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Abstract

The high heat and mass transfer, and controlled mechanoenergy, in angled vortex fluidics

has been applied in chemical and material sciences and allied fields, but its utility in food pro-

cessing remains largely unexplored. Herein we report three models of food processing

incorporating such vortex fluidics, including enzymatic hydrolysis, raw milk pasteurization

and encapsulation. The processing times of enzymatic hydrolysis was reduced from about

2–3 hours to 20 minutes, with the processing time of raw milk pasteurization reduced from

30 to 10 minutes, and an encapsulated particle size reduced approximately 10-fold, from

micro meters to hundreds of nanometers. These findings highlight exciting possibilities, in

exploiting the value of vortex fluidic mediated processing in the food industry.

2.Introduction

The advance of modern technologies has significantly improved the traditional methods of

food processing. This has resulted in shorter processing times as well as the development of

“new food” with better nutritional or functional values than traditional food products. For

example, protein hydrolysates with smaller molecular weights from fish or milk [1,2] enhance

its absorbance in the body, therefore increasing its nutritional values [1] and yoghurt, cheese

or other traditional food with encapsulated fish oil or other nutritional substances is possible

without destabilizing the food system. In comparison with the traditional pasteurization

method, the application of advanced Ultra Heat Temperature (UHT) pasteurization has signif-

icantly increased the shelf life of milk without reducing its nutritional value [3].

Nevertheless, there are a number of challenges in the current food processing industries.

Most of these relate to the balance between the quality of the final products and the cost of pro-

duction. While protein hydrolysis from fish, milk and other protein sources provided the pro-

tein-based food with higher nutritional value, the processing time required to hydrolyze food

protein into small peptides is about 2–3 hours [4]. This is at odds with food industry practice

and cost considerations, requiring an acceptable processing time within 0.5 hours [5]. Regard-

ing encapsulation of small particles, this results in instantaneous release of flavor and function-

ing of the confined substances. Currently it is difficult for conventional homogenization to

generate particle-sizes at the nano-meter dimensions, unless operating the processing at high
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pressures, as reported by [6] for generating nano-crystalline suspensions under such condi-

tions, with the particles approximately 200 nm in diameter. However, the high cost of a high

pressure homogenizer (approximately USD 150k) limits its application mainly to laboratory

operations, rather than extending them into industry. Indeed, in comparison with the tradi-

tional pasteurization method, the application of advanced Ultra High Temperature (UHT)

pasteurization has significantly increased the shelf life of milk without reducing its nutritional

value. Nonetheless, an UHT system costs over USD 1 million and is therefore difficult for

small farms and small businesses to implement, in comparison with the cost of only USD

15,000 for establishing a traditional pasteurization system [2]. Therefore, an innovative low

cost system with dramatically improved heat transfer and/or high shear has the potential to

revolutionize the food processing industry [7].

Vortex fluidics represents a new processing capability that enables new tools and synthetic

strategies with a diversity of research and industrial applications. Core processing technology

has emerged from research efforts focused on the application of thin film microfluidics and thin

film flow chemistry. This has resulted in the ability to harness high shear forces, intense micro

mixing, and high heat transfer to enhance and explore reactivity relative to traditional batch

processing [8]. This led to the development of the Vortex Fluidic Device (VFD) (Fig 1) which

has a rapidly growing number of processing capabilities, from small molecule synthesis to pro-

cessing advanced materials, for various applications such as in drug delivery, and manipulating

single cell organisms [9]. The VFD can operate under the confined mode of operation where a

tube containing a finite volume of liquid is spun at high speed, or operate under continuous

flow where jet feeds deliver liquid to the base of the tube or at positions along the tube under

the same conditions. A dynamic thin film is formed at high rotational speeds with the thickness

of the thin film controlled by varying the rotational speed and tilt angle of the tube or the vol-

ume of liquid in the VFD tube, which under continuous flow, depends on the flow rate [8].

Fig 1. Photograph of the vortex fluidic device (VFD) highlighting its salient features.

https://doi.org/10.1371/journal.pone.0216816.g001
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The utility of the VFD has been established for a number of chemical transformations, with

control over reactivity and selectivity, and the ability to prepare complex molecules in a single

pass in the thin film microfluidic platform. Dramatically enhancing enzymatic reactions has

been established, with an average seven-fold acceleration for a diversity of enzymes [10]. This

arises from the Faraday pressure waves contained within the thin film. Tethering enzymes to

the surface of the tube has also been established, for the synthesis of small molecules in a single

pass [9]. The VFD has also been applied in materials processing under continuous flow, such

as in assembling fullerene C60 molecules into nanotubules [11]. The micron length nanotu-

bules, with hollow diameters 100 to 400 nm, are formed in the absence of surfactant, and with-

out the need for further downstream processing. The operating parameters of VFD can be

systematically explored, as high throughput processing, in optimizing any process, as in effec-

tively converting sunflower oil to biodiesel at room temperature, with no saponification and

avoiding the conventional use of co-solvent or complex catalysts [12]. The thin film generated

by the VFD significantly increases heat transfer and shear forces, which are two critical condi-

tions/requirements in food processing, as discussed above. Thus far, the VFD as the showcase

tool for vortex fluidics, has not been applied in food processing, other than preliminary find-

ings on the encapsulation of fish oil [13]. This involved operating the VFD under continuous

flow for controlling the size of spheroidal encapsulated fish oil particles, from 50 to 250 nm.

Moreover, use of homogenization (as a benchmark to encapsulate fish oil) afforded much

larger macro-particles, ranging in size from 2 to 4 μm. Smaller encapsulated particles fabri-

cated using VFD processing could lead to improved absorption from fish oil.

Herein we explore the utility of the VFD thin film microfluidic platform in food processing,

targeting three models of food processing, namely enzymatic hydrolysis, pasteurization and

encapsulation. The effects of VFD processing are compared with the traditional processing

technology. Overall, the data in this communication letter establishes a conceptual basis with

respect to the application of the VFD in food processing.

3.Materials and methods

3.1 Materials

Both milk powder (Coles, Australia) and fish oil (Swiss, Australia) were food grade and pur-

chased from local markets. Neutrase was purchase from Novozyme Australia (U3/22 Loyalty

Road, North Rocks, NSW, 2151). Raw milk (unpasteurised) was provided by Bd farm Paris

Creek PTY LTD (9/7 Paris Creek Rd, Paris Creek SA 5201) 24 hours before the commence-

ment of the trial processing. Sucrose monolaurate and curcumin were purchased from Sigma-

Aldrich, Australia (12 Anella Avenue, Castle Hill, NSW, 2154)

3.2 Methods

3.2.1 Enzymatic hydrolysis of protein in milk powder. Ten grams of milk powder was

fully dissolved in 50 mL of water. One percent Neutrase (w/w, enzyme to milk powder, 0.1 g)

was added in the milk powder solution. For the conventional enzymatic hydrolysis method, 1

mL of the dissolved milk powder along with the enzyme was transferred into a 5 mL container

and heated at 55˚C for 2 hours using a water bath, followed by heating at 95˚C for 15 minutes

to deactivate the enzyme. For VFD enzymatic hydrolysis method, 1 mL of the dissolved milk

with enzyme was transferred into the VFD tube (20 mm O.D. and 17.5 mm I.D., 18.5 cm in

length). The confined mode of operation of the VFD was used, with the tube spun at 8000 rpm

for 20 minutes, at a tilt angle of 45 degrees. The processing conditions of 8000 rpm rotation

speed and tilt angle of 45 degrees were recognized as the optimal processing conditions for a

number of previous VFD studies [14,9]. The temperature of the VFD tube was maintained at
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55˚C using a heating jacket. After that, the temperature of the VFD tube was elevated to 95˚C

and maintained at this temperature for 15 minutes in the VFD to deactivate the enzymes.

Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry was conducted for

both the liquid samples after hydrolysis of the dissolved raw milk powder, for determining the

molecular weights, which were used as the indicator of hydrolysis efficiency.

3.2.2 Curcumin encapsulation with fish oil and sucrose monolaurate as an emulsifier.

Nano-encapsulations were formulated using curcumin, as a bioactive ingredient, and a mix-

ture of non-ionic surfactant and water. Briefly, 10 mg of curcumin was mixed and dissolved in

60 mg of fish oil. Then the curcumin-fish oil mixture was premixed with 10 mg of sucrose

monolaurate and 10 mL of water by using a benchtop vortex mixer, and introduced into the

borosilicate glass tube (20 mm OD) in the VFD through jet-feeds, with the tube rotating at

8000 rpm, at a flow-rate of 0.1 mL/min, with the tilt angle of the tube at 45˚ and the device

operating at room temperature. The solution was collected and sonicated for 20 minutes. The

traditional homogenization method was also applied for comparison with the VFD processing.

Here the same concentrations as used above in the VFD were homogenized (homogenizer T25

digital ULTRA-TURRAX) at 13,500 rpm for 10 minutes at 25˚C and similarly the homoge-

nized solution was sonicated for 20 minutes.

3.2.3 Particle size measurements. Oil in water (o/w) emulsions particle size distribution

and polydispersity index were determined at 25˚C using dynamic light scattering (DLS) (Nano

ZS90, Malvern instruments, Worcester, UK) operating with a He-Ne 633 nm wavelength laser

and a detector angle of 173˚. Three independent measurements were performed for each sam-

ple. The Malvern zeta sizer instrument measured the time dependent fluctuations of light scat-

tered based on the particle sizes. All the o/w emulsions were diluted in 1:10 with Milli Q water

for all measurements.

3.2.4 UV-visible absorption spectroscopy measurements. The absorption spectra for all

the samples were measured on Cary 50 Bio UV-visible spectrophotometer at 25˚C. The maxi-

mum absorption of curcumin was recorded at pH 7 at 25˚C using a quartz cuvette of path-

length 10 mm.

3.2.5 Fluorescence spectroscopy measurements. All the fluorescence measurements

were carried out with a Cary Eclipse Fluorescent Spectrophotometer, Agilent Technologies,

using a quartz cuvette with a path-length 10 mm. Both excitation and emission band slits were

fixed at 10 nm and the scan rate was selected at 1800 nm/min. The excitation wavelength was

selected at 425 nm while emission spectra were collected in the range of 450 to 600 nm.

3.2.6 Raw milk pasteurization. For the conventional processing, 1 mL of raw milk was

sealed in a 5 mL container and pasteurized at 60˚C for 30 minutes in a water bath. VFD pro-

cessing used the confined mode with 1 mL of raw milk transferred into a VFD tube and spun

at 8000 rpm with the tilt angle at 45˚. For different trials, the heating temperatures were set at

60˚C, 50˚C and 40˚C, and for each temperature the VFD was operated for 30, 20, 10 and 5

minutes, respectively. Alkaline Phosphatase tests were carried out on all pasteurized samples

for determining the efficiency of the pasteurization.

3.2.7 Measurement tests. MALDI mass spectrometry was used to determine the enzy-

matic hydrolysis efficiency, and Alkaline Phosphatase tests were used to determine the pas-

teurization efficiency, carried out according to standard methods.

4. Results and discussions

4.1 Enzymatic hydrolysis of protein in milk powder

The appearances of dissolved milk powder, dissolved milk powder after VFD-enzymatic

hydrolysis, and dissolved milk powder after conventional enzymatic hydrolysis are shown in

Vortex fluidic mediated food processing
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Fig 2. The hydrolyzed protein after enzymatic hydrolysis is a protein that has been partially

broken down, and therefore possesses lower molecular weight in comparison with intact pro-

tein. The cloudiness of the liquid in Fig 2C might indicate poor efficiency of hydrolysis, as

reported by [15]. In comparison, the clear solution of Fig 2B is consistent with improved effi-

ciency of hydrolysis, even though the processing was much shorter (20 minutes compared

with 2 hours for conventional processing). This observation was confirmed using MALDI

mass spectrometry analysis. The peaks on the left and right side in Fig 3 indicate protein with

the lowest and highest MW, respectively. Milk protein is composed of a mixture of proteins

with various sizes with wide m/z values from 0 to 25000 (Fig 3A). Prior to processing, there

were several peaks from 12500 to 25000 m/z for the non-processed dissolved milk powder (Fig

3A). However, these peaks were not observed after hydrolysis using either the VFD or conven-

tional processing (Fig 3B and 3C). Comparing the two processing techniques, it can be seen

that the peaks in Fig3B were more concentrated on the left than those in Fig 3C. This indicates

that the MW of the dissolved milk powder after VFD-enzymatic hydrolysis is smaller than the

dissolved milk after conventional enzymatic hydrolysis, thereby demonstrating greater effi-

ciency of hydrolysis assisted by VFD processing. Enzymatic hydrolysis has been carried out in

an industrial scale, although there are some concerns, including the cost of enzymes as

reported by [5], and processing time. The current enzyme cost for the cellulose to ethanol pro-

cess is approximately USD 5 per gallon ethanol. However, the market-acceptable price is USD

1.07 per gallon, which requires a 10 fold reduction in the cost of the enzyme [16]. As to pro-

cessing time, this can be up to 3 hrs with the food industry preferring enzymatic hydrolysis

Fig 2. Appearance of dissolved milk powder with (a) no treatment; milk powder: water = 1:5 (w/v). (b) VFD-enzymatic

hydrolyzation; milk powder: water = 1:5 (w/v); temperature at 55˚C; processing time of 20 mins; VFD speed at 8000 rpm;

VFD tilt angle of 45˚. (c) Conventional enzymatic hydrolyzation; milk powder: water = 1:5 (w/v); temperature at 55˚C;

processing time of 20 min.

https://doi.org/10.1371/journal.pone.0216816.g002
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processing time down to 20 min [5]. The current trend is to develop new technologies to

increase the efficiency of enzymes, to reduce the amount of enzyme required and/or the

Fig 3. MALDI mass spectra analysis of dissolved milk powder before and after different treatments (a) No treatment; milk

powder: water = 1:5 (w/v). (b) VFD-enzymatic hydrolyzation; milk powder: water = 1:5 (w/v); temperature at 55˚C; processing

time of 20 mins; VFD speed at 8000 rpm; VFD tilt angle at 45˚. (c) Conventional enzymatic hydrolyzation; milk powder:

water = 1:5 (w/v); temperature at 55˚C; processing time of 20 min.

https://doi.org/10.1371/journal.pone.0216816.g003

Vortex fluidic mediated food processing

PLOS ONE | https://doi.org/10.1371/journal.pone.0216816 May 30, 2019 6 / 12

https://doi.org/10.1371/journal.pone.0216816.g003
https://doi.org/10.1371/journal.pone.0216816


processing time. [17] immobilized glucose oxidase on TiO2 /Polyurethane for removal of a

dye, with the resulting decolourization efficiency increased from approximate 60% for no

immobilization to almost 100%. [5] developed a microwave-assisted enzymatic process which

increased the production yield from 42% to 62.5%, and shortened the processing time from

2hrs to 20 min. The development of VFD technologies in this study presented another technol-

ogy with the potential to enrich this trend.

4.2 Curcumin encapsulation in O/W emulsions

Fig 4 demonstrates that there are significant differences of particle size between the curcumin

encapsulated by conventional homogenization method and VFD processing. Though there are

2 peaks shown for the diagrams of both conventional homogenization method and VFD pro-

cessing, the conventional homogenization method produced capsules with the major size dis-

tribution above 1000 nm. In contrast, VFD processing significantly reduced the majority of

the particles to the size of less than 100 nm. This finding is supported by the different appear-

ance of curcumin encapsulated from different treatments. The solution of encapsulated curcu-

min processed using VFD processing was clearer (Fig 5A), whereas the solution of

encapsulated curcumin processed by homogenization method was less transparent (Fig 5B).

In this context, the particle size in solution is one of the decisive factors for transparency of

solution or otherwise. [18] reported that the cloudiness of solution is drastically reduced once

the particle size is less than 200 nm. A similar particle size of encapsulated curcumin has been

previously reported [19]. However, to achieve this, high-pressure homogenization using a sys-

tem costing about USD 150,000 was required. In contrast, the current cost of approximate

USD 20,000 for VFD makes it a dramatically less expensive technology, and thus VFD process-

ing represents a significantly cost saving processing, in achieving quality encapsulation. Scaling

up of the VFD processing will be a focus of future studies, with the aim of improving the cur-

rent industrial production of homogenization at large scale.

Fig 4. Photographs of different samples of encapsulated curcumin (a) Curcumin formulation processed using the

homogenization method (speed: 13,500 rpm; time: 10 minutes; temperature: 25˚C; sonication: 20 minutes;

homogenizer: T25 digital ULTRA-TURRAX). (b) Curcumin formulation processed using a vortex fluidic device

(VFD) (dispersed phase: 2%(w/v), lipid/oil: 1/1(w/w), speed: 8000 rpm, flow-rate: 0.1 mL/min, tilt angle: 45˚,

temperature: 25˚C; sonication post VFD processing for 20 minutes).

https://doi.org/10.1371/journal.pone.0216816.g004
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The effectiveness of encapsulation was further measured using fluorescent spectroscopy

(Fig 6). Curcumin has intrinsic fluorescence with a wide intensity band between 540–550

Fig 5. Dynamic light scattering (DLS) data (temperature: 25˚C; He-Ne laser: 633 nm; detector angle: 173˚) for

encapsulated particles produced using vortex fluidic device (VFD) processing, using operating parameters in Fig 4

caption.

https://doi.org/10.1371/journal.pone.0216816.g005

Fig 6. Fluorescent spectrums (path-length of quartz cuvette: 10mm; excitation band slits: 10 nm; emission band

slits: 10 nm; scan rate: 1800 nm/min; excitation wavelength: 425 nm; emission spectra: 450–600 nm) for VFD and

homogenization samples.

https://doi.org/10.1371/journal.pone.0216816.g006
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nm in aqueous medium [20]. A shift is observed at 500 nm for both VFD and homogeniza-

tion samples. This shift is indicative of interactions between sucrose mono-laurate and cur-

cumin micelles. However, comparing with the VFD generated sample, the homogenization

sample has a broader fluorescent spectrum curve at 530 to 540 nm. This is likely to be due to

the presence of curcumin not encapsulated during the homogenization processing. UV-visi-

ble spectroscopy was also used to characterize the samples (Fig 7). Curcumin has a strong

absorbance band at 425 nm associated with π–π excitation of the di-ketone rings [21]. A 5

nm blue shift is observed at 420 nm, highlighting a change in the molecular environment of

the curcumin, noting curcumin in a more hydrophobic environment typically has such a

blue-shift (Ming, et.al., 2015).

4.3 Pasteurization of raw milk

The effect of VFD-pasteurization with different processing times and temperatures on raw

milk is shown in Fig 8. The white color in Fig 8 shows that there is no color change during the

test, which would arise from complete deactivation of Alkaline Phosphatase. The lack of color

change confirmed the complete pasteurization. In contrast, the yellow color in Fig 8 is indica-

tive of incomplete pasteurization. The standard conventional pasteurization method requires

the raw milk to be processed at 60˚C for 30 minutes. As seen from Fig 8, the VFD-pasteuriza-

tion is unable to reduce the pasteurization temperature, but it was effective in reducing the

processing time from 30 minutes to 10 minutes. While this is still longer than the standard

processing time for UHT, which is 1–2 seconds at 135˚C, the shorter processing time in the

VFD preserves the nutritional value. This aside, the UHT equipment costs approximately USD

1–2 million, considerable more than the cost of a VFD, as discussed above. Overall, VFD-pas-

teurization provides the balance between cost and nutritional value for milk pasteurization,

but this will require addressing scaling up for the processing using, for example in using a

larger diameter tube in the VFD.

Fig 7. UV-visible spectroscopy (temperature: 25˚C; path-length of quartz cuvette: 10 mm) for VFD and

homogenization samples.

https://doi.org/10.1371/journal.pone.0216816.g007
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5. Conclusion

We have established the utility of the VFD in food processing, for three different food models.

The high heat transfer and shear stress (mechanoenergy) in the VFD is effective in shortening

the processing time of enzymatic hydrolysis from about 2–3 hours to 20 minutes. In the same

vein, the VFD was effective in reducing the processing time of standard pasteurization from 30

minutes to 10 minutes, and in reducing the size of encapsulated curcumin particles, from

approximate 1000 nm to less than 100 nm, without requiring expensive processing homogeni-

zation equipment. This initial data and analysis demonstrates a potential of VFD processing in

the food industry, noting that the device itself is relatively inexpensive.
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