the qualitative and
quantitative behavior of the system can readily be tuned
based on key parameters to reflect its multiple roles.
Furthermore, our results provide insights into alterations in
the signaling system that lead to malfunction and hence
disease, which could be used to identify potential drug
targets for therapy.

Models of Notch Signaling
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translation, transport, degradation or - in the case of Notch -

receptor cleavage (Fig. 1A, Text S1). As examples, the three

equations tracking the Hes1 cytoplasmic mRNA, Hes1 cytoplas-

mic protein and Hes1 nuclear protein concentrations are given by:

d Hcmð Þ
dt

~
RfHcm

7
{kdHcm �Hcm

d Hcpð Þ
dt

~ktrHc �HcmD{kdHcp �Hcp{kniHcp �Hcp

d Hnpð Þ
dt

~7 � kniHcp �Hcp{kdHnp �Hnp

The rate of change (in units of moles
l�min

) of the cytoplasmic mRNA

concentration of Hes1 is given by the difference in the rates of it

transcription and degradation. RfHcm is the transcription rate of

hes1 mRNA in the nucleus. We assume instantaneous export of

mRNA to the cytoplasm. A factor of 7 is included to take into

account the dilution due to export to the cytoplasm (Text S1).

kdHcm, kdHcp, and kdHnp denote the degradation constants for the

hes1 mRNA (Hcm), cytoplasmic protein (Hcp), and nuclear protein

(Hnp), respectively, which are assumed to undergo first order

degradation kinetics. ktrHc denotes the translation constant (min21)

for conversion of cytoplasmic hes1 mRNA into cytoplasmic

protein. Transcriptional and translational delay times are

incorporated into the model, as these are processes that inherently

involve delays between initiation and the production of a molecule

of mRNA or protein, as previously described [38,44]. Thus, the

translation of Hes1 protein is based on the delayed hes1 mRNA

concentration HcmD (delayed by time TpHc, the average time for

translation of Hes1), which is the concentration of mRNA present

when the process of translation was initiated instead of the

concentration at the present time. kniHcp denotes the nuclear

import rate in units of min21. A dilution factor of 7 is again used to

incorporate differences in nuclear and cytoplasmic volumes.

The hes1 Promoter
The transcription rates for notch1, hes1, and RBP-Jk are based

on the states of their respective promoters. Previous promoter

analysis has been complemented with Genomatix Suite Gene2-

Promoter transcription factor (TF) binding site prediction software

to identify potential TF binding sites in the promoters of the three

genes in the model.

Takebayashi et al. [37] observed that hes1 transcription is

repressed by its own gene product through Hes1 protein binding

to sites in the hes1 promoter termed N-boxes. Through a series of

binding and transcriptional activity assays, the study determined

that Hes1 bound strongly to three N-boxes found upstream of the

transcriptional start site and repressed transcription of the hes1

mRNA up to 40-fold. Also, while the work concluded that there

was a synergistic rather than an additive effect of the N-box

binding dependent repression of gene expression, further math-

ematical analysis has indicated that there is no or very weak

synergy among the different binding sites [45]. Several positive

regulatory regions were also found in the hes1 promoter, and it was

also shown to have two adjacent RBP-Jk binding sites [46,47].

Thus, we have modeled the hes1 promoter to have three equivalent

N-boxes where the Hes1 protein can bind and repress transcrip-

tion, as well as two equivalent RBP-Jk sites. The presence of all

other positive regulators of transcription is lumped into a constant

basal rate of transcription.

The notch1 Promoter
As it has not been extensively investigated, the notch1 promoter

sequence was analyzed in the Gene2Promoter software. One

putative Hes1 site (N-box) and two putative RBP-Jk sites were

Figure 1. Schematic of the Notch1-RBP-Jk-Hes1 signaling network. (A) Each arrow represents a term or event in the differential equation
model including transcription, translation, mRNA and protein degradation, nuclear import, TF binding, receptor-ligand binding and receptor
processing. (B) Schematic of the positive and negative feedback loops of the Notch1-RBP-Jk-Hes1 network. (-|) represents repression and (-.)
represents activation of target genes.
doi:10.1371/journal.pcbi.1000390.g001
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found in the ,1 kb notch1 promoter analyzed. This may imply that

notch1 is both positively and negatively regulated by its own gene

product. To test this, a transcriptional activity experiment using

the dual luciferase assay system was conducted. The promoter of

murine notch1 [48] was used to drive expression of hRluc cDNA

(Renilla luciferase). Co-transfection studies with plasmids express-

ing RBP-Jk, NICD, Hes1, and dNHes1 (a dominant negative form

of Hes1) indeed demonstrated that the notch1 promoter is regulated

negatively by Hes1 and RBP-Jk in the absence of NICD but is

positively regulated by NICD in the presence of RBP-Jk (Text S1,

Fig. S1). The notch1 promoter was modeled with two RBP-Jk sites

and one N-box.

The RBP-Jk Promoter
A 418 bp sequence upstream of the RBP-Jk gene as

characterized by Amakawa et al. [49] was analyzed in the

Gene2Promoter software for TF binding sites of interest. Three

potential Hes1 binding sites and three potential RBP-Jk sites were

found. Thus, the RBP-Jk gene also potentially undergoes

autoregulation under Notch signaling, and a three N-box, three

RBP-Jk site model was utilized.

Modeling the Transcription Term
As discussed above, all three promoters have one or more

binding sites for both Hes1 (the N-box) and RBP-Jk. It is assumed

that Hes1 can bind and repress transcription of the corresponding

promoter only in its homodimer form, and the dimerization

reaction is assumed to be at steady state over timescales of protein

transcription, translation and import, driven by mass action

kinetics such that the concentration of the dimer is given by:

Hes1{Hes1½ �~KaHp � Hes1½ �2

Where, KaHp is the association equilibrium constant for the

dimerization reaction. Similarly, the time scales of transcription

factor binding to and dissociation from the promoter elements are

also assumed to be much faster than those of gene transcription

and protein synthesis, such that binding to the promoter is at

pseudo steady state. In addition, it is assumed that NICD can bind

only when an RBP-Jk protein is bound to its site on the promoter,

and that this NICD binding converts RBP-Jk from a transcrip-

tional repressor to an activator [13].

The level of promoter activation (i.e. rate of mRNA synthesis) is

modeled by an approach termed BEWARE [50,51], in which the

probabilities of a promoter being in any one of its many possible

states are calculated based on the relative concentrations of the

three transcription factors (Hes1, RBP-Jk and NICD), and their

respective DNA binding affinities, using equilibrium binding

equations. The level of activation of the promoter is then given by:Pn

i~0

P Pi½ � � vi, where, P[Pi] is the probability of the promoter being

in state i, and vi is the activation rate of gene transcription

associated to the promoter being in that state i. When the

promoter is empty, the gene activation rate is assumed to be the

basal transcription rate (Vb) for that promoter. When a Hes1

dimer is bound to an N-box, the rate is reduced by a factor rN that

takes into account the repressive effect of the Hes1 transcription

factor, and when RBP-Jk is bound, the rate is reduced by a factor

rR. Furthermore, when the promoter is in its maximally activated

state with the NICD bound to the RBP-Jk and no Hes1 dimers

bound, the activation rate is assumed to be at its maximum and is

given by (Vmax+Vb). In the case of multiple RBP-Jk binding sites,

an additional factor tc (,1) is used to account for states where not

all RBP-Jk sites bind NICD to represent the decrease from the

maximum possible activation rate. For a detailed expression of

transcription rates please refer to Supplemental Materials (Text

S1).

Although explicit parameters have been included to account for

cooperative binding for Hes1 dimers to multiple N-boxes and for

RBP-Jk binding (cooperativity factors Cn, Cr and Cnr - please refer

to Table 1 for model parameters), they have been set to 1 for these

simulations, as recent work suggests there is very little if any

cooperative effect in Hes1 binding to N-boxes [45]. Finally, it is

assumed that each mRNA produces a fixed number of proteins,

i.e. mRNA dynamics have been neglected [50].

Parameter Determination
Experimentally determined values for half-lives of proteins and

mRNA, association and dissociation constants of proteins to their

respective DNA binding sites, dimerization constants, and protein

translation and transcription rates have been used when possible

(Table 1). These values are often not available for the exact species

of interest; however, the best available estimates based on similar

protein classes are used wherever applicable as the starting point.

The time delays for transcription and translation for each of the

three genes are calculated as previously described [52] and are

detailed in the Supplemental Materials (Text S1). 4.5 transcripts

per minute [45] and 20 transcripts per minute [53] were used as

initial estimates for hes1 basal and maximum transcription rates

respectively. The transcription rates for RBP-Jk and notch1 were

then determined from these estimates and the estimates of their

minimum transcription times (Text S1).

The degradation rates for the Hes1 protein and mRNA were

determined experimentally by Hirata et al. in fibroblasts [30].

They observed similar values in other cultured cell types including

myoblasts, neuroblastomas, and teratocarcinomas. Pulse chase

experiments of Logeat et al. [54] were used to assess the

degradation rates for the full-length Notch1 protein, and an

estimate of Notch1 protein half-life of ,40 minutes was derived.

GSK3b has been shown to affect the stability of NICD [55].

Although there are conflicting results as to whether GSK3b helps

to stabilize [55] or destabilize the cleaved NICD [56], our

experimental results show that GSK3b is essential for the NICD

regulation of neural stem cell differentiation into astrocytes

(Agrawal, Ngai, and Schaffer, manuscript in preparation).

Furthermore, we show that Notch1 signaling upregulates the

expression of GSK3b in these cells. Thus, the effect of GSK3b is

incorporated into the model by increasing the half-life of NICD

from 3 to 8 hrs [55] above a threshold concentration of Hes1

(which is assumed to directly or indirectly regulate the expression

of GSK3b). This increased NICD half-life does not however

change the qualitative behavior of the Hes1 switch (Fig. S3A).

The repression constant of Hes1 dimer bound to an N-box

(rNbox) is estimated from the results of Takebayashi et al. [37] that

show that in the presence of three N-boxes, transcription is

repressed by ,40 fold. This yields a repression value of ,0.3 per

N-box (Please refer to Supplemental Materials (Text S1) for

details). Since there are no reliable estimates of the NICD

generation constant upon Delta binding (kfNcp), a lumped

parameter of this constant with the Delta concentration is used

to report the strength of the Delta signal (kfNcp*Delp). The initial

parameters for which the experimentally determined values are

not accurately available were later subjected to sensitivity analysis

(See results).

Computational Methods and Initial Conditions
The differential equations described in the model were solved

(with parameter values given in Table 1) using Berkeley Madonna

Models of Notch Signaling
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8.3.11 software (www.berkeleymadonna.com) with the Runge

Kutta 4 module at a step size of 1 min. To arrive at realistic initial

conditions for the model, the initial concentrations of all species

were set to 0 with zero Delta signal, and the simulations were run

until the various species attained steady state concentration levels.

These steady state values (listed in Table 2) were then used as the

initial conditions for subsequent simulations. For the various

experiments, the system was run for 750 minutes without

stimulation with the Delta ligand to attain a basal steady state,

and the Delta concentration was then increased to different levels

to initiate Notch1 signaling. Simulations were run either with a

constant Delta signal throughout or with varying duration pulses

of the Delta signal. The system was simulated for a duration of

5,000–10,000 minutes (,3.5–7 days), as neural progenitor stem

cells have been previously shown to undergo differentiation upon

Notch activation in 3–5 days ([57]). Longer simulations up to

50,000 minutes were conducted when required to confirm Hes1

had reached steady state levels.

Stochastic Model Development
Since the levels of several protein species in the deterministic

model simulations were very low (Table 2), at the level of tens of

molecules per cell, assumptions of mass action kinetics and pseudo

steady state may not hold true, and stochastic effects may play an

important role in the dynamics of the signaling network [41,58].

To analyze whether noise in protein and mRNA concentrations

would impact the dynamics of the system, a stochastic simulation

of the model using the Gillespie algorithm [43] was implemented

in C++ (code available upon request). To relax the assumptions of

mass action kinetics and pseudo steady state, we explicitly

Table 1. Parameter values used for the models.

Description Symbol Value Source

Degradation constant of Hes1 protein (min21) kdHcp, kdHnp 0.0315 [30]

Degradation constant of Hes1 mRNA (min21) kdHcm 0.029 [30]

Degradation constant of RBP-Jk protein (min21) kdRcp 0.00231 [82]

Degradation constant of RBP-JK mRNA (min21) kdRcm 0.0075 [82]

Degradation constant of full-length Notch1 protein (min21) kdNp 0.017 [54], Text

Degradation constant of NICD protein (min21) kdNcp,kdNnp 0.0014 or 0.00385 [55], Text

Degradation of Notch mRNA (min21) kdNm 0.0058 [83]

Cooperativity factor for Hes1-DNA binding Cn 1 Text

Cooperativity factor for RBP-Jk DNA binding Cr 1 Text

Cooperativity factor for RBP-Jk Hes1 DNA binding Cnr 1 Text

Rate of protein translation from Hes1 mRNA (min21) KtrHc 4.5 [45], Text

Rate of protein translation from RBP-Jk mRNA (min21) KtrRc 2.5 Text

Rate of protein translation from Notch1 mRNA (min21) KtrN 1 Text

RBP-Jk DNA association constant (M21) Kr 3.236108 [84]

Hes1 DNA association constant (M21) Kn 26108 Text

RBP-Jk NICD association constant (M21) Ka 16108 Text

Hes1 dimer association constant (M21) KaHp 16109 Text

Transcriptional time delay for Hes1 (min) TmHc 10 [52], Text

Translational time delay for Hes1 (min) TpHc 2.35 [52], Text

Transcriptional time delay for RBP-Jk (min) TmRc 20 [52], Text

Translational time delay for RBP-Jk (min) TpRc 4.3 [52], Text

Transcriptional time delay for Notch1 (min) TmNc 70 [52], Text

Translational time delay for Notch1 (min) TpNc 21 [52], Text

Basal transcriptional rate for Hes1 (M/min) Vbh 1.14610210 [45], Text

Basal transcriptional rate for RBP-Jk (M/min) Vbr 4.3610211 Text

Basal transcriptional rate for Notch1 (M/min) Vbn 1.23610211 Text

Maximal transcriptional rate for Hes1 (M/min) Vmaxh 5610210 [53], Text

Maximal transcriptional rate for RBP-Jk (M/min) Vmaxr 2610210 Text

Maximal transcriptional rate for Notch1 (M/min) Vmaxn 5.5610211 Text

Nuclear import rate of Hes1 protein (min21) kniHcp 0.1 [85], Text

Nuclear import rate of RBP-Jk protein (min21) kniRcp 0.1 [85], Text

Nuclear import rate of NICD protein (min21) kniNcp 0.1 [85], Text

NICD generation constant upon Delta binding (M21 min21) KfNcp 7.66107 Text

Repression constant of Hes1 bound to N-box rNbox 0.3 [30], Text

Repression constant of RBP-Jk alone bound to promoter rR 0.2 Text

doi:10.1371/journal.pcbi.1000390.t001

Models of Notch Signaling
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simulated every reaction step, making a total of 299 reactions. For

example, every interaction between a transcription factor and a

promoter was modeled as a discrete reaction in the simulation. The

t-leap method [59] was also incorporated into the algorithm to

accelerate the stochastic simulations and increase their efficiency.

Results

The Notch1-Hes1 Network as a Bistable Switch
The response of the Notch1-RBP-Jk-Hes1 system to a step

change in an input Delta signal was analyzed. Simulations were

initiated using the steady state levels of the different species in the

absence of any external Delta (also listed in Table 2), and at

t = 750 minutes a Delta signal was applied. Fig. 2A demonstrates

that when a low input Delta stimulus is applied, the Hes1

concentration settles to a correspondingly low steady state value.

However, when the input Delta signal was increased (10-fold),

Hes1 shows a rapid increase to a new, 20-fold higher steady state

value. Further steady state analysis at a range of input Delta levels

and initial conditions reveals that the system exhibits bistability. At

low levels of Delta signal, basal levels of Hes1 are maintained in

the cell (‘‘OFF’’ state), but as the Delta signal strength is increased

beyond a threshold level, it stimulates the production of Hes1,

which is then maintained at high levels (‘‘ON’’ state) through the

concerted regulation of the Notch1-RBP-Jk-Hes1 network

(Fig. 2B). Bistability – which has previously been proposed as an

advantageous mechanism to mediate an unambiguous cell fate

switch, including in stem cells [51,60] – is evident within an

intermediate range of Delta signal values (Fig. 2B).

Network Sensitivity to Biological Noise
The initial numbers of some protein and mRNA species in the

system were in the range of tens of molecules per cell (Table 2),

Table 2. Initial conditions for deterministic and stochastic models.

Species Deterministic Model (mol/l) Stochastic Model (# of molecules/cell)

Hcm (Hes1 mRNA) 4.34 * 10212 1

Hcp (cytoplasmic Hes1 protein) 1.48 * 10210 41

Hnp (nuclear Hes1 protein) 3.30 * 1029 130

Rcm (RBP-Jk mRNA) 1.44 * 10212 1

Rcp (cytoplasmic RBP-Jk protein) 3.53 * 10211 10

Rnp (nuclear RBP-Jk protein) 1.07* 1028 422

Nm (Notch1 mRNA) 1.66 * 10211 5

Np (Notch1 protein) 9.74 * 10210 269

Ncp (cytoplasmic NICD) 0 0

Nnp (nuclear NICD) 0 0

doi:10.1371/journal.pcbi.1000390.t002

Figure 2. Bistability in Notch signaling. (A) Deterministic Hes1 trajectories as a function of time for two different strengths of Delta signals given
as a product of the Delta concentration and the rate constant of formation of NICD upon Delta-Notch binding (kfNcp*Delp = kDelp). These
deterministic simulations were initiated using steady state values of the system under no Delta signal and at t = 750 minutes (indicated by vertical
arrow) the input Delta signal was applied. (B) Hysteresis in the Notch1-Hes1 network, where Hes1 concentration can attain two possible steady states
for an intermediate range of Delta inputs. The point of switching depends on whether the Delta signal is increasing or decreasing.
doi:10.1371/journal.pcbi.1000390.g002
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such that stochastic fluctuations in individual species may impact

the dynamics of the network. In particular, intracellular noise

inherent in systems with small numbers of molecules and/or slow

biochemical reactions can randomize or undermine the ‘‘accura-

cy’’ of cell fate choices [41,58]. To analyze such behavior,

stochastic simulations based on the Gillespie algorithm [43],

distinct from the deterministic model, were developed. Steady

state analysis shows that at low, constant Delta signals, the Hes1

levels fluctuate about a low mean value corresponding to the

‘‘OFF’’ state, as expected (data not shown). However, if the Delta

signal is increased to a level just below the concentration at which

the deterministic model would predict a switch in state (Fig. 2B),

stochastic simulations reveal that noise in the network can induce

some trajectories to spontaneously switch states (Fig. 3A).

Analogous to results previously observed in other systems

[51,61,62], noise thus undermines the bistable switch and induces

spontaneous flipping between states. Analysis of the time it takes

the system to initially pass from the lower to the upper state reveals

that as the strength of the input signal is increased, this average

first passage time (FPT) decreases, and the percentage of

trajectories that change state increases (Fig. 3B). However, this

‘‘uncertainty’’ occurs within a narrow range of intermediate Delta

signal levels, and if this intermediate window is avoided, the system

effectively behaves deterministically.

In addition, ‘‘ON’’ to ‘‘OFF’’ transitions were simulated by first

stimulating with a high Delta signal for 4000 minutes to induce

high Hes1 expression levels. When Delta was then reduced to

levels that were in the predicted bistable region based on the

deterministic model, the system maintained high expression levels

of Hes1 (Fig. 4A), as anticipated from the deterministic results

(Fig. 2B). Contrary to what was expected based on the

deterministic model, however, when the Delta signal was instead

reduced to zero, some trajectories remained in the high Hes1

expression (‘‘ON’’) state (Fig. 4B). This indicates the role of

stochastics in potentiating high Hes1 expression levels even in the

absence of continued signal.

Response of the System to Transient Delta Activation
It has been shown for neural crest stem cells [20] that a transient

Notch signal is sufficient to induce cell differentiation. Also, there

are numerous situations where transient Notch-Delta signaling

determines the fates of immature cells, both in tissue culture

[18,19] and during organismal development [21–24]. Under

continuous Delta stimulation, the system can attain high steady-

state Hes1 expression levels, thus acting as a switch, but we next

wanted to examine whether transient Delta activation was also

capable of eliciting high Hes1 expression. We thus examined the

dynamic response of the system to transient activation of the

Notch1 pathway upon variation in the strength and duration of an

applied Delta signal.

When the system is stimulated for a short duration (10 minutes)

with a moderate strength Delta signal, the deterministic model

predicts a transient peak in the Hes1 expression that eventually

decays to its low steady state value (Fig. 5A). However, the peak

expression of Hes1 continually increases with increasing input

signal duration up to ,800 minutes, beyond which the maximum

expression levels of Hes1 attained remain the same but the

duration of prolonged high expression levels progressively

increases (Fig. 5A). Similarly, as the input Delta signal strength

is increased for a constant pulse duration, the peak Hes1

concentrations attained also increase up to a maximum value,

after which a further increase in the signal strength only increases

the duration of high Hes1 levels (Fig. 5B). The cell is thus able to

attain high Hes1 expression either under prolonged low intensity

Delta signaling or a short burst of high intensity Delta signaling.

Figure 3. Stochastic simulations demonstrate spontaneous ‘‘OFF’’ to ‘‘ON’’ transitions. (A) Representative stochastic Hes1 trajectories as a
function of time after application of a constant Delta stimulus at 750 min at levels just below ‘‘ON’’ levels predicted by the deterministic model. Some
Hes1 trajectories remain at low levels (‘‘OFF’’ state) while others randomly switch state to higher levels (‘‘ON’’ state). (B) First passage time (FPT) of
stochastic trajectories for passage from ‘‘OFF’’ to ‘‘ON’’ state as a function of Delta signal strength in the bistable region. The mean and standard
deviation of 40–60 runs in each case are plotted. The percentage of trajectories that switched to ‘‘ON’’ state under the given Delta signal is indicated
below each data point. All points except those connected by the same letter (A) are statistically distinct (p,0.01, 2-tail t-test).
doi:10.1371/journal.pcbi.1000390.g003
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Figure 4. The Notch system exhibits bistability under stochastic simulations. (A) Hes1 stochastic trajectories are shown during high Delta
levels for 4000 minutes, following which the Delta signal is brought down to levels that failed to switch the state to ‘‘ON’’ when provided for a
prolonged duration (kDelp = 461024) in the deterministic model. All the trajectories remain in the ‘‘ON’’ state – corresponding to the region of
bistability seen in the deterministic simulations. (B) Hes1 stochastic trajectories are shown after application of a high Delta signal for 4000 minutes,
after which the Delta signal is brought down to 0. Some trajectories persist in the ‘‘ON’’ state.
doi:10.1371/journal.pcbi.1000390.g004

Figure 5. Both input Delta signal strength and duration affect the output Hes1 expression levels. (A) Effect of Delta signal duration on
the Hes1 expression levels: a transient Delta signal of kfNcp*Delp = 561023 was provided in the deterministic model for varying amounts of time
ranging from 10 minutes to 3000 minutes, and the resulting Hes1 trajectories were simulated up to 15000 minutes. (B) The effect of Delta signal
strength on Hes1 expression: a transient Delta signal of varying strengths (expressed as kDelp = kfNcp*Delp (min21)) was provided in the
deterministic model for 100 minutes, and the resulting Hes1 were simulated up to 20000 minutes.
doi:10.1371/journal.pcbi.1000390.g005
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Stochastic Effects on Transient Delta Signaling
We also examined the effect of stochastics on transient

activation of the network. Simulations were run using the

parameter values as in the deterministic model for various Delta

pulse durations ranging from 10 minutes to 3000 minutes and

.40 trajectories per input duration value were analyzed. For

Delta pulse durations of less than 500 minutes, the stochastic

simulations followed the prediction of the deterministic model

(data not shown). However, for a 500-minute Delta pulse, even

though the deterministic model predicts a transient Hes1 peak that

does not attain the maximum possible expression level, a small

percentage of the stochastic trajectories in fact did switch to the

‘‘ON’’ state (corresponding to high Hes1 expression levels) (data

not shown). Also, as the duration of the Delta pulse is increased,

the percentage of trajectories that remain in the ‘‘ON’’ state for the

simulated 15,000 minutes progressively increases even though the

deterministic model predicts that the system would revert back to

the ‘‘OFF’’ state within that time. Furthermore, the average first

passage time (FPT) of the trajectories that do switch state increases

as the Delta pulse duration increases (Fig. 6). It is likely that for

shorter Delta pulse durations, if the system is to undergo the

spontaneous ‘‘OFF’’ to ‘‘ON’’ transition, it does so early, soon

after the application of the Delta signal. However, in the case of

longer duration input signals, the continued presence of the signal

allows trajectories to switch state even much later in the

simulation, resulting in an apparently longer first passage time.

Collectively, these results imply that even for very short signal

pulse, a small fraction of a population of cells receiving a pulse of

Delta signal could switch their state due to stochastic effects.

Bifurcation Analysis
A number of parameters in the model have not been directly

experimentally measured and were estimated from data available

for similar protein classes in different contexts, and we thus

performed sensitivity analysis for all such parameters by varying

them individually through a broad range of values in the

deterministic model (Table 3, Fig. S2). Although in most cases

the qualitative behavior of the system remained unchanged, the

system did exhibit considerable sensitivity to specific parameters,

which were then subjected to further analysis. These include: the

half-life of NICD, the equilibrium binding constant of NICD with

RBP-Jk (Ka), the maximal transcription rates (Vmax), and the

repression constant of Hes1 (rNbox). NICD has a long half-life of a

few hours under normal physiological conditions [55]. However,

our model indicates that if the NICD half-life is drastically

reduced, the system fails to function as a switch and cannot express

high levels of Hes1 (Fig. S3). In addition, the equilibrium binding

constant (Ka) of NICD to RBP-Jk in the model is 108 M21, but as

Figure 6. First passage time (FPT) for passage from ‘‘OFF’’ to
‘‘ON’’ state as a function of Delta signal duration in stochastic
simulations. The mean and standard deviation of .20 runs in each
case are plotted. The percentage of trajectories that switched to the
‘‘ON’’ state under the given Delta signal is indicated below each data
point. All points except those connected by the same letter (A,B,C) are
statistically distinct (p,0.01, 2-tail t-test).
doi:10.1371/journal.pcbi.1000390.g006

Figure 7. Bifurcation Analysis. (A) Bifurcation analysis of how the switching points vary with the equilibrium binding constant (Ka) of NICD to RBP-
Jk. Stronger interaction between NICD and RBP-Jk lowers the threshold of Delta signal required to turn the system ON. (B) Bifurcation analysis of how
the switching points vary with the maximal transcription rate of Hes1 (Vmaxh). A higher maximal transcription rate, indicating a stronger Hes1
promoter, also slightly shifts the region of bistability towards lower Delta signal strengths.
doi:10.1371/journal.pcbi.1000390.g007
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Ka increases – denoting stronger interactions of NICD with the

promoter – bifurcation analysis demonstrates that the OFF-ON

transition occurs at accordingly lower values of the Delta signal

(kDelp) (Fig. 7A). Similarly, increasing the maximal transcription

rate of Hes1 (Vmaxh) to indicate a stronger promoter shifts the

OFF-ON transitions to lower Delta signal strengths (Fig. 7B).

The Degree of Repression by Hes1 Determines the
Qualitative Nature of the Cellular Response to Delta
Stimuli

Interestingly, the response of the deterministic model was most

sensitive to the extent to which Hes1 binding reduced or repressed

expression of target genes (rNbox). As the Hes1 repression constant

(rNbox) is progressively decreased (or the repressive strength of

Hes1 progressively increased) from 0.3 to 0.1, the final steady state

concentrations of Hes1 progressively decrease for a given level of

Delta signaling (Fig. S4), but the system continues to exhibit

bistability. Intriguingly, as the value of rNbox is further decreased

below 0.1, there is a dramatic qualitative change in the response of

the system. Specifically, the system undergoes a bifurcation or

transition from bistable to monostable behavior and at such high

repressive strengths is unable to attain high steady state Hes1

expression levels. Finally at very low values of rNbox (,0.03), it

once again undergoes a transition to a stable oscillatory response

where the Hes1 levels in the cell oscillate about a low mean steady

state value (Fig. 8A). A phase plot of the response of the system

with variable rNbox (Fig. 8B) demonstrates how the same gene

network can transition from behaving as a bistable switch to being

an oscillator. The model thus elucidates the versatility of the

system, where tuning of a single key parameter can convert its

behavior from a switch to a clock. Previous hes1 models showing

sustained oscillations have focused exclusively on the low rNbox

region (i.e. rNbox = 0) of such a phase plot [30,36,38,39].

Discussion

The Notch signaling system is an evolutionarily conserved

network that functions in multiple organs to orchestrate cell fate

specification [63–65] in a context dependent manner. In some

cases, it can function as a binary cell fate switch at the individual

cell level [16,17], whereas in other situations cell-cell contact

dependent Notch signaling can result in pattern formation in an

array of cells [14,15], and in yet other contexts it can function as a

biological clock to govern pattern formation and differentiation

during somitogenesis [27–29]. Although several additional com-

ponents such as Fringe, Numb, and Presenilin can feed into and

modulate the Notch signaling cascade, the core of the signaling

pathway is relatively simple, where Notch acts as a membrane

bound transcription factor that is activated by ligand binding and

induces transcription of target hes genes via its interaction with the

RBP-Jk transcription factor [10]. However, the system can exhibit

complex inter-regulation of its components. A better understand-

ing of the functioning and regulation of this signaling system – and

in particular how it exhibits diverse behaviors in different contexts

– is valuable from a basic biology standpoint, in understanding

how misregulation of the Notch signaling pathway can underlie

disease, and from regenerative medicine viewpoint in therapeutic

applications of stem cells.

Mathematical modeling can provide valuable insights into the

behavior of this gene regulatory circuit. Previous models have

focused either on the level of cell-cell interactions to simulate the

levels of Notch and Delta within adjacent cells and thereby analyze

pattern formation based on levels of Delta and Notch levels in an

array of cells [33–35], or on the autoregulation of the hes genes in

isolation to examine the oscillatory behavior of the gene circuit

[30,36,39,40,44,45,66,67]. Here we have developed an integrative

model that takes into account the intracellular signaling network

downstream of Notch activation through its ligand Delta, leading

to the activation of the hes1 gene via interaction with RBP-Jk.

These three genes potentially regulate the transcription of one

another (Text S1, Fig S1) [37,46,47], forming a network of positive

and negative feedback loops (Fig. 1B). Our model begins to

elucidate how a cell can potentially tune key system parameters in

the resulting Notch1-Hes1 gene circuit to elicit diverse responses.

The behavior of the system was most sensitive to the repression

constant of Hes1, rNbox. The degree of Hes1 repression of a

transcriptional target can be modulated by the presence of co-

factors. For example, whereas Groucho can act as a transcriptional

co-repressor for Hes1, Runx2 can act as a negative regulator of the

repressive activity of Hes1 by interfering with the interaction of

Hes1 with the TLE corepressors [68]. The repressive activity of

Hes1 can also be further potentiated by its interaction with the

winged-helix protein brain factor 1 [69]. Therefore, because

different cells can express these factors to different extents, which

can thereby modulate the value of rNbox, the same gene circuit can

be tuned to transduce an input Delta signal into qualitatively

different responses – oscillation vs. switching.

The model predicts that for low repressive strengths of Hes1

(0.1,rNbox,0.3), the Hes1 expression level functions as a bistable

switch in response to varying the strength of the Delta signal,

thereby providing an unambiguous fate switch that is insensitive to

the presence of small fluctuations in input signal (Fig. 2). Hysteresis

Table 3. Summary of results of sensitivity analysis documenting the effect of increasing parameter values on the threshold of
Delta signal strength required to switch the system state from OFF to ON.

Parameter Range of variation Effect on threshold Kdelp (Delta signal strength) with increasing parameter value Results

Ka 107–109 (M21) Decrease over 2 orders of magnitude; no qualitative effect Fig. 7A

Vmaxh 0.3–0.9 nM/min Slight decrease; no qualitative effect Fig. 7B

rNbox 0–1 Drastic qualitative change in behavior of the system Fig. 8

Kn 107–109 (M21) Slight increase; no qualitative effect Fig. S2A

KaHp 108–1010 (M21) Slight increase; no qualitative effect Fig. S2B

rR 0–0.5 Slight decrease; no qualitative effect Fig. S2C

kdNcp, kdNnp 0.001–0.04 Increase over 2 orders of magnitude Fig. S3

The system exhibits a shift in the region of bistability, thus changing the sensitivity of the system to the Delta signal, but the qualitative nature of the gene network in
most cases remains the same for a broad range of the parameter values.
doi:10.1371/journal.pcbi.1000390.t003
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has been previously observed experimentally in other biological

systems including the JNK signaling cascade [70,71] and the Cdc2

cell cycle regulation [72]. Parameters such as Ka (the association

binding constant of NICD to RBP-Jk) and Vmax (the maximal

transcription rates) can shift the region of bistability, thus changing

the sensitivity of the system to the Delta signal, but the qualitative

nature of the gene network remains the same for a broad range of

these parameter values. Positive feedback loops with nonlinearity

can yield bistability [51], and both Notch1 autoregulation and

NICD-mediated conversion of RBP-Jk into a transcriptional

activator that in turn upregulates Notch1 expression constitute

positive feedback loops that can drive this behavior.

Since the numbers of some protein and mRNA species in the

model were low (Table 2), we developed a stochastic model to

examine the effect of biological noise and cell-to-cell variability on

the bistable response of the system to Delta signaling. Spontaneous

OFF to ON switching of states was observed even in regions not

predicted by the deterministic model. For example, as the Delta

values are increased through the bistable range, the percentage of

trajectories switching to the ON state increases, and the average

FPT for these trajectories decreases (Fig. 3B). These results are

consistent with observations in other bistable systems [73], and

computationally in other signaling systems [51], where noise has

been shown to cause spontaneous switching of states. However,

since the timescale of a system’s downstream response to the

Notch network’s state varies from a few hours (for example during

somitogenesis) [74] to a few days (for example during stem cell

differentiation) ([57]), the impact of stochastic noise on the fate

switch will also be different in different contexts. Thus, for very low

Delta signals, the average FPT is sufficiently high (.110 hrs) such

that the cell remains in the OFF state for prolonged periods of time

and would be non-responsive to Delta signaling over timescales of

a few hours, whereas in the case of a population of cells

experiencing Notch signaling over a period of 4–6 days,

spontaneous switching could undermine the genetic switch and

cause some cells to change fate at these low Delta input signals.

While the system can behave as a switch in a particular range of

parameters at steady state, there are also many situations in which

Notch signaling is transient, yet is sufficient to induce a switch in

cell fate [18–24]. To simulate this, the model behavior was

analyzed under transient Delta activation. The network response

to a transient Delta stimulus was a strong function of both the

signal intensity and duration, and either a high intensity signal for

a short duration or a low intensity signal for a prolonged duration

was capable of inducing transient increase in Hes1 expression

levels for up to 2.5 days after withdrawal of the signal (Fig. 5), a

time sufficient to initiate a biological response [57].

This prolonged expression of Hes1 upon transient Delta

activation is due to the long half-life of NICD [55]. The bistable

switch is thus sensitive to the degradation constant of NICD. If the

NICD half-life were for example drastically reduced, the model

would predict that the system would fail to express high levels of

Hes1 regardless of Delta levels (Fig. S3). Hes1 is a repressive

transcription factor that in some systems plays a crucial role in

suppressing the activation of oncogenes. For example, in breast

cancer cells, Hes1 can inhibit both estrogen- and heregulin-beta1-

stimulated growth via downregulation of E2F-1 expression [75].

Thus, a malfunction in the Notch system, such as a reduction in

NICD half-life, could contribute to cell transformation. Indeed,

aberrant Notch signaling is implicated in many cancers (reviewed

in [76]). For example, integrin-linked kinase (ILK), which is either

activated or overexpressed in many types of cancers including

breast cancer [77], can remarkably reduce the protein stability of

Notch1 and thus decrease its half-life drastically [78]. Interestingly,

high ILK and low NICD levels are detected in basal cell

carcinoma and melanoma patients [78].

By increasing the repressive strength of the Hes1 dimer by 10-

fold (rNbox,0.03), the cell can transition from being a bistable

system, to a brief region of monostability, and finally to an

oscillator (Fig. 8B). Oscillations occur with a time period of

approximately 2 hrs, similar to what Hirata et al. observed in cell

culture [30]. This value also compares well with the various

models that have been developed (for the Hes system in isolation)

to explain oscillations in the hes family of genes and their

Figure 8. Effect of the repression constant of Hes1 (rNbox) on
the Notch signaling network. (A) At lower values or rNbox (higher
repression constants for Hes1), the network predicts oscillations in Hes1
levels. As the value of rNbox is decreased to 0.03 and lower, the system
exhibits stable oscillations. (B) At a fixed Delta signal strength of
kDelp = 261024, as the rNbox is progressively decreased, the response of
Hes1 transitions from behaving as a bistable switch to a brief region of
monostability to an oscillator.
doi:10.1371/journal.pcbi.1000390.g008
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homologues. These models assume complete repression in the

presence of even a single Hes homodimer bound to the promoter

region [36,39,45,66]. This corresponds to an rNbox value of 0, in

which case there would be no difference between the repressive

strength of promoters with 1, 2 or 3 N-boxes. From the

experimental observations of Takebayashi et al. [37], where the

repressive strength of the promoter did in fact increase with the

number of N-boxes, the estimated value of rNbox is 0.3. However,

during somitogenesis, the factors expressed in the presomitic

mesoderm (PSM) may enhance the repression due to Hes1 such

that the value of rNbox is very low.

This current model represents the Notch signaling network core

in a single cell, and it can readily be extended to a field of cells to

analyze the role of Notch in patterning tissue formation [60]. In

addition, there are numerous cell-specific mechanisms and factors

that feed into this important signaling core [79–81]. Additional

molecular species can be added to this model framework, or the

parameter values of the current model can readily be modulated

for example to simulate changes in DNA binding affinities,

repressive constants, or the protein and mRNA stabilities as a

function of cell-specific factors. This simple but versatile model can

therefore be expanded by incorporation of additional molecular

mechanism, specific to particular cell types, to make predictions on

the role of Notch signaling in diverse cells and tissues.

In summary, we have theoretically and computationally

analyzed the Notch1-RBP-Jk-Hes1 signaling network, which is

responsible for cell fate specification in numerous contexts. Our

results indicate that the network, consisting of both positive and

negative feedback mechanisms, can be tuned to function either as

a bistable cell fate switch or an oscillator based on relatively small

changes in a key parameter value. Furthermore, the duration and

strength of the Delta signal regulate either the peak or the final

steady state levels of Hes1 attained. Therefore, cells can readily

tune the Notch system to regulate a variety downstream cell fates

and functions.

Supporting Information

Text S1 Supplemental Materials

Found at: doi:10.1371/journal.pcbi.1000390.s001 (0.09 MB

DOC)

Figure S1 Transcriptional analysis of the Notch1 promoter.

Relative fold changes in the activity of the Notch1 promoter in the

presence of exogenous Hes1 (H), dNHes1 (dN), RBP-Jk(R) and

NICD (N) are shown. Relative amounts of plasmids used in each

case encoding the respective cDNA are indicated. For example

H0.1dN1R0.5N0.5 indicates Hes1 = 0.1 mg, dNHes1 = 1 mg,

RBP-Jk = 0.5 mg and NICD = 0.5 mg in a total of 4 mg transfec-

tion.

Found at: doi:10.1371/journal.pcbi.1000022.s002 (2.52 MB TIF)

Figure S2 Bifurcation Analysis. (A) Bifurcation analysis of how

the switching points vary with the Hes1 DNA association constant

(Kn). Varying the association constant over two orders of

magnitude causes a slight shift in the strength of the Delta signal

required to switch the system state. Thus, stronger DNA

association of Hes1 (higher values of Kn) increases the threshold

values of Delta signal strength (Kdelp) required to turn the system

ON. (B) Bifurcation analysis of how the switching points vary with

the Hes1 dimerization constant (KaHp). Varying the dimerization

constant over two orders of magnitude causes a slight increase in

the strength of the Delta signal required to switch the system state

to ON. (C) Bifurcation analysis of how the switching points vary

with the repression constant of RBP-Jk (rR). Increasing the

repression constant from 0 to 0.5 (corresponding to a decrease in

the RBP-Jk repressive strength), has very little effect on the

threshold of Delta signaling strength required to turn the system

ON.

Found at: doi:10.1371/journal.pcbi.1000022.s003 (0.82 MB TIF)

Figure S3 Effect of half-life of NICD on the Hes1 switch. (A)

Changing the half life from 3 hrs (kdNcp = 0.00385) to 8 hrs

(0.0014) due to the effect of GSK3b causes a slight increase in the

steady state Hes1 concentration in response to a Delta signal of

kDelp = 561024, but no qualitative change in the switch.

Increasing the degradation constant by 10-fold (kdNcp = 0.0014

to 0.014) however, causes complete suppression of the switch. (B)

Analysis of how the threshold value of Delta signal required to

switch the system from OFF to ON increases with the increasing

degradation constant of NICD (decreasing NICD half life).

Found at: doi:10.1371/journal.pcbi.1000022.s004 (0.52 MB TIF)

Figure S4 Effect of repression through Hes1 (rNbox) on the high

steady state values of Hes1 expression.Decreasing rNbox progres-

sively decreases the steady state concentrations of Hes1 in the

rNbox range of 0.3 to 0.1.

Found at: doi:10.1371/journal.pcbi.1000022.s005 (0.42 MB TIF)
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