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An increasing number of studies highlight common brain regions
and processes in mediating conscious sensory experience. While
most studies have been performed in the visual modality, it is
implicitly assumed that similar processes are involved in other
sensory modalities. However, the existence of supramodal neural
processes related to conscious perception has not been convinc-
ingly shown so far. Here, we aim to directly address this issue by
investigating whether neural correlates of conscious perception
in one modality can predict conscious perception in a different
modality. In two separate experiments, we presented participants
with successive blocks of near-threshold tasks involving subjective
reports of tactile, visual, or auditory stimuli during the same
magnetoencephalography (MEG) acquisition. Using decoding anal-
ysis in the poststimulus period between sensory modalities, our
first experiment uncovered supramodal spatiotemporal neural
activity patterns predicting conscious perception of the feeble
stimulation. Strikingly, these supramodal patterns included activ-
ity in primary sensory regions not directly relevant to the task
(e.g., neural activity in visual cortex predicting conscious percep-
tion of auditory near-threshold stimulation). We carefully replicate
our results in a control experiment that furthermore show that the
relevant patterns are independent of the type of report (i.e., whether
conscious perception was reported by pressing or withholding a
button press). Using standard paradigms for probing neural
correlates of conscious perception, our findings reveal a common
signature of conscious access across sensory modalities and
illustrate the temporally late and widespread broadcasting of
neural representations, even into task-unrelated primary sensory
processing regions.
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While the brain can process an enormous amount of sensory
information in parallel, only some information can be

consciously accessed, playing an important role in the way we
perceive and act in our surrounding environment. An out-
standing goal in cognitive neuroscience is thus to understand the
relationship between neurophysiological processes and conscious
experiences. However, despite tremendous research efforts, the
precise brain dynamics that enable certain sensory information
to be consciously accessed remain unresolved. Nevertheless,
progress has been made in research focusing on isolating neural
correlates of conscious perception (1), in particular suggesting
that conscious perception—at least if operationalized as report-
ability (2)—of external stimuli crucially depends on the engage-
ment of a widely distributed brain network (3). To study neural
processes underlying conscious perception, neuroscientists often
expose participants to near-threshold (NT) stimuli that are
matched to their individual perceptual thresholds (4). In NT ex-
periments, there is a trial-to-trial variability in which around 50%
of the stimuli at NT intensity are consciously perceived. Because
of the fixed intensity, the physical differences between stimuli
within the same modality can be excluded as a determining factor

leading to reportable sensation (5). Despite numerous methods
used to investigate conscious perception of external events, most
studies target a single sensory modality. However, any specific
neural pattern identified as a correlate of consciousness needs ev-
idence that it generalizes to some extent, e.g., across sensory mo-
dalities. We argue that this has not been convincingly shown so far.
In the visual domain, it has been shown that reportable con-

scious experience is present when primary visual cortical activity
extends toward hierarchically downstream brain areas (6), re-
quiring the activation of frontoparietal regions to become fully
reportable (7). Nevertheless, a recent magnetoencephalography
(MEG) study using a visual masking task revealed early activity
in primary visual cortices as the best predictor for conscious
perception (8). Other studies have shown that neural correlates
of auditory consciousness relate to the activation of fronto-
temporal rather than fronto-parietal networks (9, 10). Addition-
ally, recurrent processing between primary, secondary somato-
sensory, and premotor cortices has been suggested as potential
neural signatures of tactile conscious perception (11, 12). Indeed,
recurrent processing between higher- and lower-order cortical
regions within a specific sensory system is theorized to be a marker
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of conscious processing (6, 13, 14). Moreover, alternative theories
such as the global workspace framework (15) extended by
Dehaene et al. (16) postulate that the frontoparietal engagement
aids in “broadcasting” relevant information throughout the brain,
making it available to various cognitive modules. In various elec-
trophysiological experiments, it has been shown that this process is
relatively late (∼300 ms) and could be related to increased evoked
brain activity after stimulus onset such as the so-called P300 signal
(17–19). Such late brain activities seem to correlate with percep-
tual consciousness and could reflect the global broadcasting of an
integrated stimulus making it conscious. Taken together, theories
and experimental findings argue in favor of various “signatures” of
consciousness from recurrent activity within sensory regions to a
global broadcasting of information with engagement of fronto-
parietal areas. Even though usually implicitly assumed, it is so
far unclear whether similar spatiotemporal neural activity patterns
are linked to conscious access across different sensory modalities.
In the current study, we investigated conscious perception in

different sensory systems using multivariate analysis onMEG data.
Our working assumption is that brain activity related to conscious
access has to be independent from the sensory modality; i.e.,
supramodal consciousness-related neural processes need to exhibit
spatiotemporal generalization. Such a hypothesis is most ideally
tested by applying decoding methods to electrophysiological sig-
nals recorded while probing conscious access in different sensory
modalities. The application of multivariate pattern analysis (MVPA)
to electroencephalography (EEG) and MEG measurements of-
fers increased sensitivity in detecting experimental effects dis-
tributed over space and time (20–23). MVPA is often used in
combination with a searchlight method (24, 25), which involves
sliding a small spatial window over the data to reveal areas con-
taining decodable information. The combination of both methods
provides spatiotemporal detection of optimal decodability, deter-
mining where, when, and for how long a specific pattern is present in
brain activity. Such multivariate decoding analyses have been pro-
posed as an alternative in consciousness research, complementing
other conventional univariate approaches to identify neural activity
predictive of conscious experience at the single-trial level (26).
Here, we acquired MEG data while each participant performed

three different standard NT tasks on three sensory modalities with
the aim of characterizing supramodal brain mechanisms of con-
scious perception. In the first experiment we show how neural
patterns related to perceptual consciousness can be generalized
over space and time within and—most importantly—between
different sensory systems by using classification analysis on source-
level reconstructed brain activity. In an additional control exper-
iment, we replicate the main findings and exclude the possibility
that our observed patterns are due to response preparation/
selection despite the need to report stimuli detection on every
trial in our experiments.

Results
Behavior. We investigated participants’ detection rate for NT,
sham (absent stimulation), and catch (above perceptual thresh-
old stimulation intensity) trials separately for the initial and the
control experiment. Catch and sham trials were used to control
false alarms and correct rejection rates across the experiment.
During the initial experiment participants had to wait for a

response screen and press a button on each trial to report their
perception (Fig. 1A). During the control experiment, however, a
specific response screen was used to control for motor response
mapping. At each trial the participants must use a different re-
sponse mapping related to the circle’s color surrounding the
question mark during the response screen (Fig. 1C).
For the initial experiment and across all participants (n = 16),

detection rates for NT experimental trials were 50% (SD: 11%)
for auditory runs, 56% (SD: 12%) for visual runs, and 55% (SD:
8%) for tactile runs. The detection rates for the catch trials were

92% (SD: 11%) for auditory runs, 90% (SD: 12%) for visual
runs, and 96% (SD: 5%) for tactile runs. The mean false alarm
rates in sham trials were 4% (SD: 4%) for auditory runs, 4%
(SD: 4%) for visual runs, and 4% (SD: 7%) for tactile runs (Fig.
1B). Detection rates of NT experimental trials in all sensory
modalities significantly differed from those of catch trials (au-
ditory, T15 = −14.44, P < 0.001; visual, T15 = −9.47, P < 0.001;
tactile, T15 = −20.16, P < 0.001) or sham trials (auditory, T15 =
14.66, P < 0.001; visual, T15 = 16.99, P < 0.001; tactile, T15 =
20.66, P < 0.001).
Similar results were observed for the control experiment

across all participants (n = 14). Detection rates for NT experi-
mental trials were 52% (SD: 17%) for auditory runs, 43% (SD:
17%) for visual runs, and 42% (SD: 12%) for tactile runs. The
detection rates for the catch trials were 97% (SD: 2%) for au-
ditory runs, 95% (SD: 5%) for visual runs, and 95% (SD: 4%)
for tactile runs. The mean false alarm rates in sham trials were
11% (SD: 4%) for auditory runs, 7% (SD: 6%) for visual runs,
and 7% (SD: 6%) for tactile runs (Fig. 1B). Detection rates of
NT experimental trials in all sensory modalities significantly
differed from those of catch trials (auditory, T13 = −9.64, P <
0.001; visual, T13 = −10.78, P < 0.001; tactile, T13 = −14.75, P <
0.001) or sham trials (auditory, T13 = 7.85, P < 0.001; visual,
T13 = 6.24, P < 0.001; tactile, T13 = 9.75, P < 0.001). Overall the
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Fig. 1. Experimental designs and behavioral results. (A and B) Initial ex-
periment. (C and D) Control experiment. (A) After a variable intertrial in-
terval between 1.3 and 1.8 s during which participants fixated on a central
white dot, a tactile/auditory/visual stimulus (depending on the run) was
presented for 50 ms at individual perceptual intensity. After 500 ms, stimulus
presentation was followed by an on-screen question mark, and participants
indicated their perception by pressing one of two buttons (i.e., stimulation
was “present” or “absent”) with their right hand. (B and D) The group av-
erage detection rates for NT stimulation were around 50% across the dif-
ferent sensory modalities. Sham trials in white (no stimulation) and catch
trials in black (high-intensity stimulation) were significantly different from
the NT condition in gray within the same sensory modality for both exper-
iments. Error bars depict the SD. (C) Identical timing parameters were used
in the control experiment; however, a specific response screen design was
used to control for motor response mapping. Each trial the participants must
use a different response mapping related to the circle’s color surrounding
the question mark during the response screen. Two colors (blue or yellow)
were used and presented randomly during the control experiment. One
color was associated to the response mapping rule “press the button only if
there is a stimulation” (for near-threshold condition detected) and the other
color was associated to the opposite response mapping, “press a button only
if there is no stimulation” (for near-threshold condition undetected). The
association between one response mapping and a specific color (blue or
yellow) was fixed for a single participant but was predefined randomly
across different participants.
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behavioral results are comparable to those of other studies (27,
28). Individual reaction times and performances are reported in
SI Appendix, Table S2.

Event-Related Neural Activity. To compare poststimulus processing
for “detected” and “undetected” trials, evoked responses were
calculated at the source level for the initial experiment. As a
general pattern over all sensory modalities, source-level event-
related fields (ERFs) averaged across all brain sources show that
stimuli reported as detected resulted in pronounced poststimulus
neuronal activity, whereas unreported stimuli did not (Fig. 2A).
Similar general patterns were observed for the control experi-
ment with identical univariate analysis (SI Appendix, Fig. S2).
ERFs were significantly different over the averaged time course
with specificity dependent on the sensory modality targeted by
the stimulation. Auditory stimulations reported as detected elicit
significant differences compared to undetected trials first be-
tween 190 and 210 ms, then between 250 and 425 ms, and finally
between 460 and 500 ms after stimulus onset (Fig. 2 A, Left).
Visual stimulation reported as detected elicits a large increase of
ERF amplitude compared to undetected trials from 230 to 250
ms and from 310 to 500 ms after stimulus onset (Fig. 2 A,
Middle). Tactile stimulation reported as detected elicits an early
increase of ERF amplitude between 95 and 150 ms and then a
later activation between 190 and 425 ms after stimulus onset
(Fig. 2 A, Right). In our protocol, such early ERF difference for
the tactile NT trials could be due to the experimental setup
where auditory and visual targets stimulation emerged from a
background stimulation (constant white noise and screen dis-
play) whereas tactile stimuli remain isolated transient sensory
targets (Materials and Methods).
Source localization of these specific time periods of interest

was performed for each modality (Fig. 2B). The auditory con-
dition shows significant early source activity mainly localized to
bilateral auditory cortices, superior temporal sulcus, and right
inferior frontal gyrus, whereas the late significant component was
mainly localized to right temporal gyrus, bilateral precentral
gyrus, and left inferior and middle frontal gyrus. A large acti-
vation can be observed for the visual conditions including pri-
mary visual areas; fusiform and calcarine sulcus; and a large
fronto-parietal network activation including bilateral inferior
frontal gyrus, inferior parietal sulcus, and cingulate cortex. The
early contrast of tactile evoked response shows a large difference

in the brain activation including primary and secondary so-
matosensory areas, but also a large involvement of right frontal
activity. The late contrast of tactile evoked response presents
brain activation including left frontal gyrus, left inferior parietal
gyrus, bilateral temporal gyrus, and supplementary motor area.
Timing differences between detected and undetected stimuli

emerge most clearly after 150 to 200 ms (see topographies in SI
Appendix, Fig. S5). This is different when comparing catch versus
sham trials, where early differences (i.e., prior to 150 ms) can be
observed (SI Appendix, Figs. S1 and S5). The difference in la-
tency between the tactile stimulation processing and the other
modalities is less pronounced for this condition where the target
is clearly present or absent. At the sensory level, for all sensory
modalities the differences start relatively focal (SI Appendix, Fig.
S5) over putatively sensory processing regions and become in-
creasingly widespread with time. These later evoked response
effects are descriptively similar to the ones observed for the near-
threshold stimuli, underlining their putative relevance for en-
abling conscious access.

Decoding and Multivariate Searchlight Analysis across Time and Brain
Regions. We investigated the generalization of brain activation
over time within and between the different sensory modalities.
To this end, we performed a multivariate analysis of recon-
structed brain source-level activity from the initial experiment.
Time generalization analysis presented as a time-by-time matrix
between 0 and 500 ms after stimulus onset shows significant
decoding accuracy for each condition (Fig. 3A). We train and
test our classifiers on 50% of the dataset with the same pro-
portion of trials coming from each separate run of the acquisi-
tion compensating for potential fatigue or habituation effect
along the course of the experiments. As can be seen on the black
cells located on the diagonal in Fig. 3A, cross-validation decod-
ing was performed within the same sensory modality. However,
off-diagonal red cells in Fig. 3A represent decoding analysis
between different sensory modalities. Inside each cell, data
reported along the diagonal (dashed line) reveal average classi-
fiers accuracy for a specific time point used for the training and
testing procedure, whereas off-diagonal data reveal a potential
classifier ability to generalize decoding based on a different
training and testing time points procedure. Indeed, we observed
the ability of the same classifier trained on a specific time point
to generalize its decoding performance over several time points
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(see off-diagonal significant decoding inside each cell in Fig. 3A).
To appreciate this result, we computed the average duration of
significant decoding on testing time points based on the different
training time points (Fig. 3B). On average, decoding within the
same modality, the classifier generalization starts after 200 ms
and we observed significant maximum classification accuracy
after 400 ms (Fig. 3 B, Top).
Early differences specific to the tactile modality have been

grasped by the classification analysis by showing significant decoding
accuracy already after 100 ms without strong time generalization
for this sensory modality, whereas auditory and visual conditions
show significant decoding starting only around 250 to 300 ms
after stimulus onset. Such an early dynamic specific to the tactile
modality could explain off-diagonal accuracy for all between-
modalities decoding where the tactile modality was involved
(Fig. 3A). Interestingly, time-generalization analysis concerning
between-sensory-modalities decoding (red cells in Fig. 3A) revealed
significant maximal generalization at around 400 ms (Fig. 3 B,
Bottom). In general, the time-generalization analysis revealed time
clusters restricted to late brain activity with maximal decoding ac-
curacy on average after 300 ms for all conditions. The similarity of
this time cluster over all three sensory modalities suggests the
generality of such brain activation.
Restricted to the respective significant time clusters (Fig. 3A),

we investigated the underlying brain sources resulting from
the searchlight analysis within and between conditions (Fig. 4).
The decoding within the same sensory modality revealed higher

significant accuracy in relevant sensory cortex for each specific
modality condition (Fig. 4, brain plots on diagonal). In addition,
auditory modality searchlight decoding revealed also a strong
involvement of visual cortices (Fig. 4, Top row and Left column),
while somatosensory modality decoding revealed parietal regions
involvement such as precuneus (Fig. 4, Bottom row and Right
column). However, decoding searchlight analysis between dif-
ferent sensory modalities revealed higher decoding accuracy in
fronto-parietal brain regions in addition to diverse primary
sensory regions (Fig. 4, brain plots off diagonal).

Decoding and Multivariate Searchlight Analysis over All Sensory
Modalities. We further investigated the decoding generalizabil-
ity of brain activity patterns across all sensory modalities in one
analysis by decoding detected versus undetected trials over all
blocks together (Fig. 5A). Initially, we performed this specific
analysis with data from the first experiment and separately with
data from the control experiment to replicate our findings and
control for potential motor response bias (SI Appendix, Fig. S3).
By delaying the response mapping to after the stimulus pre-
sentation in a random fashion during the control experiment,
neural patterns during relevant periods putatively cannot be
confounded by response selection/preparation. Importantly,
analysis performed on the control experiment used identical data
in SI Appendix, Fig. S3 B and C, but only trials assignation (i.e.,
two classes of definition) for decoding was different: “detected
versus undetected” (SI Appendix, Fig. S3B) or “response versus
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no response” (SI Appendix, Fig. S3C). Only decoding of con-
scious report (i.e., detected versus undetected) showed signifi-
cant time-by-time clusters (SI Appendix, Fig. S3 A and B). This
result rules out a confounding influence of the motor report and

again strongly suggests the existence of a common supramodal
pattern related to conscious perception.
We investigated the similarity of time-generalization results by

merging data from both experiments (Fig. 5A). We tested for
significant temporal dynamics of brain activity patterns across all
our data, taking into account that less stable or similar patterns
would not survive group statistics. Overall the ability for one
classifier to generalize across time seems to increase linearly
after a critical time point around 100 ms. We show that whereas
the early patterns (<250 ms) are rather short-lived, temporal
generalizability increases, showing stability values after ∼350 ms
(Fig. 5B). To follow up on potential generators underlying these
temporal patterns, we depicted the searchlight results from three
specific time windows (W1, W2, and W3) regarding the time-
generalization decoding and the distribution of normalized ac-
curacy over time (Fig. 5C). W1 from stimulation onset to 250 ms
depicts the first significant searchlight decoding found in this
analysis, W2 from 250 to 350 ms depicts the first generalization
period where decoding accuracy is low, and finally W3 from 350
to 500 ms depicts the second time-generalization period where
higher decoding accuracy was found (Fig. 5B). The depiction of
the results highlights precuneus, insula, anterior cingulate cortex,
and frontal and parietal regions mainly involved during the first
significant time window (W1), while the second time window
(W2) main significant cluster is located over left precentral
motor cortices. Interestingly the late time window (W3) shows
stronger decoding over primary sensory cortices where accuracy
is the highest: lingual and calcarine sulcus, superior temporal and
Heschl gyrus, and right postcentral gyrus (Fig. 5C). The sources
depicted by the searchlight analysis suggest strong overlaps with
functional brain networks related to attention and saliency
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detection (29), especially during the earliest time periods (W1
and W2) (SI Appendix, Fig. S4).

Discussion
For a neural process to be a strong contender as a neural cor-
relate of consciousness, it should show some generalization, e.g.,
across sensory modalities. This has—despite being implicitly
assumed—never been directly tested. To pursue this important
issue, we investigated a standard NT experiment targeting three
different sensory modalities to explore common spatiotemporal
brain activity related to conscious perception using multivariate
and searchlight analysis. Our results and conclusions are in-
timately dependent on the task relevance of “report-based par-
adigms,” in contrast to “no-report paradigms” (30). Participants
performed a detection task and reported their perception for
each trial. It has been shown that such protocols can elicit ad-
ditional late (after 300 ms) brain activity components compared
to other paradigms (31). Our findings focusing on the post-
stimulus evoked responses are in line with previous studies for
each specific sensory modality, showing stronger brain activation
when the stimulation was reported as perceived (27, 28, 32).
Importantly by exploiting the advantages of decoding, we provide
direct evidence of common electrophysiological correlates of
conscious access across sensory modalities.

ERF Time-Course Differences across Sensory Modalities. Our first
results suggest significant temporal and spatial differences when
univariate contrast between detected and undetected trials was
used to investigate sensory-specific evoked responses. At the
source level, the global group average activity revealed different
significant time periods according to the sensory modality tar-
geted where modulations of evoked responses related to de-
tected trials can be observed (Fig. 2A). In the auditory and visual
modalities, we found mainly significant differences after 200 ms.
In the auditory domain, perception- and attention-modulated
sustained responses around 200 ms from sound onset were
found in bilateral auditory and frontal regions using MEG (33,
34). Using MEG, a previous study confirmed awareness-related
effects from 240 to 500 ms after target presentation during visual
presentation (35).
Our results show early differences in the transient responses

(for the contrast detected versus undetected) for the somato-
sensory domain compared to the other sensory modalities and
have been previously identified using EEG at around 100 and
200 ms (36). Moreover, previous MEG studies have shown early
brain signal amplitude modulation (<200 ms) related to tactile
perception in NT tasks (28, 37, 38). Such differences are less
pronounced regarding the contrast between catch and sham
trials across sensory modalities (SI Appendix, Fig. S1). Early ERF
difference for the tactile NT trials can be due to the experimental
setup where auditory and visual targets stimulation emerged
from a background stimulation (constant white noise and screen
display) whereas tactile stimuli remain isolated transient sensory
targets. Despite these differences the time-generalization anal-
ysis was able to grasp similar brain activity occurring at different
timescales across these three sensory modalities.
Source localizations performed with univariate contrasts for

each sensory modality suggest differences in network activation
with some involvement of similar brain regions in late time windows
such as inferior frontal gyrus, inferior parietal gyrus, and sup-
plementary motor area. However, qualitatively similar topo-
graphic patterns observed in such analysis cannot unequivocally
be interpreted as similar brain processes. The important question
is whether these neural activity patterns within a specific sensory
modality can be used to decode a subjective report of the stim-
ulation within a different sensory context. The multivariate
decoding analysis we performed in the next analysis aimed to
answer this question.

Identification of Common Brain Activity across Sensory Modalities.
Multivariate decoding analysis was used to refine spatiotemporal
similarity across these different sensory systems. In general,
stable characteristics of brain signals have been proposed as a
transient stabilization of distributed cortical networks involved in
conscious perception (39). Using the precise time resolution of
MEG signal and time-generalization analysis, we investigated the
stability and time dynamics of brain activity related to conscious
perception across sensory systems. In addition to the temporal
analysis in this study, we also used the source-level analysis as an
indication of the possible brain origin of the effects. The pres-
ence of similar brain activity can be revealed between modalities
using such a technique, even if significant ERF modulation is
distributed over time. As expected, between-modality time-
generalization analysis involving tactile runs shows off-diagonal
significant decoding due to early significant brain activity for the
tactile modality (Fig. 3A). This result suggests the existence of
early but similar brain activity patterns related to conscious
perception in the tactile domain compared to auditory and visual
modalities.
Generally, decoding results revealed a significant time cluster

starting around 300 ms with high classifier accuracy that speaks
in favor of a late neural response related to conscious report.
Actually, we observed the ability of the same classifier trained on
specific time points with a specific sensory modality condition to
generalize its decoding performance over several time points
with the same or another sensory modality. This result speaks in
favor of supramodal brain activity patterns that are consistent
and stable over time. In addition, the searchlight analysis across
brain regions provides an attempt to depict brain network acti-
vation during these significant time-generalization clusters. Note
that, as seen also in multiple other studies using decoding (22,
23, 40, 41), the average accuracy can be relatively low and yet
remains significant at the group level. Note, however, that con-
trary to many other cognitive neuroscientific studies using
decoding (41, 42), we do not apply the practice of “subaveraging”
trials to create “pseudo”-single trials, which naturally boosts
average decoding accuracy (43). Also, the statistical rigor of our
approach is underlined by the fact that the reported decoding
results are restricted to highly significant effects (Pcorrected < 0.005;
Materials and Methods). Critically, we replicated our results—
applying the identical very conservative statistical thresholds—
within a second control experiment when looking at conscious
perception report contrast independently from motor response
activity (SI Appendix, Fig. S3). Our results conform to those of
previous studies in underlying the importance of late activity
patterns as crucial markers of conscious access (7, 44) and
decision-making processes (10, 45).
Due to our protocol settings with a low number of “catch” and

“sham” trials, we decided to concentrate our analysis on the
near-threshold stimuli contrast (detected vs. undetected). How-
ever, there are remaining interesting questions regarding the
processing of undetected targets compared to the absence of
stimuli. Future experiments should investigate such questions by
equilibrating the number of sham trials (“target absent”) and
near-threshold trials to investigate the precise processing of
undetected targets across the different modalities by using sim-
ilar decoding techniques to those presented in this experiment.
Furthermore in this study, we explored the brain regions un-

derlying time dynamics of conscious report by using brain source
searchlight decoding. Knowing the limitations of such MEG
analysis and using a spatially coarse grid resolution for compu-
tational efficiency (3 cm), we restricted depiction of results to the
main 10% maximum decoding accuracy over all searchlight brain
regions. Some of the brain regions found in our searchlight
analysis, namely deep brain structures such as the insula and
anterior cingulate cortex, are shared with other functional brain
networks such as the salience network (46, 47). Also the superior
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frontal cortex and parietal cortex have been previously found to
be activated by attention-demanding cognitive tasks (48). Hence,
we emphasize that one cannot conclude from our study that the
observed network identified in Fig. 5C is exclusively devoted to
conscious report. Indeed, catch and sham trials decoding can
also elicit a similar between-modalities temporal decoding pat-
tern compared to near-threshold stimulation analysis, speaking
in favor of a similar ignition of a common network during normal
perception of high-contrast stimuli for the three sensory mo-
dalities targeted by our experiment (SI Appendix, Fig. S6). Even
if this additional analysis has to be taken with precaution due to
the low number of trials for these conditions in our protocol (SI
Appendix, Table S1), it is informative regarding the involvement
of normal perception-processing brain networks in our task.
Actually, brain networks identified in this study share common
brain regions and dynamics with the attentional and salience
networks that remain relevant mechanisms for performing a NT
task. Interestingly this part of the network seems to be more
involved during the initial part of the process, prior to motor
brain region involvement (Fig. 5C and SI Appendix, Fig. S4).
Some brain regions involved in motor planning were identified

with our analysis, such as precentral gyrus, and could in principle
relate to the upcoming button press to report the subjective
perception of the stimulus. We specifically targeted such motor
preparation bias within the control experiment, in which the
participant was unable to predict a priori how to report a con-
scious percept (i.e., pressing or withholding a button press) until
the response prompt appeared. Importantly, we did not find any
significant decoding when trials used for the analysis were sorted
under response type (e.g., with or without an actual button press
from the participant) compared to a subjective report of de-
tection (SI Appendix, Fig. S3 B and C). Such findings could speak
in favor of generic motor planning (49) or decision processes
related activity in such forced-choice paradigms (50, 51).

Late Involvement of All Primary Sensory Cortices. Some within-
modalities decoding results highlighted unspecific primary cor-
tices involvement while decoding was performed on another
sensory modality. For instance, during auditory near-threshold
stimulation, the main decoding accuracy of neural activity pre-
dicting conscious perception was found in auditory cortices but
also in visual cortices (Fig. 4, Top row and Left column). In-
terestingly, our final analysis revealed and confirmed that primary
sensory regions are strongly involved in decoding conscious per-
ception across sensory modalities. Moreover, such brain regions
were mainly found during the last time period investigated fol-
lowing the first main involvement of fronto-parietal areas (Fig. 5).
These important results suggest that sensory cortices from a spe-
cific modality contain sufficient information to allow the decoding
of perceptual conscious access in another different sensory mo-
dality. These results suggest a late active role of primary cortices
over three different sensory systems (Fig. 5). One study reported
efficient decoding of visual object categories in early somatosen-
sory cortex using functional MRI (FMRI) and multivariate pat-
tern analysis (52). Another fMRI experiment suggested that
sensory cortices appear to be modulated via a common supra-
modal frontoparietal network, attesting to the generality of the
attentional mechanism toward expected auditory, tactile, and vi-
sual information (53). However, in our study we demonstrate how
local brain activity from different sensory regions reveals a specific
dynamic allowing generalization over time to decode the behavioral
outcome of a subjective perception in another sensory modality.
These results speak in favor of intimate cross-modal interactions
between modalities in perception (54). Our results replicate earlier
reports (for several modalities in one study) that conscious access to
near-threshold stimuli is not caused by differences in the early mainly
bottom–up-driven activation, but rather involves later widespread
and reentrant neural patterns (2, 3, 6).

Finally, our results suggest that primary sensory regions re-
main important at late latency after stimulus onset for resolving
stimulus perception over different sensory modalities. We pro-
pose that this network could enhance the processing of behav-
iorally relevant signals, here the sensory targets. Although the
integration of classically unimodal primary sensory cortices into
a processing hierarchy of sensory information is well established
(55), some studies suggest multisensory roles of primary cortical
areas (56, 57).
Today it remains unknown how such multisensory responses

could be related to an individual’s unisensory conscious percepts
in humans. Since sensory modalities are usually interwoven in
real life, our findings of a supramodal network that may subserve
both conscious access and attentional functions have a higher
ecological validity than results from previous studies on con-
scious perception for a single sensory modality.
Actually, our results are in line with an ongoing debate in neu-

roscience asking to what extent multisensory integration emerges
already in primary sensory areas (57, 58). Animal studies provided
compelling evidence suggesting that the neocortex is essentially
multisensory (59). Here our findings speak in favor of a multisen-
sory interaction in primary and associative cortices. Interestingly a
previous fMRI study using multivariate decoding revealed distinct
mechanisms governing audiovisual integration in primary and as-
sociative cortices needed for spatial orienting and interactions in a
multisensory world (60).

Conclusion
We successfully characterized common patterns over time and
space suggesting generalization of consciousness-related brain ac-
tivity across different sensory NT tasks. Our study paves the way for
future investigation using techniques with more precise spatial
resolution such as functional magnetic resonance imaging to depict
in detail the brain network involved. This study reports significant
spatiotemporal decoding across different sensory modalities in a
near-threshold perception experiment. Indeed, our results speak in
favor of the existence of stable and supramodal brain activity
patterns, distributed over time and involving seemingly task-
unrelated primary sensory cortices. The stability of brain activity
patterns over different sensory modalities presented in this study is,
to date, the most direct evidence of a common network activation
leading to conscious access (2). Moreover, our findings add to
recent remarkable demonstrations of applying decoding and time-
generalization methods to MEG (21–23, 61) and show a promising
application of MVPA techniques to source-level searchlight anal-
ysis with a focus on the temporal dynamics of conscious perception.

Materials and Methods
Participants. Twenty-five healthy volunteers took part in the initial experi-
ment conducted in Trento and 21 healthy volunteers took part in the control
experiment performed in Salzburg. All participants presented normal or
corrected-to-normal vision and no neurological or psychiatric disorders. Three
participants for the initial experiment and one participant for the control
experiment were excluded from the analysis due to excessive artifacts in the
MEG data leading to an insufficient number of trials per condition after
artifact rejection (fewer than 30 trials for at least one condition). Additionally,
within each experiment six participants were discarded from the analysis
because the false alarms rate exceeded 30% and/or the near-threshold de-
tection rate was over 85% or below 15% for at least one sensory modality
(due to threshold identification failure and difficulty in using response button
mapping during the control experiment, also leaving fewer than 30 trials for
at least one relevant condition in one sensory modality: detected or un-
detected). The remaining 16 participants (11 females, mean age 28.8 y; SD,
3.4 y) for the initial experiment and 14participants (9 females,mean age 26.4 y;
SD, 6.4 y) for the control experiment reported normal tactile and auditory
perception. The ethics committee of theUniversity of Trento andUniversity of
Salzburg, respectively, approved the experimental protocols that were used
with the written informed consent of each participant.
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Stimuli. To ensure that the participant did not hear any auditory cues caused
by the piezo-electric stimulator during tactile stimulation, binaural white noise
was presented during the entire experiment (training blocks included). Audi-
tory stimuli were presented binaurally using MEG-compatible tubal in-ear
headphones (SOUNDPixx; VPixx Technologies). Short bursts of white noise
with a length of 50 ms were generated with Matlab and multiplied with a
Hanning window to obtain a soft on- and offset. Participants had to detect
short white noise bursts presented near their hearing threshold (27). The in-
tensity of such transient target auditory stimuli was determined prior to the
experiment to emerge from the background constant white noise stimulation.
Visual stimuli were Gabor ellipsoid (tilted 45°; 1.4° radius; frequency, 0.1 Hz;
phase, 90; sigma of Gaussian, 10) back projected on a translucent screen by a
Propixx DLP projector (VPixx Technologies) at a refresh rate of 180 frames per
second. On the black screen background, a centered gray fixation circle (2.5°
radius) with a central white dot was used as a fixation point. The stimuli were
presented for 50 ms in the center of the screen at a viewing distance of
110 cm. Tactile stimuli were delivered with a 50-ms stimulation to the tip of the
left index finger, using one finger module of a piezo-electric stimulator
(Quaerosys) with 2 × 4 rods, which can be raised to a maximum of 1 mm. The
module was attached to the finger with tape and the participant’s left hand
was cushioned to prevent any unintended pressure on the module (28). For
the control experiment (conducted in another laboratory; i.e., Salzburg),
visual, auditory, and tactile stimulation setups were identical but we used a
different MEG/MRI vibrotactile stimulator system (CM3; Cortical Metrics).

Task and Design. The participants performed three blocks of a NT perception
task. Each block included three separate runs (100 trials each) for each sensory
modality: tactile (T), auditory (A), and visual (V). A short break (∼1 min)
separated each run and longer breaks (∼4 min) were provided to the par-
ticipants after each block. Inside a block, runs alternated in the same order
within subject and were pseudorandomized across subjects (i.e., subject 1 =
TVA-TVA-TVA; subject 2 = VAT-VAT-VAT; . . .). Participants were asked to
fixate on a central white dot in a gray central circle at the center of the
screen throughout the whole experiment to minimize eye movements.

A short training run with 20 trials was conducted to ensure that partici-
pants had understood the task. Then, in three different training sessions prior
to the main experiment, participants’ individual perceptual thresholds (tac-
tile, auditory, and visual) were determined in the shielded room. For the
initial experiment, a one-up/one-down staircase procedure with two ran-
domly interleaved staircases (one upward and one downward) was used
with fixed step sizes. For the control experiment we used a Bayesian active
sampling protocol to estimate psychometric slope and threshold for each
participant (62). Once determined by these staircase procedures, all near-
threshold stimulation intensities remained stable during each block of the
whole experiment for a given participant. All stimulation intensities can be
found in SI Appendix, Table S1.

The main experiment consisted of a detection task (Fig. 1A). At the be-
ginning of each run, participants were told that on each trial a weak stim-
ulus (tactile, auditory, or visual depending on the run) could be presented at
random time intervals. Five hundred milliseconds after the target stimulus
onset, participants were prompted to indicate whether they had felt the
stimulus with an on-screen question mark (maximal response time: 2 s).
Responses were given using MEG-compatible response boxes with the right
index finger and the middle finger (response-button mapping was counter-
balanced among participants). Trials were then classified into hits (detected
stimulus) and misses (undetected stimulus) according to the participants’
answers. Trials with no response were rejected. Catch (above perceptual
threshold stimulation intensity) and sham (absent stimulation) trials were used
to control false alarms and correct rejection rates across the experiment.
Overall, there were nine runs with 100 trials each (in total 300 trials for each
sensory modality). Each trial started with a variable interval (1.3 to 1.8 s, ran-
domly distributed) followed by an experimental near-threshold stimulus (80
per run), a sham stimulus (10 per run), or a catch stimulus (10 per run) of 50 ms
each. Each run lasted for ∼5 min. The whole experiment lasted for ∼1 h.

Identical timing parameters were used in the control experiment. How-
ever, a specific response screen design was used to control for motor response
mapping. For each trial the participants must use a different response
mapping related to the circle’s color surrounding the question mark during
the response screen. Two colors (blue or yellow) were used and presented
randomly after each trial during the control experiment. One color was as-
sociated to the response mapping rule “press the button only if there is a
stimulation” (for the near-threshold condition, detected) and the other
color was associated to the opposite response mapping rule “press a but-
ton only if there is no stimulation” (for the near-threshold condition, un-
detected). The association between one response mapping and a specific

color (blue or yellow) was fixed for a single participant but was predefined
randomly across different participants. Importantly, by delaying the re-
sponse mapping to after the stimulus presentation in an (for the individual)
unpredictable manner, neural patterns during relevant periods putatively
cannot be confounded by response selection/preparation. Both experiments
were programmed in Matlab using the open source Psychophysics Toolbox (63).

MEG Data Acquisition and Preprocessing.MEGwas recorded at a sampling rate
of 1 kHz using a 306-channel (204 first-order planar gradiometers, 102
magnetometers) VectorView MEG system for the first experiment in Trento
and a Triux MEG system for the control experiment in Salzburg (Elekta-
Neuromag Ltd.) in a magnetically shielded room (AK3B; Vakuumschmelze).
Before the experiments, individual head shapes were acquired for each
participant including fiducials (nasion and preauricular points) and around
300 digitized points on the scalp with a Polhemus Fastrak digitizer. Head
positions of the individuals relative to the MEG sensors were continuously
controlled within a run using five coils. Head movements did not exceed 1 cm
within and between blocks.

Data were analyzed using the Fieldtrip toolbox (64) and the CoSMoMVPA
toolbox (65) in combination with MATLAB 8.5 (MathWorks). First, a high-
pass filter at 0.1 Hz (FIR filter with transition bandwidth 0.1 Hz) was applied
to the continuous data. Then the data were segmented from 1,000 ms be-
fore to 1,000 ms after target stimulation onset and down-sampled to 512 Hz.
Trials containing physiological or acquisition artifacts were rejected. A
semiautomatic artifact detection routine identified statistical outliers of
trials and channels in the datasets using a set of different summary statistics
(variance, maximum absolute amplitude, maximum z value). These trials and
channels were removed from each dataset. Finally, the data were visually
inspected and any remaining trials and channels with artifacts were re-
moved manually. Across subjects, an average of five channels (±2 SD) were
rejected. Bad channels were excluded from the whole dataset. A detailed
report of the remaining number of trials per condition for each participant
can be found SI Appendix, Table S1. Finally, in all further analyses and
within each sensory modality for each subject, an equal number of de-
tected and undetected trials was randomly selected to prevent any bias across
conditions (66).

Source Analyses. Neural activity evoked by stimulus onset was investigated by
computing ERFs. For all source-level analyses, the preprocessed datawere 30-Hz
lowpass filtered and projected to source level using a linearly constrained
minimum variance (LCMV) beamformer analysis (67). For each participant,
realistically shaped, single-shell head models (68) were computed by
coregistering the participants’ head shapes either with their structural MRI or—
when no individual MRI was available (three participants and two participants,
for the initial experiment and the control experiment, respectively)—with a
standard brain from the Montreal Neurological Institute (MNI), warped to the
individual head shape. A grid with 1.5-cm resolution based on an MNI tem-
plate brain was morphed into the brain volume of each participant. A com-
mon spatial filter (for each grid point and each participant) was computed
using the lead fields and the common covariance matrix, taking into account
the data from both conditions (detected and undetected or catch and sham)
for each sensory modality separately. The covariance window for the beam-
former filter calculation was based on 200 ms pre- to 500 ms poststimulus.
Using this common filter, the spatial power distribution was then estimated
for each trial separately. The resulting data were averaged relative to the
stimulus onset in all conditions (detected, undetected, catch, and sham) for
each sensory modality. Only for visualization purposes a baseline correction
was applied to the averaged source-level data by subtracting a time window
from 200 ms prestimulus to stimulus onset. Based on a significant difference
between event-related fields of the two conditions over time for each sensory
modality, the source localization was performed restricted to specific time
windows of interest. All source images were interpolated from the original
resolution onto an inflated surface of an MNI template brain available within
the Caret software package (69). The respective MNI coordinates and labels of
localized brain regions were identified with an anatomical brain atlas (AAL
atlas; ref. 70) and a network parcellation atlas (29). Source analysis of MEG
data is an inherently underspecified problem and no unique solution exists.
Furthermore, source leakage cannot be avoided, further reducing the accu-
racy of any analysis. Finally, we remind the reader that we do not expect more
than 3 cm precision on our results because we used standard LCMV source
localization with a 1.5-cm grid. In other words, source plots should be seen as
suggestive rather conclusive evidence for underlying brain regions only.

MVPA Decoding. MVPA decoding was performed for the period 0 to 500 ms
after stimulus onset based on normalized (z-scored) single-trial source data
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down-sampled to 100 Hz (i.e., time steps of 10 ms). We used multivariate
pattern analysis as implemented in CoSMoMVPA (65) to identify when and
what kind of a common network between sensory modalities is activated
during the near-threshold detection task. We defined two classes for the
decoding related to the task behavioral outcome (detected and undetected).
For decoding within the same sensory modality, single-trial source data were
randomly assigned to one of two chunks (half of the original data).

For decoding of all sensory modalities together, single-trial source data
were pseudorandomly assigned to one of the two chunks with half of the
original data for each sensory modality in each chunk. Data were classified
using a twofold cross-validation procedure, where a Bayes-naive classifier
predicted trial conditions in one chunk after training on data from the other
chunk. For decoding between different sensory modalities, single-trial source
data of one modality were assigned to one testing chunk and the trials from
other modalities were assigned to the training chunk. The number of target
categories (e.g., detected/undetected) was balanced in each training parti-
tion and for each sensorymodality. The trials data are equally partitioned into
the chunks (i.e., we have the same amount of the three runs and block trials
for eachmodality in each separate chunk used for classification). Training and
testing partitions always contained different sets of data.

First, the temporal generalization method was used to explore the ability
of each classifier across different time points in the training set to generalize
to every time point in the testing set (21). In this analysis we used local
neighborhoods features in time space (time radius of 10 ms: for each time
step we included as additional features the previous and next time sample
data point). We generated temporal generalization matrices of task
decoding accuracy (detected/undetected), mapping the time at which the
classifier was trained against the time it was tested. Generalization of
decoding accuracy over time was calculated for all trials and systematically
depended on a specific between- or within-sensory-modality decoding. The
reported average accuracy of the classifier for each time point corresponds
to the group average of individual effect size: the ability of classifiers to
discriminate detected from undetected trials. We summarized time gener-
alization by keeping only significant accuracy for each sensory modal-
ity decoding. Significant classifiers’ accuracies were normalized between
0 and 1,

yt =
xt −minðxÞ

maxðxÞ−minðxÞ, [1]

where x is a variable of all significant decoding accuracies and xt is a given
significant accuracy at time t. Normalized accuracies ðytÞ were then aver-
aged across significant testing time and decoding conditions. The number of
significant classifier generalizations across testing time points and the rele-
vant averaged normalized accuracies were reported along the training time
dimension (Figs. 3B and 5B). For all significant time points previously iden-
tified we performed a “searchlight” analysis across brain sources and time
neighborhood structure. In this analysis we used local neighborhoods fea-
tures in source and time space. We used a time radius of 10 ms and a source
radius of 3 cm. All significant searchlight accuracy results were averaged
over time and only the maximum 10% significant accuracies were reported
on brain maps for each sensory modality decoding condition (Fig. 4) or for all
conditions together (Fig. 5C).

Finally, we applied the same type of analysis to all sensory modalities by
taking all blocks together with detected and undetected NT trials (equalized

within each sensorymodality). For the control experiment, we equalized trials
based on the 2 × 2 design with detection report (detected or undetected)
and type of response (“button press = response” or “no response”), so that
we get the same number of trials inside each category (i.e., class) for each
sensory modality. We performed a similar decoding analysis by using a dif-
ferent class definition: either detected vs. undetected or response vs. no
response (SI Appendix, Fig. S3 B and C).

Statistical Analysis. Detection rates for the experimental trials were statisti-
cally compared to those from the catch and sham trials, using dependent
samples t tests. Concerning the MEG data, the main statistical contrast was
between trials in which participants reported a stimulus detection and trials
in which they did not (detected vs. undetected).

The evoked response at the source level was tested at the group level for
each of the sensory modalities. To eliminate polarity, statistics were com-
puted on the absolute values of source-level event-related responses. Based
on the global average of all grid points, we first identified relevant time
periods with maximal difference between conditions (detected vs. un-
detected) by performing group analysis with sequential dependent t tests
between 0 and 500 ms after stimulus onset using a sliding window of 30 ms
with 10 ms overlap. P values were corrected for multiple comparisons using
Bonferroni correction. Then, to derive the contributing spatial generators of
this effect, the conditions detected and undetected were contrasted for the
specific time periods with group statistical analysis using nonparametric
cluster-based permutation tests with Monte Carlo randomization across grid
points controlling for multiple comparisons (71).

The multivariate searchlight analysis results discriminating between con-
ditions were tested at the group level by comparing the resulting individual
accuracy maps against chance level (50%) using a nonparametric approach
implemented in CoSMoMVPA (65), adopting 10,000 permutations to gen-
erate a null distribution. P values were set at P < 0.005 for cluster-level
correction to control for multiple comparisons using a threshold-free
method for clustering (72), which has been used and validated for MEG/
EEG data (40, 73). The time generalization results at the group level were
thresholded using a mask with corrected z score > 2.58 (or Pcorrected < 0.005)
(Figs. 3A and 5A). Time points exceeding this threshold were identified and
reported for each training data time course to visualize how long time
generalization was significant over testing data (Figs. 3B and 5B). Significant
accuracy brain maps resulting from the searchlight analysis on previously
identified time points were reported for each decoding condition. The
maximum 10% of averaged accuracies were depicted for each significant
decoding cluster on brain maps (Figs. 4 and 5).

Data Availability. A down-sampled (to 100 Hz) version of the data is available
at the OSF public repository (https://osf.io/E5PMY/). The original non-
resampled raw data are available, upon reasonable request, from the cor-
responding author. Data analysis code is available at the corresponding
author’s GitLab repository (https://gitlab.com/gaetansanchez).
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