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The recent development and application of methods based on the general principle of “crosslinking and proximity ligation”

(crosslink-ligation) are revolutionizing RNA structure studies in living cells. However, extracting structure information from

such data presents unique challenges. Here, we introduce a set of computational tools for the systematic analysis of data

from a wide variety of crosslink-ligation methods, specifically focusing on read mapping, alignment classification, and clus-

tering. We design a new strategy to map short reads with irregular gaps at high sensitivity and specificity. Analysis of pre-

viously published data reveals distinct properties and bias caused by the crosslinking reactions. We perform rigorous and

exhaustive classification of alignments and discover eight types of arrangements that provide distinct information on RNA

structures and interactions. To deconvolve the dense and intertwined gapped alignments, we develop a network/graph-

based tool Crosslinked RNA Secondary Structure Analysis using Network Techniques (CRSSANT), which enables

clustering of gapped alignments and discovery of new alternative and dynamic conformations. We discover that multiple

crosslinking and ligation events can occur on the same RNA, generating multisegment alignments to report complex

high-level RNA structures and multi-RNA interactions. We find that alignments with overlapped segments are produced

from potential homodimers and develop a newmethod for their de novo identification. Analysis of overlapping alignments

revealed potential new homodimers in cellular noncoding RNAs and RNA virus genomes in the Picornaviridae family.

Together, this suite of computational tools enables rapid and efficient analysis of RNA structure and interaction data in

living cells.

[Supplemental material is available for this article.]

RNA forms complex structures and interactions to execute a wide
variety of biological functions. The information-structure duality
of RNA underlies its pioneering position in the early evolution of
life on earth (Higgs and Lehman 2015). In addition to acting as
themessenger between the genetic blueprint and the protein prod-
ucts, structured RNAmolecules play extensive roles in scaffolding,
regulation, and catalysis in the modern RNA world (Cech and
Steitz 2014; Guil and Esteller 2015). Given the importance of
this biopolymer, many methods have been developed to deter-
mine its structures. Predicting the base-pairing of nucleotides, or
RNA secondary structure, has long been the goal of algorithms
that calculate minimal free energy conformations or exhaustively
search for conserved structural motifs in multiple alignments of
nucleotide sequences (Gutell 1993; Mathews 2006). Various ener-
gy- and statistics-based computational tools have been developed
to predict RNA 3D structures (Das et al. 2010; Weinreb et al. 2016;
Miao andWesthof 2017; Sun et al. 2017). On the other hand, clas-
sical physical methods, such as X-ray crystallography, nuclear
magnetic resonance (NMR) spectroscopy, and cryo-electron mi-
croscopy (EM) have made significant progress in recent years to-
ward solving more complex 3D structures of RNAs and their
complexes (Batey et al. 1999; Bai et al. 2015).

In the last few decades, a host of chemical methods were in-
vented to probe the flexibility and accessibility of individual nucle-
otides, which are indicative of their structural context (Weeks
2010; Lu andChang 2016; Velema andKool 2020). Thesemethods
typically yield indirect one-dimension information that assists sec-
ondary and tertiary structure prediction. More recently, several
crosslinking-based methods, including CLASH, hiCLIP, PARIS,
LIGR-seq, SPLASH, fRIP, and COMRADES, have been advanced
to provide direct physical evidence for spatial proximity among
RNA fragments (Kudla et al. 2011; Helwak et al. 2013; Sugimoto
et al. 2015; Aw et al. 2016; Hendrickson et al. 2016; Lu et al.
2016, 2018, 2020; Nguyen et al. 2016; Sharma et al. 2016; Ziv
et al. 2018; Zhang et al. 2021). These methods employ a variety
of crosslinkers, such as psoralens that only react with staggered uri-
dines and cytidines in opposing strands, ultraviolet light (UV) that
induces reactions between proteins and RNAs in direct contacts,
and formaldehyde that crosslinks all types of primary amine-con-
taining molecules that are close to each other (Lu and Chang
2018). After crosslinking and purification/enrichment, covalently
attached RNA fragments are ligated and sequenced in high
throughput, yielding hybrid reads, where each segment comes
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from a distinct region in an RNA, or from entirely different RNA
molecules. In the simplest form, the crosslink-ligation experi-
ments reveal RNA hetero-duplexes on a transcriptome-wide scale
(Fig. 1A). In reality, hetero-duplexes with two arms are not the
only form of structures in RNA structures and interactions, other
types of complex arrangements are also common and critical for

the formation of high-level structures (here, arms and segments
are used interchangeably).

First, within the samemolecule, high-level structures include
extendedheliceswith various internal loops,multihelix junctions,
pseudoknots, and even triple helices. In the past 50 yr, in vitro
studies have shed light on the exquisite folding of a number of
RNAs and their complexes, such as the ribosome, RNase P,
RMRP, telomerase, mascRNA, and viral IRES elements, each em-
ploying unique combinations of the aforementioned high-level
structures (Wilusz et al. 2012; Anger et al. 2013; Quade et al.
2015; Zhang et al. 2017; Wu et al. 2018; Kastner et al. 2019; Yan
et al. 2019). However, direct in vivo observation of these complex
structures and interactions has been more difficult, despite their
demonstrated functional significance in well-studied examples.

Second, between different RNA molecules, homodimers are
also possible besides heterodimers, yet very few RNA homodimers
have been studied, despite the high stability of the base-pairing in-
teractions (Bou-Nader and Zhang 2020). Examples have been re-
ported in a variety of contexts, including viral RNA genomes,
such as HIV, HCV, coronaviruses and bacteriophages (Clever
et al. 2002; Shetty et al. 2010; Ishimaru et al. 2013; Dubois et al.
2018), ribozymes and riboswitches (Bou-Nader and Zhang 2020),
mRNAs (Wagner et al. 2004; Jambor et al. 2011; Little et al.
2015; Trcek et al. 2015), trinucleotide/hexanucleotide repeats (Cie-
siolka et al. 2017; Jain and Vale 2017), and tRNAmutant and frag-
ment dimers/tetramers (Wittenhagen and Kelley 2002; Roy et al.
2005; Lyons et al. 2017; Tosar et al. 2018). In vitro, synthetic
RNAs have also been made to dimerize or multimerize to prepare
nanomachines (Severcan et al. 2009; Geary et al. 2011). These
homodimers play important roles in virus genome packaging,
stress response, translational regulation, liquid-liquid phase sepa-
ration, and human genetic diseases. Again, de novo identification
of homodimers remains challenging.

Despite the rapid progress in crosslink-ligation experimental
techniques, there are three major challenges in the data analysis.
First, the random RNA fragmentation by RNases or divalent cat-
ions and subsequent proximity ligation generates short reads
with irregular gaps. Longer reads can be mapped to references
with higher accuracy, but the resolution of secondary structure
models is lower. Shorter reads increase the model resolution, but
mapping accuracy is lower. Several short-read mappers have
been developed with the ability to handle gaps. For example, Bow-
tie 2 applies affine penalty to gaps, which discourages gap opening
and extension (Langmead and Salzberg 2012). Multistep mapping
protocols based on Bowtie 2 reduces sensitivity for shorter seg-
ments that cannot be mapped uniquely to the genomes (Lu and
Matera 2014; Travis et al. 2014; Lu et al. 2015b; Sharma et al.
2016). STAR can inherentlymap noncontinuous reads, but the pa-
rameters were optimized for the identification of splicing and gene
fusion events (Dobin et al. 2013; Haas et al. 2019), and perfor-
mances were suboptimal on crosslink-ligation data (Aw et al.
2016; Lu et al. 2016; Ziv et al. 2018). For example, splice junctions
have unique sequence consensus to facilitate opening of gaps and
assignment of extension penalty; in addition, splice junction data-
bases can be used to helpmapping, reducing the unnecessary pen-
alty and increasing the efficiency. Noncontinuous reads from
crosslink-ligation experiments, however, are far more random in
gap sequence and length, making it difficult to determine the ap-
propriate penalty. To solve this problem, we systematically opti-
mized the STAR parameters in this study and designed a set of
filtering criteria that significantly improved the sensitivity and
specificity of mapping short reads with irregular gaps.

BA

Figure 1. Overview of RNA crosslink-ligation experiments and analysis
pipeline. (A) Outline of a typical crosslink-ligation experiment leading to
FASTQ output files. The proximity ligation of crosslinked duplexes can pro-
duce both forward and backward arrangements. Circularized RNAs are
rare and lost during library preparation because they cannot be ligated
to adaptors. Similarly, concurrent crosslinking at multiple locations and
subsequent ligation of them produce multigapped reads (gapm in panel
B). (B) Several different types of crosslinking methods, such as psoralen,
UV, and formaldehyde, together with proximity ligation produces non-
continuous reads that can be used to determine RNA structures. Newly de-
veloped computational tools and optimized parameters are listed on the
right in nine steps (steps 1–9). Sequencing data that include both contin-
uous and noncontinuous reads are demultiplexed, and the adapter/primer
sequences are removed using published tools, for example, FASTX and
Trimmomatic (step 1). The processed reads are mapped to genome refer-
ences using optimized STAR parameters (permissive parameters, step 2).
After the first round of STAR mapping, continuous alignments with soft-
clips (indicating unmapped segments) are rearranged for a second round
of STAR mapping (step 3). All alignments from the two rounds of STAR
mapping are combined and filtered based on the gap penalty and a data-
base of gapped alignments with longer segments, and then classified into
six alignment types, including continuous (cont.sam in SAM format), one-
gap (gap1), multigap (gapm), trans interactions (trans), homotypic inter-
actions (homodimers, or homo), and miscellaneous bad alignments (bad)
(step 4, using the gaptypes.py script) (see details in Fig. 3A–D;
Supplemental Fig. S4). Data quality is checked using seglendist.py and
gaplendist.py scripts, which calculate segment and gap length distribu-
tions (step 5). After removal of splicing events and reverse transcription ar-
tifacts, for example, short 1- to 2-nt gaps (step 6, using gapfilter.py), each
of these alignment types is further processed to extract information for du-
plexes (step 7) (see Fig. 4 for details), high-level structures (step 8) (see Fig.
5 for details), and RNA homodimers (step 9, homo.sam) (see Fig. 6 for de-
tails). In step 7, two types of alignments, gap1filter.sam and trans.sam, are
used to generate duplex groups and non-overlapping groups (DGs and
NGs). In step 8, gapmfilter.sam alignments and the precomputed DGs
and NGs are used to build trisegment groups (TGs). In step 9, overlapping
chimeras are used to build potential homodimers. Detailed descriptions of
these steps are in the Methods section and Supplemental Material.

Clustering of RNA crosslink-l igation data
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Second, in addition to simple duplexes, the complex cross-
linking and proximity ligation reactions produce many different
types of reads/alignments that remain poorly characterized. Our
exhaustive classification uncovered eight categories of alignments,
which we rearrange and combine to five distinct types, including
continuous (cont for short), two-segment (1 gap, or gap1), multi-
segment (>1 gaps or >2 segments, gapm), homodimers (over-
lapped segments, homo), and trans interactions (two segments
on different strands or chromosomes). Each type of noncontinu-
ous alignments reveals distinct new structures and interactions,
especially composite structures, and homodimers. The rearrange-
ments also enable the visualization and of complex alignments
in genome browsers and facilitate intuitive understanding of their
corresponding structures.

Third, densely packed noncontinuous alignments are diffi-
cult to deconvolve into distinct groups that support individual
RNAduplexes, becausemost RNAduplexes are very short and close
to each other. This is further complicated by themultitude of alter-
native/dynamic conformations, where one RNA region can base
pair with multiple other regions. To resolve the complex structure
conformations encoded in noncontinuous alignments, we devel-
oped amethod to cluster alignments based on a network represen-
tation, termed CRSSANT. Alignments are assigned to duplex
groups (DGs) based on segment overlap ratios, and then DGs can
be used to constrain secondary structure modeling. This new
method is automatic and separates alternative conformations
from each other. Using DGs as the foundation, we further devel-
oped a method to build trisegment groups (TGs) that reveal
high-level structures and interactions among RNAs.

Using these newly developed tools, we systematically charac-
terized published crosslink-ligation methods, revealing their basic
properties and bias. For example, we noticed that psoralen mono-
adducts lead reverse transcription errors and overrepresentation of
uridine deletions in some of these crosslink-ligationmethods. Our
classification and clustering of various types of alignments led to
the discovery of high-level structures and interactions and RNA
homodimers in various cellular and viral RNAs. Together, this suite
of tools greatly expanded the capabilities of crosslink-ligation ex-
perimental methods.

Results

Overview of the computational pipeline

In general, crosslink-ligation experiments produce several types of
reads, including continuous and noncontinuous, where the con-
tinuous reads could be due to failed crosslinking or failed ligation,
and noncontinuous ones may contain two or more segments (Fig.
1A, showing two-segment reads as examples). To extract all possi-
ble types of structures from crosslink-ligation data, we established
a general strategy that is applicable to different types of experimen-
tal strategies, including, but not limited to, psoralen, UV, or form-
aldehyde crosslinking (Fig. 1B; Supplemental Code; Kudla et al.
2011; Sugimoto et al. 2015; Aw et al. 2016; Hendrickson et
al. 2016; Lu et al. 2016; Sharma et al. 2016; Van Nostrand et al.
2016; Ziv et al. 2018; Cai et al. 2020). The sequenced reads are first
processed to remove adapters and barcodes and demultiplexed us-
ing common tools (step 1, e.g., FASTX and Trimmomatic) (Bolger
et al. 2014). Processed reads are mapped to genome references
using STAR (Dobin et al. 2013) and a set of parameters that we spe-
cifically optimized for noncontinuous reads (step 2) (see Fig. 2;
Supplemental Fig. S1 for details). Softclipped alignments that can-

not be mapped as chimeras are rearranged for a second round of
STAR mapping to improve the detection of backward chimeras
(step 3). The optimized STAR method and subsequent filtering
maximize the sensitivity and specificity in the analysis of short
segments with irregular gaps. Alignments are filtered to remove
low-confidence segments, rearranged, and classified into six cate-
gories (step 4) (see Fig. 3; Supplemental Fig. S3 for details). In addi-
tion to simple RNA duplexes, these different types of alignments
provide new information such as high-level structures (multigap
alignments, or gapm), and RNA homodimers (homotypic interac-
tions, or homo). Segment and gap length distribution and gap nu-
cleotide properties are summarized to serve as quality controls (step
5). Gapped alignments (with one or more gaps) are filtered to re-
move splicing junctions and short 1- to 2-nt gaps that are likely ar-
tifacts (step 6). The filterednoncontinuous alignments are clustered
into duplex groups and nonoverlapping groups (NGs, for visualiza-
tion in genome browsers) (step 7) (see Fig. 4; Supplemental Fig. S3
for details). The alternative conformations (conflicting DGs) sug-
gest the existence of dynamic RNA structures and functions.
Multigap alignments together with DGs are further clustered into
TGs that support more complex structures and interactions (step
8) (see Fig. 5 for details). Alignments with overlapping segments
(homo.sam) are used to identify potential homodimers (step 9)
(see Fig. 6 for details). Altogether, this pipeline optimizes and inte-
grates all the known steps in the analysis of crosslink-ligation data.

Optimized short read mapping and filtering of crosslink-ligation

sequencing data

The first critical step in analyzing crosslink-ligation data ismapping
short reads withhigh sensitivity and specificity. To demonstrate the
relevance of read length in structure modeling, we examined RNA
duplexes in well-studied structures, the human ribosome and spli-
ceosome (Fig. 2A,B; Supplemental Fig. S1A; Supplemental Data;
Petrov et al. 2014; Yan et al. 2019). We found that ∼91% of arms
are ≤20 nt, and more than 50% of them are ≤10 nt. Bowtie 2 can
map parts of reads and the separately mapped segments can be
chained to identify the gaps. Themultistepmapping strategy results
in low sensitivity because both segments need to be long enough
(e.g., ≥20 nt) for unique mapping. The gap penalty is linear to
gap size, making it difficult to accommodate long gaps. STAR con-
siders the multiple segments together when calculating alignment
scores. In addition, gap penalty calculation ismore flexible, making
it possible to retain short segments. Several previous studies used
minimally modified STAR parameters (Ramani et al. 2015; Aw
et al. 2016), whereas others used Bowtie 2 and additional postpro-
cessing (Supplemental Table S1; Sugimoto et al. 2015; Nguyen
et al. 2016; Sharma et al. 2016; https://mariotools.ucsd.edu/html/).

Here, we used STAR to develop a new strategy to identify
gapped reads with high sensitivity and specificity. In principle,
STAR searches formaximalmappable prefixes (MMPs) sequentially
from fragments of the sequencing read, starting from the first base
(Dobin et al. 2013). Here, junctions are detected naturally during
the iterative search process and all types of junctions or gaps are in-
cluded. After MMPs are detected, they are clustered, stitched, and
scored in the second step. All seeds that arewithin the user-defined
genomic windows are stitched (default: winBin=216, and window
=9×winBin=589824). Theprinciple forournewstrategy is thatwe
allow mapping of short fragments by (1) removing the penalty for
gapopening (scoreGap∗ parameters inSTAR), (2) changing thepen-
alty for gap extension (scoreGenomicLengthLog2scale in gap ex-
tension penalty calculation in STAR), and (3) allowing chimeric
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alignments with short fragments (Fig. 2C; Supplemental Table S2;
Methods section “Optimized STARmapping”; SupplementalMate-
rial). Traditionally, STAR considers two types of gaps: (1) short gaps
from sequencing errors (“D” in CIGAR in SAM files); and (2) long
gaps from splicing (“N” in CIGAR). We removed this distinction
to simplify penalty calculation (changing alignIntronMin from
21 to 1). This combination of new parameters effectively treats all
gaps like splicing junctions.

In theory, numbers of forward and backward gapped align-
ments should be similar because the proximity ligation could ran-
domly occur on either the proximal or distal ends (shown in
Fig. 1A). While analyzing the STAR alignments with short arms,

we observed significantly fewer backward chimeras than forward
ones. For example, a normal alignment with CIGAR string
20M10N5M can be mapped, but switching positions of the two
armswill render itunmappable (onlymapping the20Mpart, leading
to 5S20M). Given that forward and backward chimeric alignments
are scored differently (a higher penalty for chimera), we rearranged
alignments with softclips (unmapped parts, “S” in CIGAR) for a sec-
ondroundofSTARmapping (Fig. 2D).The rearrangementallowspo-
tential backward alignments to be scored as normal forward gapped
alignments, which further increased the sensitivity.

After mapping, the alignments are filtered based on (1) seg-
ment length, and (2) overlap of less-confident shorter segments

E

F

BA C

D
I

K

M

L

J

G

H

Figure 2. Optimization of short-read mapping from crosslink-ligation experiments. (A,B) RNA stems were extracted from the human cytoplasmic and
mitochondrial ribosome and spliceosome crystal or cryo-EM structures. The following RNAs are included: 12S, 16S, 5S, 5.8S, 18S, 28S, U1, U2, U4, U6,
U5, U11, U12, U4atac, and U6atac. (C ) List of critical STAR parameters that are optimized to map noncontinuous reads. The default value for
chimSegmentMin is unset, whereas setting this value to any positive integer triggers chimeric alignments. The recommended value of 15 is used here
as the “default.” (D) Strategy for the two-round STAR mapping. After the first round of optimized STAR mapping, continuous alignments with softclips
(“S” in CIGAR) are rearranged and then mapped again using the optimized STAR parameters. (E,F ) Strategies for filtering alignments after STAR mapping.
(E) Confident alignments: all segments or arms are uniquely mapped to the genome. Alignments with shorter segments that cannot be mapped uniquely
are to be tested against confident ones. (F ) Filteringmethod for the less confident alignments: all arms of the confident alignments are built into a database
of connections between segments, in five nucleotide intervals (dots shown at the bottom). The connection database consists of reference name (RNAME),
strand (STRAND), and coordinates between start and end (START, END). Then, the less confident alignments are tested against this database. (G–J)
Benchmarking four mapping strategies on simulated reads for the human ACTB gene. Alignments are quantified on the following four aspects: (G) %
mapped reads, that is, reads that are mappable to hg38 primary genome; (H) % correct alignments, that is, alignments with the same mapped positions
and gap lengths as the simulated values, allowing 10-nt differences in positions or lengths due to ambiguities at the ends of reads; (I) Suboptimal align-
ments per read, defined as alignments that are not mapped to the correct locations; (J) % forward or backward chimera. In theory, both forward and back-
ward chimera should be ∼50% (randomly assigned during simulation, so they are not precisely 50%). Here, only STAR alignments are calculated. (K) Gap1
(one gap, i.e., two segments) alignments in PARIS and hiCLIP data were recovered by various mapping methods and segment-length selections. Fractions
for the highest-performingmethod (STAR_optimized) are set to 1. For STAR analysis, sequencing reads were mapped to the genome (hg38 primary); then
alignments were filtered and classified into six categories using gaptypes.py. The gap1 alignments were filtered to remove short gaps and splicing align-
ments (gapfilter.py). Primary alignments were extracted from all alignments and used for analysis. For Bowtie 2 mapping, previously reported parameters
(hyb and Aligater)were used. Unique alignmentswith deletions (D in SAMCIGAR string) were extracted and alignments were converted to join themultiple
segments (bowtie2chim.py). Then, the alignments were classified using gaptypes.py. The gap1 alignments were filtered to remove short gaps and splicing
alignments (gapfilter.py). The selection of alignments with both arms > 15 nt or 20 nt mimics the mapping and chaining strategy in previous studies that
employ Bowtie 2 (hyb and Aligater). (L,M ) Alignments in the ACTBmRNA from PARIS data in HEK cells were separated into ones where both arms (or seg-
ments) are at least 20 nt (L), or at least one arm is shorter than 20 nt (M ). The inset boxes show DGs that support the same duplex regardless of segment
length.
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with confident longer ones (Fig. 2E,F). If shorter segments are close
to long segments, they are very likely to be unique and bona fide,
even though their presence in the entire genome is not unique. If
shorter segments overlap longer ones, they are also considered
confident. For example, an alignment with CIGAR string
20M30N10M (20-nt match, 30-nt gap, and 10-nt match) is likely
to be real, because the 10M segment is very close to the 20M seg-
ment. The permissive STAR parameters and the two-step mapping
strategy enable recovery of shorter fragments.

Systematic benchmarking of optimized STAR and analysis of

crosslink-ligation data

To benchmark the performance of the optimized STAR, we first es-
tablished a strategy to simulate noncontinuous alignments. We
generated random forward and backward noncontinuous align-
ments on three genes with various characteristics, including
ACTB, a ∼3.4-kb protein-coding gene, XIST, a ∼32-kb lncRNA
gene, and TTN, a ∼281-kb gene that encodes the largest human
protein titin. In particular, theXIST RNA containsmany repetitive
elements across the entire transcript, making it challenging to an-
alyze. The simulated reads cover the full length of these three
genes, including both exons and introns (Supplemental Fig.
S1B).We focused on two-segment alignments, which are the dom-
inant types. The segment and gap lengths were each randomly
chosen in a range based on the distributions of real crosslink-liga-
tion data (Supplemental Fig. S2). After simulation, the reads were
mapped back to the human genome (hg38 primary assembly),
and the alignments were quantified on the following four aspects:
(1) % mapped reads, that is, reads mapped to the genome regard-
less of whether they are correct; (2) % correct alignments, that is,
reads mapped to the correct simulated locations; (3) suboptimal
alignments, that is, number of incorrect alignments per read;
and (4) % forward or backward chimeras, that is, alignments
with ligation junctions at the proximal or distal ends (Supplemen-
tal Fig. S1C).

We compared published Bowtie 2, default STAR (default in
STAR except the activation of the chimeric alignments), and opti-
mized settings. Whereas most reads could be mapped to the ge-
nome using the four methods (Fig. 2G; Supplemental Data), STAR
optimized parameters (black line) outperformed all other methods
in the correct alignment rate (Fig. 2H; see results for all parameter
combinations on three genes in Supplemental Fig. S1D–H). When
segments were short, the correct alignment rates were low across
all the combinations of parameters (∼60%–70% for STAR_opti-
mized). This is expected because short segments cannot bemapped
uniquely. For longer segment lengths, the correct alignment rates
all approached 100% for STAR and above 80% for Bowtie 2. Bowtie
2 correct mapping rates dropped when the segment lengths were
above the [20,80] range. This is because the longer segments have
more substrings that can be mapped to many locations across the
genome. Bowtie 2 seeks to reseed the unmapped segment multiple
times (e.g., up to 20 times) andmaynot find the perfectmatchwith-
in the specified number of reseeding attempts. Bowtie 2 outputs
many more suboptimal alignments per read (with lower scores
than the best chimera) (Fig. 2I; Supplemental Fig. S1F). This behav-
ior may be useful for certain circumstances, for example, when
some of these could be real. However, this benefit is at the cost of
more noise in the background, especially for longer segments. The
higher numbers of suboptimal alignments with longer segment
lengths are due to the possibility of matching more subsequences
in these long segments. On the other hand, STAR outputs very

few suboptimal alignments on average, even thoughwe set the out-
FilterMultimapNmax parameter to 10 (Fig. 2I; Supplemental Fig.
S1F,H). Finally, the STAR default parameters resulted inmore align-
ments in the forward than backward arrangements (broken yellow
line vs. dotted yellow line), even though both should be ∼50% in
theory (Fig. 2J; Supplemental Fig. S1G). The optimized parameters
with the two-round mapping increased the backward chimera to
near the forward chimera (dotted black line vs. broken black line).
This improvement is especially high for the short segments, where-
as both are mapped at near 50% when the segments are between
100 and 200 nt (Fig. 2J; Supplemental Fig. S1G).

To systematically evaluate published crosslink-ligationmeth-
ods and the new mapping strategy, we processed data using uni-
form procedures (Supplemental Fig. S2A). After mapping using
the optimized STARparameters, we classified and rearranged align-
ments into six categories (see details later) and removed spliced
alignments. The mapped segments and gaps follow a wide range
of distributions (Supplemental Fig. S2B,C). PARIS data have a me-
dian segment size of 24 nt, followed by hiCLIP at 31 nt. For PARIS,
∼95%of the segments are shorter than 40 nt, and a significant por-
tion of them, ∼13.8%, at or below 15 nt. Other crosslink-ligation
data have median segment sizes above 40 nt, almost twice the
size of PARIS data. We found that 1- to 2-nt gaps were present in
a significant portion of all noncontinuous alignments (Supple-
mental Fig. S2C). In SPLASH, 1- to 2-nt gaps are present in 61%
of alignments, whereas only 11% of gaps in PARIS are 1- to 2-nt.

To determine whether the short gaps are artifacts, we ana-
lyzed nucleotide frequencies in the gaps (Supplemental Fig.
S2D). For data with more 1- to 2-nt gaps, uridine is significantly
overrepresented (Supplemental Fig. S2E,F). SPLASH and COM-
RADES have significantly higher bias than PARIS and LIGR.
SPLASH and COMRADES used biotinylated psoralens for enrich-
ment, where monoadducts at uridines are the dominant products,
rather than the crosslinks. In LIGR and PARIS, enrichment of cross-
linked fragments was achieved using RNase R and 2D gels, respec-
tively, where the monoadducts are much lower. We speculated
that such 1- to 2-nt gaps are due to reverse transcription errors
on psoralen-uridine monoadducts, and therefore we removed
them before further analysis. The gap and segment length and
composition analysis provided valuable information about the li-
brary quality and should serve as important guides for future appli-
cations and optimizations. Together, this analysis shows that
PARIS and hiCLIP produced shorter segments that are more useful
for higher resolution structure modeling and lower fractions of
1- to 2-nt gaps from reverse transcription errors.

Next, we tested the optimized STARmapping strategy on real
crosslink-ligation data. The optimized STARmapping improved re-
covery of all alignments over all other methods (black bars, Fig.
2K). For example, among themapped alignments in PARIS, rough-
ly 50% of them have both arms>20 nt, which is the commonly
used cutoff in multistep mapping procedures in other studies.
From the most stringent condition (default with both arms>20
nt), to the most sensitive condition (optimized with no size selec-
tion), themapped noncontinuous alignments increased 2.75-fold.
To make sure that the differences in mappability are not due to ar-
tifacts, we examined the alignments mapped to two RNAs, ACTB
and XIST. The results are consistent with global comparison, de-
spite differences in sequence composition and presence of com-
plex repeats in XIST (Lu et al. 2016). For data with longer
segments, optimized STAR can still improve mapping, although
not as much as for the data for the shorter segments
(Supplemental Fig. S2G). As an example, we separated the gapped
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alignments on the ACTB mRNA from PARIS data into two groups,
where both arms are ≥20 nt (Fig. 2L) or at least one arm is <20 nt
(Fig. 2M). Alignments in both length ranges are clustered into du-
plex groups and compared side by side.We found that the DGs are
similar between the different size ranges (see the inset boxes). In
fact, the shortest segments in the alignments mapped to ACTB
mRNA are only 8 nt, yet they are still mapped with high confi-
dence. In summary, we showed that different crosslink-ligation
protocols produce noncontinuous alignments with drastic differ-
ences in segment and gap properties. The optimized parameters
and postprocessing for STAR mapping significantly improved the
recovery of short segments that are most valuable for building
high-resolution structure models.

Rearrangement and classification of alignments

The complex reactions of crosslink-ligation produce complex ar-
rangements in each read. Through exhaustive classification, we di-
vided alignments into eight types (Fig. 3A, left side, alignment
types). Nongapped alignments from non-crosslinked RNA frag-
ments or failed ligations, that is, crosslinked but not ligated,
are type 1. Local collinear gapped alignments, within the prede-
fined window, are type 2. Here, a window is defined in STAR by
the parameters ‐‐winBinNbits (default 16) and ‐‐winAnchorDistN-
bins (default 9). The use of a window in calling gapped alignments
in STAR was motivated by the need to capture spliced align-
ments, where intron lengths are typically within a limited
range (e.g., default window=winAnchorDistNbins × 2winBinNbits =
9 × 216 = 589,824). Alignment segments that are too distant from
each other (beyond the STAR genomic window), even though col-
linear, are considered as one type of chimera (type 3). Types 2 and3
are artificially separated because STAR treats local and distal seg-
ments in different ways. Chimeric alignments also include ones
with reversed orders (backward chimera, type 4; ligation can occur
on either end) (see Fig. 1A), two arms overlapped (type 5), located
on opposite strands of the same chromosome (type 6), or different
chromosomes regardless of strand (type 7). Multisegment align-
ments are also possible, arising from multiple proximity ligations
or a combination of splicing and multiple proximity ligations
(type 8). Type 8 alignments can be mapped to the same strand
and same chromosome or different strands and/or chromosomes.
In theory, theCIGAR string in the SAM format can only accommo-
date collinear arrangements with positive gaps (“D” and “N”, gap
length>0), that is, types 1–4, but not overlaps (gap length<0) and
noncollinear ones (undefined gap lengths). In STAR, types 4–7 and
some of type 8 are all considered as chimeric and therefore repre-
sented by two or more records each in SAM files. Even though
this exhaustive classification is based on the output from STAR,
they are generally applicable to alignments from other types of
short read mappers, with minor differences—for example, local
versus distal gapped in types 2 and 3—and therefore should
facilitate more sophisticated studies of RNA structures and
interactions.

The complex arrangements of the alignmentsmake them dif-
ficult to analyze and visualize. Therefore, we developed tools to fil-
ter, rearrange, and reclassify the eight types of alignments into five
types (excluding bad ones, e.g., homopolymers, etc.), each provid-
ing a distinct type of information for inferring RNA structures and
interactions (Fig. 3A, the right-side classification output; Fig. 3B–D;
see flowchart in Supplemental Fig. S3; details in Methods and
Supplemental Material). Distant collinear chimeras (type 3) are
converted to normal chimeras, gap1 (type 2) by joining the two

segments (Fig. 3B). Backward chimeras (type 4) are converted to
normal chimeras, gap1 (type 2) by switching the two segments
(Fig. 3C). Overlapped chimeras (type 5) are converted to homo-
typic chimeras (homo) by redefining the overlapped part as a com-
bination of insertions and deletions (Fig. 3D). After conversion,
these types can be processed and visualized as normal gapped
alignments. Trans alignments and some of the multigap align-
ments that map to different chromosomes and/or different
strands, cannot be combined into single records (single CIGAR
strings) and are processed separately (see Fig. 5; Methods). We ap-
plied the alignment, filtering, and rearrangementmethods to pub-
lished data sets (Fig. 3E; Supplemental Data). Each experiment
produced variable amounts of alignments in the five types (except
the bad.sam, which are very rare). Even though most homo (over-
lapping arms) and gam (multisegment) alignments represent a
small percentage of total number of alignments, they are signifi-
cant because they reveal important new structures and interac-
tions, and only a few reads/alignments are sufficient to call a
specific RNA duplex (see details below).

Network-based duplex group assembly of single-gapped

alignments

Among the five rearranged alignment types, gap1, gapm, trans,
and homo support distinct RNA structures and interactions. To
assemble alignments into groups that support individual struc-
tures, we developed a method CRSSANT to cluster single-gap
alignments, including gap1 and trans, to duplex groups (see later
sections for further processing of gapm and homo alignments).
CRSSANT leverages network analysis techniques—also frequently
referred to as “graph” techniques—to automate analysis of se-
quencing reads produced by crosslink-ligation methods. The
well-developed graph theory in discrete mathematics studies pair-
wise interactions amongobjects,making itwell-suited for the anal-
ysis of RNA structures from crosslink-ligation data, where
nucleotides or RNA fragments are represented as “nodes” and their
interactions are represented as “edges.” To determine the relation-
ship among alignments, we defined the overlap ratios between any
pair of alignments on both arms, ol(r1,r2)/sl(r1,r2) and or(r1,r2)/sr(r1,
r2), where r1 and r2 represent the two alignments, and the ratios
should be in the range of [0,1] (Fig. 4A). Then, the gap1/trans align-
ments were converted to a network based on their overlap ratios,
and the network is clustered using two alternative approaches, cli-
ques-finding and spectral (Fig. 4B; Supplemental Fig. S4; Methods;
Supplemental Materials, section 5). In particular, the cliques-find-
ing approach searches for groups of alignment, where every align-
ment overlaps other alignments on both arms above a threshold to
(0 < to≤1). On the other hand, spectral clustering finds groups of
alignments, such as overlaps within the group that are larger
than overlaps between groups (see Supplemental Materials, sec-
tion 5.3 for details of the clustering methods). The clustered sub-
graphs correspond to individual DGs, each containing highly
similar alignments. The clustering produces two types of output,
tagged SAM alignments and summary of DG information, which
can be used for subsequent visualization and secondary structure
prediction. A new DG tag is appended to each alignment in the
SAM file to describe where this DG is assembled and its fractional
coverage (covfrac) relative to all the noncontinuous alignments
overlapping it (Fig. 4C). In addition, non-overlapping DGs are fur-
ther clustered to make non-overlapping groups (also appended to
the alignments in the SAM file), which facilitates compact visual-
ization of the clustered alignments (Fig. 4D).
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In crosslink-ligation experiments, crosslinking and ligation
efficiencies vary greatly depending on sequence and structure con-
texts. More importantly, in vivo golden standard structure models
do not exist for the vast majority of cellular RNAs because in vitro
methods such as cryo-EM, crystallography, and NMR only capture
a subset of stable conformations under artificial conditions.
Therefore, we benchmarked the CRSSANT method on simulated
DGs with gap1 alignments (Supplemental Fig. S5A,B; Methods;
Supplemental Materials). On an artificial chromosome of defined
length (e.g., 1000 bp), 100 simulated DGs were randomly posi-
tioned with defined core length, random extensions on each
side of the core, randomgap length, and randomnumbers of align-
ments in each DG. Then, we clustered the simulated alignments
into DGs using the cliques and spectral algorithms and various pa-
rameters, including the overlap ratio threshold to for both cliques
and spectral, and eigenratio threshold teig for spectral. to was varied
between 0.1 to 0.9, where a higher value requires more overlap
among alignments, which leads to larger numbers of DGs. teig
was varied between 1 and 9, where higher values lead to smaller
numbers of DGs. We calculated the fraction of input alignments
assigned to assembled DGs (Fig. 4E), numbers of DGs assembled
from the 100 simulated DGs (Fig. 4F), specificity, and sensitivity
(Fig. 4G),

Over 80% of alignments were assembled into DGs with to
between 0.1 and 0.5 using various simulation settings and both
clustering algorithms (out of 5335 simulated alignments) (Fig.
4E; Supplemental Data). CRSSANT assembly produced between
50 and 200 DGs from the input 100 simulated DGs with to be-
tween 0.1 and 0.5 (Fig. 4F). As expected, higher to (>0.5) reduced
assembled alignments and increased total assembled DGs.
Spectral clustering consistently outperforms cliques at the recov-
ery of alignments (Fig. 4E) but at the expense of increasing assem-
bled DGs (in Fig. 4F, the horizontal line at 1.0 indicates the 100
simulated DGs), leading to unnecessary DG splitting. At to above
0.5, performance of both methods dropped, whereas teig did not
affect the spectral clustering at all values tested (up to teig = 100, at
which point, 99.8% of alignments were assembled, producing
145 DGs, or 145% of input DGs). Using the optimal settings
for the two algorithms (to = 0.5 and teig = 5), we examined individ-
ual CRSSANT-assembled DGs (Fig. 4G). More than 80% of the top
100 DGs are consistently assembled with high sensitivity and
specificity; that is, the original simulated alignments are mostly
assembled into DGs (sensitivity), and the membership in the as-
sembled DGs are correct (specificity) (all parameter combinations
in Supplemental Fig. S5C,D). Visual inspection of the assembled
DGs confirmed the better performance of the cliques method; the
minor reduction of DG numbers compared to simulated input
was due to merging of DGs that showed significant overlap at
the two arms (Supplemental Fig. S6A–C). Even though the spec-
tral method increased recovery of alignments, about 50 of the
simulated DGs were split into overlapping smaller DGs
(Supplemental Fig. S6D). The excessive splitting of DGs is unde-
sirable as it produces multiple DGs that support the same RNA
structures.

We tested the speed of CRSSANT by varying the simulation
and clustering parameters on a standard laptop computer.
Increasing alignment numbers in each DG extended running
time nearly quadratically because pairwise comparison of overlap-
ping alignments is the bottleneck (Supplemental Fig. S7A,B).
Consistentwith this, increasing genome lengthwhilemaintaining
alignment numbers (effectively reducing alignment density) sig-
nificantly lowered running time (Supplemental Fig. S7C). The

choice of clustering parameters did not affect running time at rea-
sonable overlap thresholds (to between 0.1 and 0.5) (Supplemental
Fig. S7D). Together, we identified the cliques as the preferred clus-
tering algorithm and showed that to moderately affects clustering
performance.

To validate CRSSANT on cellular RNAs, we analyzed the
snRNA U2 and the snoRNA U3 using published PARIS data from
human HEK and mouse ES cells (Fig. 4H–N; Supplemental Fig.
S8; Supplemental Table S3; Supplemental Material; Lu et al.
2016). Ungrouped alignments on U2 are densely packed, making
it difficult to recognize the structures (Fig. 4H). After clustering,
DGs have an average dispersion (standard deviations of the left-
start, left-end, right-start, and right-end positions) of 5.0 nt for
each DG, compared to 44 nt for all alignments on U2, showing
that the clustering resulted in tightly packed DGs (Fig. 4I). In other
words, the coordinates for the four positions (left-start, left-end,
right-start, and right-end) are closer to each other among the align-
ments in each group after clustering, compared to all alignments
before clustering (e.g., a1,I,0, a2,l,0, … ai,l,0 are closer to each other
in the group, with an overall standard deviation of 5.0 for the U2
snRNA). We identified four previously known stem–loops SLI,
SLIIa, SLIII, and SLIV (Patel and Steitz 2003; Hilliker et al. 2007;
Perriman and Ares 2007). SLIIb and SLIIc were missed due to the
lack of psoralen-crosslinkable staggered uridines (Supplemental
Fig. S8A). In addition, we recovered DGs that suggest new confor-
mations: SLIId and SLIII + SLIV, both of which are conserved be-
tween human and mouse (Fig. 4I,J). The low-abundance DGs
may have come from other less stable conformations (bottom of
Fig. 4I,J). SLIId is an alternative duplex to SLIIc, masking the
branchpoint recognition sequence (BPRS), suggesting a function
in regulating U2 recognition of introns. SLIId blocking of BPRS
may act as a structural switch to reduce spurious binding and in-
crease splicing fidelity.

To further validate the U2 alternative conformations, we
used an orthogonal crosslinking method, Selective 2′-Hydroxyl
Acylation Reversible Crosslinking (SHARC) (Van Damme et al.
2022). SHARC reagents crosslink RNA nucleotides in spatial
proximity (not base-pairing) at the 2′-OH positions, and the
crosslinking is reversible by mild alkaline hydrolysis. Therefore,
the SHARC reagents can be incorporated into a standard cross-
link-ligation experimental pipeline, like PARIS. Analysis of the
SHARC sequencing data revealed similar alternative conforma-
tions, including SLIId and SLIII + SLIV (Fig. 4K). Further analysis
of SLIId in U2 homologs revealed a strongly conserved duplex
from human to yeast (Fig. 4L,M). The near complete overlap of
the left arms of SLIII and SLIII + SLIV, and the overlap of the
right arms of SLIV and SLIII + SLIV in human and mouse suggest
that these conformations are alternative to each other (Fig. 4I–K;
Supplemental Fig. S8B). The left arm of SLIII and right arm of
SLIV form a 7-bp bulged stem with staggered uridine crosslink-
ing sites, supporting its validity (Fig. 4N). Together, the analysis
of U2 snRNA validates the CRSSANT clustering strategy, confirm-
ing previously known structures and nominating new conforma-
tions that reveal previously unknown mechanisms in splicing
regulation.

To further validate CRSSANT on more complex RNAs and on
data from other crosslink-ligation methods, we analyzed the 28S
rRNA structures in four psoralen crosslinking and one formalde-
hyde indirect crosslinking method, PARIS, COMRADES, LIGR,
SPLASH, and RIC. The 28S rRNA contains 132 helices based on
cryo-EM (Anger et al. 2013). From 300,000 gap1 alignments, be-
tween 280 and 1200 DGs were assembled (reads≥10 in each
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DG) (Supplemental Fig. S9A). The differences in numbers of DGs
are caused by different crosslinking, fragmentation, enrichment,
and ligation methods. For example, longer reads in RIC increase
overlap on the two arms and cause more reads to be collapsed to
the same DG. The in vivo crosslink-ligation methods capture the
entire life cycle of the ribosome, from biogenesis to maturation
and turnover, therefore producing more DGs than observed in
the cryo-EM model. Long duplexes, for example, the expansion
segments, which measure up to 180 bps, can be represented by
multiple DGs, further increasing the number of DGs. These meth-
ods captured between 58 and 78 of the 132 known duplexes
(Supplemental Fig. S9B), where the missed ones are likely due to

their short arms and lack of crosslinkable sites (Fig. 2A,B;
Supplemental Fig. S1A).

To determine whether the assembled DGs captured the base-
pairing and spatial proximities in the ribosome, we compared
DGs with bins of base pairs and spatial proximal nucleotides us-
ing the ROC curve (Supplemental Fig. S9C,D). Areas under the
curve (AUC) are in the ranges of 0.77–0.91 and 0.83–0.90, dem-
onstrating high specificity and sensitivity, despite the larger
numbers of DGs and the missed duplexes. Notably, some of
the DGs that do not correspond to any structures in the cryo-
EM model were observed in several different crosslink-ligation
data sets, suggesting that they are real in cells (Supplemental
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Figure 3. Classification andprocessingof alignments fromcrosslink-liga-
tion experiments. (A) Types of alignments and classification after process-
ing. This diagram presents a unified model for data from all types of
crosslink-ligation experiments, and the terms are defined as follows. A
read: one piece of sequence from the sequencing machine, and it may
have one or multiple alignments to the reference; segment or arm: part of
an alignment with no “N” in the CIGAR substring; continuous alignments:
type 1, with only one segment or arm, either fromnon-crosslinked or cross-
linked but not ligated RNA; gapped: forward arrangement, with one or
more gaps, including gap1 and gapm (types 2 and some of type 8); chime-
ric: noncontinuous alignments similar to thedefinition fromtheSTARmeth-
od, including types3–7and someof type8;noncontinuous: includingboth
gapped and chimeric alignments; homotypic: chimeric alignments where
the arms overlap, suggesting RNA homodimers; trans: segments mapped
to different chromosomes or strands (types 6–7 and some of type 8). In
SAM files, each record describes one alignment, and it is represented by
one CIGAR string. For example, a CIGAR string of “20M25N21M” (M for
match, N for gap) has two segments or arms, 20 nt and 21 nt, separated
by a 25-nt gap. In type 1, these two segments are from two different reads,
and therefore represented by two records in SAM files (two CIGAR strings,
e.g., “20M” and “21M”). Type 1 alignments are output to cont.sam. In
type2, these two segments are from the same readand therefore represent-
edbyone record inSAMfiles (oneCIGAR string, e.g., “20M25N21M”). This
alignment is either output to gap1.sam, or cont.sam if it does not pass the
filtering (e.g., the gap corresponds to a splice junction). In type 3, the two
segmentsare fromthe samereadbut still representedby tworecords inSAM
files because they aremapped beyond the alignmentwindow in STAR (two
CIGAR strings, e.g., “20M” and “21M”). Type 3 alignments are rearranged
andoutput to gap1.sam, or cont.sam if it does not pass the filtering. In type
4, the two segments are from the same read but mapped in reverse order
and cannot be represented by one record because reverse order is not al-
lowed in the CIGAR string (therefore represented by two records). Type 4
alignments are rearranged and output to gap1.sam, or cont.sam if it does
not pass the filtering. In type 5, the two segments are from one read but
overlap each other, which cannot be represented by one CIGAR string
and thereforemustbe representedby two records inSAMfiles. Type5align-
ments are rearranged and output to homo.sam. In types 6 and 7, the two
segments are from the same read but mapped to opposite strands of the
same chromosome (type 6) or different chromosomes regardless of strand
(type 7), and therefore must be represented by two records in SAM files.
Type 6 and 7 alignments are output to trans.sam, or cont.sam if they do
not pass filtering. In type 8, the multiple segments are from the same read
but aremapped either to the same strand or to different strands or chromo-
somes. These arrangements are represented either by one record or multi-
ple records in SAM files. Type 8 alignments are rearranged and output to
gapm.sam, gap1.sam, or trans.sam, depending on their relative mapping
locations. (B) Diagram for joining collinear distant segments into gapped
alignments. The two segments are connected so that the two arms are rep-
resented by one record in SAM format, where xMand zMare the two arms,
and yN is the gap. (C) Diagram for rearranging backward chimeric align-
ments to normal gapped alignments. The 5′ and 3′ arms are switched so
that the two segments can be represented by one record in SAM format,
where xM and zM are the two arms, and yN is the gap. (D) Diagram for re-
arranging overlapped chimera. The two arms are converted to three seg-
ments: left overhang, overlap, and right overhang. The new alignment
can be represented by one record in SAM format,where y(2I1D) represents
theoverlapped region. (E) Classificationof alignments frompreviously pub-
lished crosslink-ligation experiments, in which the low abundance catego-
ries are magnified on the right.
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Fig. S9E). Spatial proximal regions that do not base pair were not
captured efficiently, as expected (Supplemental Fig. S9F; Lu et al.
2016). Inspection of the common DGs among the different
methods further confirmed the differences in segment lengths

(Supplemental Figs. S2, S9G,H). Together, the tests on simulated
and experimental data from multiple crosslink-ligation methods
demonstrated the solid performance of CRSSANT in DG
assembly.
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Figure 4. Network/graph-based method for automatic assembly of duplex groups underlying RNA structures and interactions (CRSSANT). (A) Overlap
and span calculation for a pair of alignments. Two alignments r1 and r2 each comprising a left and right arm (solid blue bars), share left and right overlaps ol,
or, respectively, and left and right spans sl, sr, respectively. The arm start and stop positions of read/alignment i are represented by the 4-tuple (ai,l,0, ai,l,1, ai,
r,0, ai,r,1). The two arms can be on the same chromosome and strand (gap1.sam), or different ones (trans.sam). (B) Diagram for network/graph-based clus-
tering. All alignments with a single gap (gap1 and trans) are represented as a graph where each alignment is a vertex and the relative overlap ratio between
the arms is the edge. Highly connected vertices cluster together forming subgraphs, corresponding to individual DGs. (C) Diagram for the DG tag infor-
mation. The string after DG:Z includes the names of the two genes that the DG connects (gene1 and gene2). gene1 and gene2 are identical when the DG
describes intramolecular structures or homodimers. DGID is a number based on assembly order. covfrac (coverage fraction) is defined as the number of
alignments in this DG divided by the geometric mean of the coverages at the two arms. (D) Diagram for NG assembly. Non-overlapping DGs (e.g., DG1
and DG3, DG2 and DG4) are combined into NGs for visualization in genome browers like IGV. (E,F ) Benchmarking CRSSANT clustering on 100 simulated
DGs. All alignments map to Chr 1: 1–1000 and consist of cores 5, 10, or 15 nt (corelen = 5, 10 or 15), and random extensions on each side between 5 and
15 nt. Gaps between the two cores are at least 50 nt and at most the length of the Chr 1: 1–1000. Each DG contains between 10 and 100 alignments. The
alignments were clustered using cliques or spectral algorithms. For cliques, overlap threshold to was varied between 0.1 and 0.9. For spectral clustering, to
was varied between 0.1 and 0.9 when the eigenratio threshold was set at teig = 5. Alternatively, for spectral clustering, teig was varied between 1 and 10
when to was set at 0.5. The fraction of assigned alignments (out of 5335 input) was plotted in panel E. The fraction of assembled DGs (against 100 input)
was plotted in panel F. (G) For each simulated DG data set and clustering parameter combination, the sensitivity and specificity of DG assembly was cal-
culated for each of the top 100 DGs. The sensitivity of DG assembly is defined as the fraction of remaining alignments in each DG after CRSSANT assembly.
The specificity is defined as the fraction of alignments from the dominant simulated DG. (H) Human U2 snRNA structure model based on previous studies.
(I,J) Human HEK andmouse ES PARIS data were clustered using CRSSANT. The DGs were labeled corresponding to the secondary structure models in panel
H. Alignments are grouped in IGV using the NG tag. “?” is a new duplex not in the known structure model. (K) Human HeLa SHARC data were clustered
using CRSSANT, and the DGs were labeled as above. (L) The duplex SLIId is conserved from human down to yeast based onmultiple sequence alignment of
208 seed sequences (Rfam: RF00004, in WebLogo format). (M ) SLIId model; top strand is the 5′ arm, and the bottom is the 3′. Black letters, GUAUGA,
indicate the BPRS masked by SLIId. (N) The alternative SLIII + SLIV structure models.
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Multisegment alignments provide evidence for complex

structures and interactions

Both crosslinking and proximity ligation are inefficient; however,
multiple events may occur simultaneously in some RNA regions,

leading to reads and alignments with multiple gaps (referred to
as gapm, with gaps≥2 or segments≥3) (Fig. 3). Further analysis
of these alignments showed that three-segment alignments are
the majority, accounting for >99% of them, whereas alignments
with more segments were exceedingly rare (Fig. 5A; Supplemental
Data). Among three-segment alignments, ∼70%–80% of them
were mapped within one RNA, whereas 20%–25% of them are
mapped to two RNAs simultaneously, indicating RNA-RNA inter-
actions (Fig. 5B). A small fraction of them were mapped to three
different RNAs, suggesting the existence of multi-RNA complexes.

These gapm alignments could indicate several types of struc-
tural topology, such as sequential or concentric helices, pseudo-
knots, and even triple helices (Fig. 5C, examples in one RNA).
For example, we previously showed that interlocking helices sug-
gest pseudoknots, but an alternative explanation is that the two
helices could exist in separate RNA molecules (Lu et al. 2016).
Alignments connecting the two helices are strong evidence that
both helices occur on one RNA, therefore proving the pseudoknot
structure. The complex structures could be either intramolecular
or intermolecular, indicating complex interactions. Such high-lev-
el structures are hard to predict or validate in cells using conven-
tional methods. Focusing on these three-segment (two-gap)
alignments, we developed a method to cluster them into triseg-
ment groups (Fig. 5D). Given that TGs are combinations of DGs,
we first used CRSSANT-assembled DGs to build a list of DG pairs
with one overlapping arm. Gapm alignments with three segments
were then assigned to DG pairs based on overlap with each
arm. Three-segment alignments that group together are defined
as a TG.

Clustering of TGs from published data sets revealed a large
number of complex structures, particularly in the most abundant
cellular RNAs, for example, the rRNAs and snRNAs, and they are
consistent with the combinations of DGs (Fig. 5E; Supplemental
Fig. S10). Out of the 43,389 gapm alignments, 36,682, or 84.5%,
of them are assembled into TGs (Fig. 5E). In particular, the top-
ranked TG contains 3865 alignments (Fig. 5E, first blue dot on
the left). This one TG takes up 10.5% of the total 36,682 align-
ments in all 4207 TGs (Fig. 5E), suggesting that it is highly specific.
To test whether TGs correlate with DGs, we shuffled the gapm
alignments across the 28S rRNA and then re-assembled them
into TGs. Only 48.7% of the shuffled gapm alignments (17,870/
36,682) can now be assigned. The alignment numbers in each
shuffled TG are more uniformly distributed (Fig. 5E, red dots),
with themaximal coverage at 46, compared to 3865 in the original
data. The two distributions crossed at (242,14), where the top 242
TGs contains 75.2% alignments in the original data, but only
27.7% in the shuffled data. This result suggests that the TG align-
ments are not randomly derived from the rRNAs but rather corre-
spond to combinations of DGs that describe the tightly packed
structures (as shown in the diagram, Fig. 5D), supporting the valid-
ity of identified TGs. We then calculated the Gini indices, which
measure statistical dispersion of gapm alignments among TGs, ei-
ther from the original data or after shuffling for the top 242 TGs.
For the original data, the Gini index is 0.74, showing highly un-
even distribution, and it drops down to 0.14 after shuffling. To fur-
ther determine whether the numbers of gapm alignments in TGs
correlate with those of DGs that support the TG, we plotted the
geometric mean of the DG alignment numbers (DG1_number ×
DG2_number)0.5 versus the TG alignment numbers (DG1, DG2,
and TG as defined in Fig. 5D). In the original TGs, there is a strong
positive correlation, which is lost after shuffling (Fig. 5F,G; Supple-
mental Fig. S10A).
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Figure 5. Multisegment alignments support higher level structures and
interactions. (A) Distributions of the numbers of arms/segments in gapm
alignments. (B) Numbers of RNAs involved in each gapm alignment.
Gapm alignments with three arms are shown. R1, R2, and R3 represent
three different RNAs. (C) Gapmalignmentswith three arms indicate the co-
existence of two helical regions. Sequential helices joined by gapm align-
ments indicate two separate stem–loops (left). Interlocked helices joined
by gapm alignments indicate pseudoknots (middle). Overlapping helices
joined by gapm alignments indicate triplexes. (D) Strategy to cluster
gapm alignments, assuming that all TGs should be combinations of DGs.
Alignments with more than two gaps are ignored for now. The DGs were
produced by CRSSANT using gap1.sam and trans.sam alignments. The
boundaries for each arm are the medians for the DGs. For the TGs, the
merged middle arm is the redefined as boundaries of both DGs.
Alignments from gapm.sam are then matched to the TGs so that each
arm is overlapped. (E) Gapm alignment number distribution for TGs on
the human 28S rRNA. PARIS2 HEK293 gapm alignments were assembled
directly on the DGs (blue) or shuffled randomly across the 28S rRNA before
assembly (red). The shuffling preserves the distances among the segments
in each gapm read (i.e., the same CIGAR string). The crossing point (242,
14) indicates that the first 242 TGs each contain at least 14 gapm align-
ments. (F) Coverage of reads along the 28S rRNA for (1) all DGs, (2) only
DGs that support the TGs, (3) TGs from original PARIS2 gapm alignments,
and (4) TGs from shuffled gapmalignments. Coverage depth is indicated in
the brackets. (G) For the top ranked 242 TGs either from the original gapm
alignments (left) or the shuffled gapm alignments (right), the numbers of
alignments (x-axis) were plotted against the geometric means of the num-
bers of alignments in the twoDGs that support each TG (y-axis). Alignment
numbers are log10-transformed before plotting and calculation of
Pearson’s correlation. (H) gapm alignments mapped to the human 5.8S
rRNA. Top track: base-pairing secondary structure model in arc format.
(I) Mapping the three segments to the secondary structure model. The
three segments are color-coded in panels H,I.
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For example, in the 5.8S rRNA, we observed a TG that corre-
sponds to a three-way junction (Fig. 5H,I). Some of the complex
structures are supported by more than one TG. For instance, two
concentric helices are supported by three different TGs because
the RNase cleaved at different locations in the RNA structure before
proximity ligation (Supplemental Fig. S10C). In addition to intra-
molecular interactions, we also discoveredmore complex intermo-
lecular interactions. We previously showed that snoRNAs U8 and
U13 form a dynamic network of intermolecular interactions with
rRNA precursors during rRNA processing (Zhang et al. 2021).
Here, we found that gapm alignments connect U8, U13, and the
rRNA precursor together, suggesting that these interactions occur
simultaneously in cells (Supplemental Fig. S10F–H; Supplemental
Tables S4, S5). Together, these analyses revealed more complex
structures than possible before.

Identifying alignments with overlapped segments indicating

potential RNA homodimers

Base-pairing can drive the formation of intramolecular RNA du-
plexes as well as intermolecular interactions using the exact
same sequences. For example, a stem–loop can also form an alter-
native conformation of homodimer with nearly identical base
pairs (Fig. 6A, top and middle). The intermolecular interactions
may contain two molecules, or even more, forming a daisy-chain
complex (Fig. 6A, bottom). Given the prevalence of RNA stem–

loops and the high concentration of many essential ncRNAs,
and the sequestration of mRNAs into RNP granules (Protter and
Parker 2016), it is conceivable that such RNA homodimers are
widely present in cells. However, homodimers are difficult to
detect using conventional methods. Here, we found that align-
ments with overlapping segments enable de novo discovery of
such interactions. Normal gapped reads without overlaps between
the two arms may come from one RNA molecule or two identical
molecules (Fig. 6B). Gapped reads with overlaps between them
could only have come from a homodimer (Fig. 6B). Because of
this, such alignments are definitive evidence for homodimers.

Such analysis provides an underestimation of the abundance of in-
termolecular duplexes because some normal gapped alignments
(gap1) may also come from homodimers.

While testing the STAR parameters to discover RNA homo-
dimers, we noticed that the mapping of overlapping chimeras
was inefficient when the dimerization region was close to the
5′ or 3′ ends of the reference (e.g., the ends of the chromosome or
a contig), or the flanking sequences were homopolymers of “N”

(using the U8 snoRNA as an example test) (Supplemental Fig.
S11A,B; more details below). Mapping was efficient when the
flanking sequences contain at least 50 nt of normal genomic con-
text (non “N”), or homopolymers ofA,C,G, T, or randomsequenc-
es, or when the chimFilter option was set to None (Supplemental
Fig. S11C). This context-dependence was not obvious for other
types of chimeras, for example, heterotypic intermolecular interac-
tions (U8:U35A and U8:28S heterodimers) (Supplemental Fig.
S11A,B; Supplemental Fig. S11D,E), and cannot be alleviated by ad-
justing the windowing parameters in STAR (Supplemental Fig.
S11F). Therefore, to detect RNA homodimers, the reference se-
quences should be adjusted to contain 100 or more nucleotides
of flanking sequences, or the chimFilter option set to None.

To determine whether cellular RNA can form homodimers,
we analyzed published crosslink-ligation data (summary in
Fig. 3E). First, we filtered homotypic alignments to remove short
1- to 2-nt insertions thatmay come fromRNAdamages or sequenc-
ing errors and repetitive sequences that may come from enzyme
slippage during reverse transcription or PCR. To determine the sig-
nificance of homodimers, we calculated the ratio of overlapping
alignments versus nonoverlapping ones in the same RNA. Over-
lapped regions extend to >60 nt among various data sets (Supple-
mental Fig. S12A). In general, overlapping alignments are rare, but
a few noncoding RNAs have high proportions of overlapping
alignments (Supplemental Table S6). The most highly enriched
RNA is U8, a snoRNA previously shown to be essential for rRNA
processing (Peculis and Steitz 1993), mutations in which cause a
neurological disease LCC (Labrune et al. 1996; Jenkinson et al.
2016; Iwama et al. 2017). We recently reported this dimer and
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Figure 6. Identification of potential RNA homodimers using homotypic alignments. (A) The same base-pairing interactions can mediate intramolecular
stem–loops (top) and homotypic interactions between two (middle) or more (bottom) copies of the same molecule. (B) Diagram showing alignments with
gapped or overlapped arms, suggesting RNA stem–loops or homodimers. (C) Coverage of five different types of alignments on U1. The overlapped part of
homo alignments is shown individually at the bottom. (D) Heat map of U1 snRNA homo alignments in three data sets. (E) PARIS2 data showing overlapped
regions and corresponding local stem–loop (SLII). DGs were assembled from 1000 total alignments. (F) Secondary structure of U1 homo interaction, with
the SLII in bold letters. (G) Secondary structure model for the SLII homodimer.
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showed that it is part of five alternative conformations for the U8
snoRNA structure, and this dimer is disrupted by LCC patient mu-
tations (see Fig. 4 and Supplemental Figs. S20 and S21 in Zhang
et al. 2021) (Supplemental Fig. S12B–D). In addition to U8, dimers
also are likely to form for U1 and U2 snRNAs (Fig. 6C,D; Supple-
mental Fig. 12E–I; Supplemental Data). InU1, we detected a specif-
ic dimerization region in the SLII from three different psoralen
crosslinking data sets. This specific enrichment compared to
broader distributions of other types of alignments further suggests
that this homodimer is real, despite the low abundance (Fig. 6C).
The homo alignments localize to the same sequences as gap1
alignments at the local stem–loop (Fig. 6E), consistent with them
as alternative conformations to each other (Fig. 6F,G). Similarly,
we detected potential dimerization regions in the SLIII of U2
snRNA, mitochondrial tRNAs, and expansion segments in ribo-
somal RNAs (Supplemental Fig. S12J–P). Overlapping alignments
in the mRNAs, however, were not abundant enough to allow the
identification of local enrichment sites that indicate dimerization
sequences (Supplemental Table S6). Homodimerization in other
noncoding RNAs may also have been missed due to limited se-
quencing coverage.

Homodimers have been reported in a variety of RNA viruses.
To detect potential homodimers, we analyzed our recently pub-
lished PARIS2 data on two single-stranded RNA virus genomes
(Supplemental Fig. S13; Zhang et al. 2021). In both US47
(US/MO/14-18947 and VR1197 (F02-3607 Corn), two strains of
EV-D68, we detected local peaks of overlapping alignments.
Whereas some of these peaks coincide with local stem–loops de-
tected by PARIS2, others were not, suggesting alternative base-
pairing mechanisms in the interactions (Supplemental Fig.
S13A,D). The ratio of homotypic alignments over all gapped
ones is only ∼1% (Supplemental Table S6), yet the overlapped re-
gions are rather extended (Supplemental Fig. S13B,C,E,F). The top-
ranked peaks were not conserved between the two viral strains due
the rapid evolution of these RNA viruses. Additional dimerization
sites may exist that cannot be captured by our method which re-
lies on the identification of local hairpins. Together, these studies
demonstrate the ability of our new computational pipeline in the
identification of potential RNA homodimers in a variety of
contexts.

To validate the newly discovered homodimers, we developed
an experimental strategy based on convergent and divergent PCR
and tested theU8homodimer (Supplemental Fig. S14A). First, RNA
was purified from cells with or without AMT crosslinking. For the
crosslinked RNA, half were ligated proximally and the other half
nonligated. U8 was then enriched from the three RNA samples us-
ing biotinylated antisense probes (Zhang et al. 2021), ligated to a 3′

end adapter, reverse-crosslinked with 254-nm UV light, and re-
verse-transcribed into cDNA. We designed a set of divergent PCR
primers on U8, which should not lead to any products on non-
crosslinked or nonligated RNA. However, in an RNA homodimer
that was crosslinked and ligated, the divergent primers can
now converge on the ligation junction to amplify the junction re-
gion. Given that the adapter ligation step may randomly join two
non-crosslinked U8 molecules in solution, low levels of PCR
amplification are expected from the non-crosslinked and nonli-
gated samples. Indeed, PCR resulted in significantly higher
amounts of products from the crosslinked and ligated samples
(Supplemental Fig. S14B,C). Together, the de novo discovery by
CRSSANT in crosslink-ligation experiments, our previous in vitro
validation (Zhang et al. 2021), and the PCR validation in cross-
linked cells confirmed the U8 homodimer.

Discussion

The recent development of crosslink-ligation methods has
changed the field of in vivo RNA structure studies. Despite the pro-
gress in experimental techniques, computational processing of
such data remains challenging. Previously developed computa-
tional tools have focused on simple cases, that is, identification
of single-gapped alignments and building duplex structures from
them (Travis et al. 2014; Sharma et al. 2016; Lu et al. 2018; Zhou
et al. 2020). In this study, we performed exhaustive analysis of
data from crosslink-ligation experiments, identified limitations
of previous computational methods, and designed a set of tools
to address several fundamental problems in the analysis pipeline
and to realize the full potential of such experimental techniques.

Specifically, we focused on the mapping, classification, and
clustering of sequencing reads: (1) we optimized a set of STARmap-
ping parameters, together with a new filtering strategy to maxi-
mize sensitivity and specificity of aligning short segments (Fig.
2). This improvement is particularly beneficial for building higher
resolution secondary structure models that require shorter seg-
ments; (2) we developed a strategy to exhaustively classify align-
ments into eight categories, which are then rearranged into five
types (Fig. 3). The newly developed tools are particularly useful
for the analysis of alignments where the two segments can be con-
verted to a single SAM record for visualization in genome browsers
(Lu et al. 2016); (3) we developed a network-based method,
CRSSANT, for clustering noncontinuous alignments to discrete
groups that represent the underlying RNA duplexes, for simple
gapped alignments (gap1 and trans, Fig. 4), complex alignments
(gapm, Fig. 5), and homodimers (homo, Fig. 6). We benchmarked
each step of the pipeline and demonstrated its applications in var-
ious real-world examples. The files output by CRSSANT concisely
summarize information that is crucial to the RNA structural biolo-
gists and are prepared in file formats commonly used by the struc-
tural biology community to facilitate cross-platform analysis.
Altogether, this pipeline greatly facilitates the analysis and inter-
pretation of data from a wide variety of crosslink-ligation
experiments.

Our systematic analysis of alignment properties such as the
segment length, gap length, and gap nucleotide frequencies re-
vealed previously unknown problems that help guide future im-
provement of crosslink-ligation methods. In particular, we show
that the segment length distributions vary greatly across themeth-
ods, which has a major impact on the secondary structure model-
ing. Even with the shortest segments in hiCLIP and PARIS
(Sugimoto et al. 2015; Lu et al. 2016), themedian segment lengths
of ∼20 nt far exceed those of the well-studied RNAs such as the ri-
bosome and spliceosome (Fig. 2A), and it remains challenging to
determine the exact base pairs. Future improvements to pinpoint
crosslinking sites are necessary for unambiguous modeling. The
discovery of psoralen-monoadduct-induced uridine deletions, es-
pecially in the 1- to 2-nt range, revealed concerns over some of
the crosslinking methods. We suggest that these short-gap align-
ments should be removed before any subsequent analysis.

Even though recent studies have paid attention to alternative
conformations in RNA secondary structure modeling from cross-
link-ligation data, detailed analysis of individual RNAs is still chal-
lenging. In the CRSSANT method, we systematically tested
clustering algorithms and parameters on simulated data sets and
applied them to published data sets. This benchmarking provides
important guidelines for applications on experimental data. As ex-
amples, our analysis revealed new conformations, even for well-
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studied noncoding RNAs, such as U2 and U3. The combination of
different types of crosslinking data and phylogenetic analysis sup-
port the validity of these new conformations. Nevertheless, deeper
studies are needed to understand their functions and mechanisms
of dynamic interconversions.

RNAs in cells are known to form highly sophisticated ma-
chines, and our current understanding remains limited to a few
well-behaving RNAs and their complexes that can be purified for
characterizations. Our exhaustive classification allowed us to dis-
cover complex structures and RNA homodimers de novo, further
expanding the capabilities of these experimental techniques. In
a recent study, we have significantly improved the crosslinking
and overall efficiency of crosslink-ligation experiments (>4000-
fold) (Zhang et al. 2021); however, the low proximity ligation effi-
ciency remains a major bottleneck for crosslink-ligation methods.
This problem made it difficult to capture the multisegment struc-
tures and interactions. For example, at 10% ligation efficiency,
reads with n segments are less than 1 in 10n. Improvement in prox-
imity ligation and the ever-increasing sequencing power should
solve this problem to allow the discovery of other complex
structures.

The discovery of homodimers is particularly interesting
because it opens new directions for future research. The small
fraction of RNAs with overlapping fragments suggests that homo-
dimers based on local palindrome-like sequences are rare. We dis-
covered strong homodimers in the U8 snoRNA, and U1 and U2
snRNAs. These homodimers were detected across different data
sets, even though their abundances vary considerably. In the
most stable homodimer U8, the overlapping alignments are
even more abundant than the intramolecular duplexes in one
data set. Based on the de novo discovery in crosslink-ligation
data, our recent in vitro validation (Zhang et al. 2021), and cur-
rent in vivo validation of U8 homodimer, we believe that at least
a subset of the predicted homodimers are real. The discovery of
human patient mutations that disrupt the dimers points to the
functional significance of such interactions (Labrune et al.
1996; Jenkinson et al. 2016; Iwama et al. 2017; Zhang et al.
2021). While this manuscript was in preparation, the Kudla
group published a similar approach and confirmed our discovery
of homodimers in the snRNAs and snoRNAs (Gabryelska et al.
2022).

Wenote that, in contrast to typical gapped alignments, where
shorter segments lead to higher resolution structural modeling,
longer segments are needed for efficient detection of overlapping
alignments and potential homodimers. In the extreme case of
the 5′ end of one copy binding to the 3′ end of another copy of
the same RNA, full-length RNAs are necessary to detect such di-
mers. Alternatively, we propose a genetics-based method to detect
homodimers, which is not limited by the sequence distance be-
tween the two segments (Supplemental Fig. S14D). When RNA
molecules from two different genetic backgrounds (red and blue
lines) exist in the same cell, for example, during co-infection of
two RNA virus strains with sufficient genetic distance between
them, or in the F1 generation of a hybrid organism, nucleotide se-
quence variants allow us to accurately map the fragments to the
RNA of origin. When the two fragments are derived from the
same genetic origin, the duplex could be either intra- or intermo-
lecular. However, if the two fragments are from two different ge-
netic backgrounds, then the duplex should be intermolecular,
that is, a homodimer. Two caveats should be considered in this ap-
proach. First, some sequence variations may alter the structures
and interactions and lead to artifacts. High enough sequence var-

iation may redefine the homodimer to heterodimer. Secondly and
specifically for RNAviruses, genome recombinationmay break the
linkage of variants and confound the analysis of intermolecular
homodimers.

In this study we focused on the mapping, classification, and
clustering of crosslink-ligation data. Subsequent crosslink-guided
structure modeling can be achieved using many previously pub-
lished tools based on free energy minimization and multiple se-
quence alignments, but it is not a trivial task for several reasons
(Eddy 2004; Lu et al. 2016). Evenwith the shortest fragments avail-
able in PARIS, there is ambiguity in determining the exact base
pairs. In addition to the problems with the experimental con-
straints, energy- and conservation-based computational predic-
tion approaches are still being optimized. As such, manual
inspection is still needed for individual RNAs or regions before
such models are used to guide deeper functional and mechanistic
studies. For longer RNAs, it is even more challenging to stitch to-
gether all the models derived from individual DGs. Our discovery
of the gapm alignments helps resolve certain complex conforma-
tions by providing evidence for the coexistence of helices.
However, ambiguities also exist in the determination of which
fragment base-pairs with the other two or more fragments in the
same alignment (Fig. 5C). In a recent study, we reported a new
method using computationally enumerated ensembles of RNA
conformations and Bayesian statistics to identify optimal ones
that match experimentally determined constraints (Zhou et al.
2020). Further optimization and integration of these variousmeth-
ods has the potential to reveal global conformations for larger
RNAs.

In summary, we have developed a new computational pipe-
line to automate the otherwise laborious tasks of reads mapping,
classification, and clustering. In addition, we systematically
benchmarked the performance of the pipeline and validated the
newly discovered structures and interactions. We envision that
the pipeline will find broad use in the field as crosslink-ligation-
based methods are applied to a wide variety of RNA biology
problems.

Methods

Data access and preprocessing (Fig. 1B, step 1)

All sequencing data used in this study were previously published
and listed with NCBI (https://www.ncbi.nlm.nih.gov/) accession
numbers as follows: PARIS: GSE74353 HEK and mES and
GSE149493 HEK (Lu et al. 2016; Zhang et al. 2021); LIGR: SRR3
361013 HEK (Sharma et al. 2016); SPLASH_GMA: SRR3404937,
GM12892, polyA. SPLASH_GMT SRR3404942, GM12892 total;
SPLASH_ESA: hES (Aw et al. 2016); COMRADES: ZIKV (Ziv et al.
2018); hiCLIP: all data (Sugimoto et al. 2015). Sequencing data
from these published crosslink-ligation methods were processed
according to the original designs in each study. Briefly, 5′ and 3′

end adapter sequences were removed. Duplicates were removed
based on the randomized universal molecular indices.

Optimized STAR mapping (Fig. 1B, step 2)

The default and optimized formulae for calculating alignment
scores are as follows: themajor changes are the deletion (deletion),
gapopen (gap open), gapext (gap extension), and chimeric junc-
tion penalties
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scoredefault =matches +mis+ ins+del+gapopen+gapext+chim.
scoreoptimized =matches+mis + ins+gapext.

Explanations are as follows: Matches – length of matched se-
quences (+1 for each nt); mis – length of mismatched sequences
(−1 for each nt). Both matches and mismatches are represented
by “M” in the CIGAR string in SAM, in which the mismatches
are further identified in the “MD:Z:?” tag. del: deletion penalty
(−2 for deletion opening, −2 for each nt extension in the default
setting). del was disabled by alignIntronMin=1 after optimization,
so that all deletions and gaps are considered equal. In other words,
deletions are treated like splicing junctions to facilitate the calcula-
tion of penalty. ins: insertion penalty (−2 for insertion opening
and −2 for each nt insertion extention, not changed in optimiza-
tion). gapopen: gap open penalty (scoreGapNoncan=−8,
scoreGapGCAG=−4, scoreGapATAC=−8). gapopen was disabled
after optimization because the gaps are not due to splicing. gapext:
gap extension penalty, scoreGenomicLengthLog2scale × log2
(genomicLength), changed after optimization. The higher penalty
reduces low-confidence mapped segments. In normal gapped
alignments, genomicLength=L1+L2+…+ Li, where L is the
length of each segment. In chimeric alignments, genomicLength
=L1×L2×…×Li. This difference results in significantly higher
penalty for chimeric alignments. chim: penalty for nonchimeric
alignment (chimScoreJunctionNonGTAG=−1).

In the final output where all alignments are in the Aligne-
d.out.sam, the counts are defined as follows: primary=unique+
chimeric (primary only) +multimapped (excluding ones mapped
to too many loci). Here, primary alignments can be extracted
and counted using samtools view -F 0×900 (Li et al. 2009). An ex-
ample optimized setting for STAR (Dobin et al. 2013) mapping of
noncontinuous reads are as follows: ‐‐runThreadN 1 (set based on
resources) ‐‐genomeLoad NoSharedMemory (set based on resourc-
es) ‐‐outReadsUnmapped Fastx ‐‐outFilterMultimapNmax 10 ‐‐

outFilterScoreMinOverLread 0 ‐‐outFilterMatchNminOverLread 0
‐‐outSAMattributes All ‐‐outSAMtype BAM Unsorted SortedBy-
Coordinate ‐‐alignIntronMin 1 ‐‐scoreGap 0 ‐‐scoreGapNoncan 0
‐‐scoreGapGCAG 0 ‐‐scoreGapATAC 0 ‐‐scoreGenomicLength-
Log2scale−1 ‐‐chimFilter None ‐‐chimOutTypeWithinBAMHard-
Clip ‐‐chimSegmentMin 5 ‐‐chimJunctionOverhangMin 5 ‐‐

chimScoreJunctionNonGTAG 0 ‐‐chimScoreDropMax 80 ‐‐chim-
NonchimScoreDropMin 20.

Rearrangement of softclipped continuous alignments for second

round STAR mapping (Fig. 1B, step 3)

Mapping score calculation is biased against backward arranged chi-
meric reads (type 4 in Fig. 3A), which are generated fromproximity
ligation on the distal ends. To discover these alignments more ef-
ficiently, the softclipped continuous alignments (with “S” opera-
tor in CIGAR) are rearranged so that the positions of the two
segments (arms) switched. The output FASTQ file is subject to a
second round STAR mapping using the optimized parameters list-
ed above (see Supplemental Fig. S1 for details).

Filtering, classification, and rearrangement of alignments

(Fig. 1B, step 4).

The filtering and classification methods are implemented in two
scripts, gaptypes.py and gapfilter.py. In gaptypes.py, STAR align-
ments are filtered to remove low-confidence segments and rear-
ranged and classified into six distinct categories. These six
different group alignments were: continous alignments (con-
t.sam), noncontinuous alignments with 1 gap (gap1.sam), non-
continuous alignments with multiple gaps (gapm.sam),
noncontinuous alignments with the two arms on different strands

or chromosomes (trans.sam), noncontinuous alignments with the
two arms overlapping each other (homo.sam), and noncontinu-
ous alignments with complex combinations of indels and gaps
(bad.sam). In particular, the fields FLAG, START, SEQ, and QUAL
are adjusted after arrangement, whereas the optional tag fields
are left unchanged, except that the ch:A and SA:Z fields that indi-
cate chimeric alignments are removed. See SupplementalMaterials
for details of the methods.

Analysis of segment and gap properties (Fig. 1B, step 5)

After mapping and classification, the segment and gap properties
are analyzed as a quality control for the data. Specifically, for align-
ments in SAM format, the gap length and segment lengths are
summarized and plotted as cumulative densities. At the same
time, all sequences in the gap region are summarized to count nu-
cleotide frequencies.

Removing short and spliced gaps (Fig. 1B, step 6)

In eukaryotes, splicing generates noncontinuous reads and align-
ments, and they need to be separated from the ones generated
by proximity ligation. We used the annotated splicing junctions
to filter the sequencing data as follows: in gap1.sam and gapm
.sam, if an alignment only has gaps that are identical to splicing
junctions (upper panel), it is removed. If an alignment has at least
one gap that is not the same as the splicing junction (lower panel),
it is retained. At the same time, all gaps ≤2 nt are also removed,
because these are highly likely to be artifacts caused by crosslink-
ing-induced RNA damage.

Duplex group assembly (Fig. 1B, step 7)

Filtered gap1filter.sam and transfilter.sam alignments are com-
bined as the input. Additional input files are gene annotations in
BED format, where only the first six fields are needed, and genome
files that list sizes of chromosomes. Alignments are assigned to
gene pairs based on genome coordinates. If one alignment is con-
tained within one gene (e.g., gene1), then the pair is (gene1,
gene1). If the alignment spans gene1 and gene2, then it is mapped
to the pair (gene1, gene2). Alignments mapped to each gene pair
are processed separately in parallel to speed up the analysis.
Regions with alignments higher than a predefined value are sub-
sampled to speed up the processing, and the unused alignments
are added back to the assembled DGs. BEDTools is used to produce
a genome coverage file from all the two-segment noncontinuous
alignments (gap1filter.sam and transfilter.sam). The coverage file
is then used to calculate the confidence of each DG. See
Supplemental Materials for details about the algorithm.

Assembly of trisegment groups (Fig. 1B, step 8)

Alignments with more than two gaps or three segments are ig-
nored for now due to their extremely low abundance. The DGs
were produced by CRSSANT using gap1.sam and trans.sam align-
ments. The boundaries for each arm are the medians for the
DGs. For the TGs, the mergedmiddle arm is redefined as boundar-
ies of both DGs. Alignments from gapm.sam are then matched to
the TGs so that each arm is overlapped.

Specifically, the gapm alignments (mapped to hg38/mm10
primary genome assemblies) were globally annotated using
gapm_anno.py script. To study the RNA:RNA:RNA structures and
intermolecular interactions from PARIS data, the reads were
mapped to selected subsets of RNAs, including snRNAs (U1, U2,
U4, U6, U5, U11, U12, U4atac, and U6atac), highly abundant
snoRNAs (U3, U8, U13, and U35), and rRNAs. These selected
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RNAs were assembled into one small “chromosome.” After map-
ping, alignments classification, and short gap filtering, gap1 align-
ment was used to call the RNA:RNA duplex.

The majority of the human and mice genomes is duplicated
sequence, such as repetitive DNA and genes with multiple copies.
This makes unambiguous identification of RNA:RNA:RNA interac-
tions very difficult on a genomic scale. To identify the RNA-RNA-
RNA structures and interactions from PARIS data, the reads were
mapped to selected subsets of RNAs, including snRNAs (U1, U2,
U4, U6, U5, U11, U12, U4atac, and U6atac), highly abundant
snoRNAs (U3, U8, U13, and U35), and rRNAs. These selected
RNAs were assembled to one small “chromosome.” After mapping
using the STAR program, alignments were classified into six
groups. Filtered gap1 alignments (gap length>2 nt) were used to
call DGs. The assembled gap1 DGs were further used to cluster
gapm alignments. The curated DGs were used for TGs assembly
for gapm alignments. U8:U13:28S intermolecular interactions
were analyzed using PARIS1 mES data (GEO: GSM1917758,
GSM1917759, and GSM1917760) (Zhang et al. 2021).

RNA homodimer analysis (homo.sam, Fig. 6, step 9)

To ensure the identification of RNA homodimers using STARmap-
ping and gaptypes.py classification, the RNAs of interest must be
flanked by additional non-N sequences. This condition is satisfied
when the RNA is located in the middle of long sequence, or as a
standalone mini-chromosome (i.e., the RNA itself), where addi-
tional sequences are padded to the 5′ or 3′ ends. For example, for
RNAs with multiple gene copies in the genome, a single copy is
taken out and padded with 100 “As” on each side. Alternatively,
the chimFilter option should be set as None to disable the filtering.
To cluster homo.sam alignments, crssant.py is applied in the same
way as for gap1/trans alignments.

Homo alignments (homo.sam) with <2 nt overlapping be-
tween two arms were filtered out to avoid potential artifacts. The
distance between two arms was calculated,

overlap = min (arm1 end, arm2 end)

− max(arm1 start, arm2 start).

To understand the relationship between RNA homodimers and
RNA stem–loop structures, RNA stem–loops were identified using
local gap1 alignments. The length of two arms should be >15 nt
and the loop length (gap length) should be <20 nt.

Bowtie 2 mapping of alignments and subsequent processing

To compare the STAR and Bowtie 2 mapping protocols, we de-
signed the following general pipeline to map reads using Bowtie
2 and process the alignments. First, the reads were mapped using
two sets of published parameters (Travis et al. 2014; Sharma et al.
2016). The alignments were converted to chimeric format using
bowtie2chim.py, a custom script to rearrange chimeric align-
ments. The rearranged alignments were filtered using gapfil
terbt2.py to remove splicing events, and unique alignments with
deletion (D in CIGAR) >2 are counted. Similar to the STARmapped
data, the gaptypes.py script was used here to classify the
alignments.

A brief description of the Bowtie 2 parameters is as follows:
D – seed extension attempts; R – reseeding attempts; N –max mis-
matches; L – seed length; k – max number of valid alignments to
search; i – score-min: ma: match bonus; np –N penalty; mp –mis-
match penalty; rdg – affine read gap penalty; rfg – affine reference
gap penalty. For end-to-end mode, the minimum should be −0.6–
0.6 ×L, where L is the length of the read. For local mode, the min-

imum should be 20+8× ln(L). The commonly used setup in
Bowtie 2:

‐‐very-fast-local Same as: -D 5 -R 1 -N 0 -L 25 -i S,1,2.00
‐‐fast-local Same as: -D 10 -R 2 -N 0 -L 22 -i S,1,1.75
‐‐sensitive-local Same as: -D 15 -R 2 -N 0 -L 20 -i S,1,0.75
(default in ‐‐local mode)

‐‐very-sensitive-local Same as: -D 20 -R 3 -N 0 -L 20 -i S,1,0.50

The primary assembly of hg38 and combinations of the Rfam
and annotated mRNAs were used to build the Bowtie 2 indices (Lu
et al. 2016). The Bowtie 2 parameters from the hyb package are as
follows (Travis et al. 2014): bowtie2 -p 20 -D 20 -R 3 -N 0 -L 16 -k 20
‐‐local -i S,1,0.50 ‐‐score-min L,18,0 ‐‐ma 1 ‐‐np 0 ‐‐mp 2,2 ‐‐rdg 5,1
‐‐rfg 5,1 -x hg38pri -U xxx.fastq -S xxx.sam. The Bowtie 2 parame-
ters from the Aligater package are as follows (Sharma et al. 2016):
bowtie2 -p 20 -k 50 -R 3 -N 0 -L 16 -i S,1,0.50 ‐‐local -x hg38pri
-U xxx.fastq -S xxx.sam. Default for the other parameters are as fol-
lows: -D 15 -score-min G,20,8 ‐‐ma 2 ‐‐np 1 ‐‐mp 6,2 ‐‐rdg 5,3 ‐‐rfg
5,3. The rdg and rfg setting in the default is much stronger.

Bowtie 2 does not produce supplemental alignments like
STAR. It has one primary and multiple secondary alignments
(“FLAG 256”). In the unsorted SAM output, the first is always
the primary alignment. We developed the following strategy to
combine the primary and secondary alignments (bowtie2
chim.py). If any of the secondary alignments can combine with
the primary, with at most overlap (e.g., 2 nt) in the query, then
we consider the pair as a chimera and modify the two alignments
with tags “ch:A:1\tSA:Z:A”. If multiple loci for secondary align-
ments can be matched to the primary, keep one for simplicity.
Only reads without linkers are considered to be comparable to a
typical STAR run. The linkers can be easily removed before the
STAR mapping step.

Simulation of gapped reads to benchmark optimized STAR

alignment parameters

First, a region is extracted from the human genome, for example,
the ACTB protein-coding gene. A simulated gapped read with
two segments is randomly positioned across the selected region,
where the gap length is randomly set within a range (e.g., between
1 and 100 nt), and the length of each segment is randomly set
within a range (e.g., between 5 and 35 nt). In each read, at least
one segment is set ≥20 nt to guarantee a unique match. The two
segments are randomly assigned to be linked either on the proxi-
mal ends (forward gapped) or on the distal ends (backward
gapped). The simulated reads are mapped to the entire
human genome (hg38 primary assembly) using the four settings
described above (Bowtie2_hyb, Bowtie2_Aligater, STAR_default,
STAR_optimized). The alignments are then compared to the simu-
lated positions to check the accuracy of mapping. The mapping is
considered accurate if the start position and the gap length of an
alignment are not more than 10 nt different from the simulated
values (to account for ambiguities at the ends of each arm).

Simulation of DGs to benchmark CRSSANT

First, on an artificial chromosomeof Chr 1: 0–1000,made of nucle-
otides “N” in one gene GENE1: 0–1000, pairs of core intervals of a
specified length (corelen, e.g., 5, 10, or 15 nt) are selected, in the
range of Chr 1: 100–900. The first 10 kb of hg38 Chr 1 happens
to be a stretch of “N”, so the results can be viewed on hg38. The
two intervals of each pair are at least a coregap away from each oth-
er (e.g., coregap=50), and within a specific distance (e.g., corewi-
thin=1000, for Chr 1: 0–1000). Each side of the two cores are
extended by a random length (e.g., in the range [5,15]) to make
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one alignment. Each pair of core intervals are expanded to a set
number of alignments that make up one DG, and the number of
alignments in each DG is randomly set in a specific range, for ex-
ample, DGlower= 10, DGupper = 100. A set number of DGs are
generated (e.g., 100), and overlap between DG cores are allowed
for, at most, one arm, but not both. Pseudo random numbers
were generated with seeds to ensure reproducibility. This script,
dgsim.py, generates a simple set of alignments in DGs to test
crssant.py.

CRSSANT analysis of rRNA structures from various

crosslink-ligation methods

Watson-Crick base pairs and non-Watson-Crick interactions in the
human ribosome cryo-EM model (PDB:4V6X) were extracted us-
ing DSSR (Lu et al. 2015a). The CRSSANT output DGs from
300,000 gap1 alignments on the rRNAs in each data set were
used to generate the ROC curves. The structures in every 20-nt or
5-nt pairwise bin in 28S rRNA were identified and used as a gold
standard to evaluate different crosslink-ligation data sets. For
ROC analysis of the accuracy and specificity of secondary struc-
tures, the base pairs of each 20-nt pairwise bin were calculated.
For ROC analysis of the accuracy and specificity of spatial proxim-
ity, the true-positive pairwise 5-nt bin was defined by the average
Euclidean distance of the pairs being within 25 Å (roughly the
width of an RNA duplex) of cryo-EM 28S rRNA structure. Themiss-
ing expansion segments in cryo-EM model were excluded for the
ROC analysis. Because COMRADESwas performed on virus-infect-
ed cells and viral RNAs were enriched, fewer reads were mapped to
the human genome. The 300,000 hs45S alignments from
COMRADES data were gathered from all samples. For other data
sets, the 300,000 reads were randomly chosen. DGs were assem-
bled from the merged file of five different data sets and then later
split, so that theDGs can be directly compared among the samples.

Analysis of correlation between DG and TG (Fig. 5)

To determine whether TGs correlate with the DGs that support
them, human HEK293 cell PARIS data gapm alignments (with
two gaps, or three segments) were randomly shuffled across the
28S rRNA while maintaining the organization of alignment (i.e.,
gap lengths were not changed). TGs were assembled from the orig-
inal gapm alignments or the shuffled alignments. Pearson’s corre-
lation was calculated between the numbers of alignments in each
TG and the geometric mean of the numbers of alignments in each
pair of DGs that support the TG ((DG1_coverage×DG2_cover-
age)0.5). Genomic coverages of alignments for the DGs, original
TGs, and shuffled TGs were plotted in the Integrative Genomics
Viewer (IGV, v2.8.13) (Robinson et al. 2011).

Experimental validation of U8 homodimer

HEK293 cells were crosslinked with 0.5mg/mLAMT, or non-cross-
linked, and total RNA fromeach conditionwas collected forU8 en-
richment using five biotinylated antisense oligos (GGATTATCC
CACCTGACGAT, CTCCGGAGGAGGAACAGGTA, CTCCAATCAT
CATGTTCTAA, GTTAATCACGTTTCATGCAT, and CAGGGTGT
TGCAAGTCCTGA), designed using the published ChIRP method
(Chu et al. 2012). The enriched target RNAs were treated with
the mRNA decapping enzyme (NEB #M0608S). Ends of the en-
riched RNA were then ligated via proximity ligation by Mth RNA
Ligase (NEB #M2611), followed by reverse crosslinking and adapt-
er ligation (Zhang et al. 2021). cDNAwas synthesized using a prim-
er complementary to the adapter. PCRwas performedusing primer
sets: F, GGACTTGCAACACCCTGATT; R, CGGAGGAGGAACAG

GTAAGG. The positive PCR products from U8-U8 homodimer
should be 72 bp.

RNA secondary structure modeling and visualization

In general, base-pairing was predicated using ViennaRNA Package
(v 2.1.9) (Lorenz et al. 2011). DGs and TGs alignments were visu-
alized by IGV. The curated seed alignments were turned into a
WebLogo (https://weblogo.berkeley.edu/logo.cgi). Each arm of
gapm and homo alignments were mapped to human 28S rRNA
cryo-EM structure (PDB ID: 4V6X), U1 snRNP cryo-EM structure
(PDB ID: 3CW1), and U2/U5/U6 snRNP cryo-EM structure (PDB
ID: 7ABI).

Software availability

Source code for the software developed in this study is available
from GitHub (https://github.com/zhipenglu/CRSSANT) and in
Supplemental Code. Source data for the figures, including assem-
bled DGs, TGs, and potential RNA homodimers from published
crosslink-ligation data are also available in GitHub, as well as
Supplemental Data.
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