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ABSTRACT: In recent years, gas injection, especially CO2
injection, has been acknowledged as a promising approach for
enhanced oil recovery (EOR) and CO2 capture and storage
(CCS), especially for tight reservoirs. However, when CO2 is
injected into the oil reservoirs, it can disturb the equilibrium of the
system and lead to chemical reactions between CO2, formation
water, and reservoir rocks. The reactions will alter some
geochemical and physicochemical characteristics of the target
reservoirs. However, the reactions still lack quantitative character-
ization at the pore scale, especially under reservoir conditions.
Herein, we conducted an experimental study of the interactions
between CO2, brine, and rocks in the Mahu oilfield at 20 MPa and
70 °C. The low-field nuclear magnetic resonance (LF-NMR)
measurements showed that the incremental amplitude for tight cores of CO2−rock−water tests was larger than that for CO2−rock
tests, and the amplitude alteration presented significant differences corresponding to different types of minerals and pores.
Furthermore, the interplanar spacing of the core samples was increased with the increase of reaction time in the CO2−rock
experiments but still lower than that in CO2−rock−water tests. This research demonstrated evident changes in the geochemistry in
tight reservoirs caused by CO2, brine, and rock reactions. The results of this study may provide a significant reference for the
exploration of similar reservoirs in the field of CO2−EOR and CO2 sequestration.

■ INTRODUCTION
Unconventional reservoirs including tight oil and shale oil have
been drawing increasing attention owing to the increasing
energy demand. According to the estimation, approximately 30
billion barrels of unconventional oil are distributed worldwide
in 24 oil reservoirs.1−3 The recoveries of these reservoirs
(Bakken oilfield, Eagle Ford oilfield, and Vaca Muerta oilfield)
are believed to be less than 10% even after fracture, owing to
their low porosity and ultralow permeability.4,5 Therefore,
enhanced oil recovery (EOR) approaches should be applied to
disclose the locking.6,7 The commonly used water flooding is
not suitable for tight reservoirs (Bakken oilfield and Eagle Ford
oilfield) owing to the extra high injection pressure.8 CO2
flooding has been proven to be useful and had the potential to
enhance the recovery of tight reservoirs (Bakken oilfield, Eagle
Ford oilfield, and Changqing oilfield) among all of the effective
EOR methods.9−11 In addition, reducing CO2 emissions has
become an urgent worldwide problem. Thus, CO2−EOR
associated with CO2 sequestration illustrated an excellent
development potential in the future.12

It was concluded that the equilibrium of the natural
condition would be broken owing to the injection of CO2

into the subterranean layer. Subsequently, the alteration of
geochemical and physicochemical features of the target
reservoirs would change due to the chemical reaction among
reservoir rocks and formation brine and consequently affect the
behavior of CO2−EOR.13−15 Therefore, it is of vital
importance to have a comprehensive understanding of the
reactions triggered by the injection of CO2. Lots of efforts have
been devoted to studying the interactions of CO2−water−rock
in recent years.
Zhang et al. investigated the interactions of reservoir rocks

(Lucaogou formation of Jimsar sag, Junggar Basin), formation
brine, and supercritical CO2 under reservoir conditions. They
found that the dissolving of supercritical CO2 in the formation
water would generate an acidic condition, which would cause
the dissolving of minerals and their subsequent precipitation.
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Furthermore, the rock surface after exposure to CO2 was
changed to be hydrophilic owing to mineral dissolving,
kaolinite formation, and surface corrosion.13 Abedini et al.
claimed that the chemical interactions might lead to
dissolution and precipitation of certain minerals and alter the
geophysical properties, including porosity and permeability of
reservoir rocks.16 Yu et al. claimed that mineral wettability,
composition, and oil saturation were the main controls on the
exposed surface area of grains, and mineral wettability, in
particular, led to selective dissolution.17 Fuchs et al. evaluated
the effects of geochemical reactions on the geomechanical
integrity of representative siliciclastic reservoir samples. The
fracture toughness results demonstrated that carbon storage
reservoirs might undergo geomechanical weakening with CO2
injection, which could lead to redistribution of stresses that are
able to induce fracture slippage and trigger microseismic
events.18 Zou et al. found that mineral dissolutions caused
numerous large etched pores, which eventually resulted in a
significant increase in porosity and permeability in their
experiment.19 Zhang et al. utilized computed tomography
(CT) scanning-discrete element method (DEM) combined
approach to explore the alterations of limestone rock
mechanical properties during CO2 injection.20 Wei et al.
investigated the interaction dynamics between CO2, water, and
rock minerals under realistic reservoir conditions. The results
indicated that CO2-triggered reactions increased the perme-
ability of the tight core, leading to the consumption of injected
CO2.

8 Tang et al. explored the mechanism that alters the
characteristics of the reservoir for the CO2−brine−rock
reaction during CO2 injection and storage in gas reservoirs.
The results showed that the interaction resulted in the
alteration of petrophysical properties that core permeability

reduced as the porosity increased. Therefore, the dry CO2
ought to be injected into the water area to decrease the side
effect of CO2−brine−rock interactions and guarantee the
practical implementation of CO2 capture and storage (CCS)
projects in gas reservoirs with the aquifer.21 However, few
researchers have investigated the effects of different minerals
on CO2−water−rock interactions at the pore scale in a realistic
reservoir environment. Actually, it is vital to investigate the
mineral types suitable for CO2 storage.
Owing to the extremely low permeability of the tight

reservoir, little efforts have been devoted to exploring the
reactions between CO2 and rock minerals at the pore scale.
Moreover, most of the existing studies failed to quantify the
impacts of the interactions between CO2, water, and rock
minerals. Therefore, this work focuses on quantifying the
alterations caused by the interactions between CO2, tight core,
and water of the Mahu tight conglomerate reservoir in the
Junggar Basin, northwest China, under reservoir conditions
(20 MPa, 70 °C) at the pore scale. X-ray diffraction (XRD),
scanning electron microscopy (SEM), and low-field nuclear
magnetic resonance (LF-NMR) spectroscopy were applied to
characterize the reaction process in this study. The LF-NMR
measurement results indicated that the increase of amplitude
for tight cores of CO2−rock−water tests was mostly higher
than that of CO2−rock tests. The increase of amplitude for big
pores was higher than that for small pores in the case of CO2−
rock trials, while the opposite results were observed in CO2−
rock−water tests. Furthermore, the amplitude alteration
presented great differences corresponding to different types
of minerals and pores. Notable alteration of the mineral surface
could be observed in SEM analysis owing to the interaction
between CO2, water, and rock. The XRD measurements of the

Table 1. Petrophysical Properties of the Core Samples

scenarios tests length (cm) diameter (cm) permeability, Kair (mD) porosity, Φ (%)

CO2−core 1 (calcite) 6.57 2.54 0.09 8.11
2 (kaolinite) 6.41 2.54 0.12 9.26
3 (illite) 6.26 2.53 0.07 8.04
4 (feldspar) 6.39 2.54 0.08 8.21

CO2−water−core 5 (calcite) 6.52 2.51 0.06 8.07
6 (kaolinite) 6.29 2.54 0.10 8.96
7 (illite) 6.28 2.54 0.07 8.13
8 (feldspar) 6.40 2.54 0.09 8.19

Figure 1. Schematic of the experimental setup for CO2 and cores experiments.
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cores also indicated that the saturated CO2 could further
expand the pore size. The research of this paper offered a
further explanation of the CO2−EOR and CCS in tight
reservoirs.

■ EXPERIMENTAL METHODS
Materials. Synthetic core samples with pure minerals

(calcite, feldspar, illite, kaolinite) were prepared before the
tests. Then, they were dried in an oven at 100 °C for more
than 90 h to diminish the influence of water before gas
permeability and porosity measurements (LkiQR-168 Jiangsu
Haian Petroleum Scientific Research Instrument Co., Ltd.,
China). The petrophysical characteristics of the used core are
shown in Table 1. The deionized water was used in tests 5−8,
and the CO2 was sourced from CO2 cylinders with a purity of
99.99%.
Reaction between CO2 and Cores. The experimental

process is described as follows: (1) vacuuming of the system
and (2) injection of CO2 into the high temperature−high
pressure (HT−HP) (Hastelloy, Haian Petroleum Technology
Co.) cell at 20 MPa and 70 °C until equilibrium. The
schematic diagram of the process is shown in Figure 1.
Reaction between CO2, Cores, and Deionized Water.

The core samples were first soaked in deionized water for 72 h,
as shown in Figure 2. Then, they were placed in the HT−HP
cell, as illustrated in Figure 3. The experimental procedures are
briefly described as follows: (1) the HT−HP cell was filled
with deionized water; (2) the temperature was increased to 70
°C and air was vacuumed from the whole system, and then
CO2 was pumped into the reference cell and pressurized to 5.0

MPa until the pressure was stable for 1 h; (3) the valve was
opened and CO2 was injected into the HT−HP cell to a
pressure of 20 MPa for 10 days; and (4) the mass loss of the
core before and after the reaction was calculated. The
percentage of mass loss was calculated as follows

W W W W( )/t b a b= (1)

whereWt stands for the percentage of mass loss of the rock,Wb
is the weight of the rock after reaction (g), and Wb represents
the weight of the rock before the reaction (g).
Scanning Electron Microscopy (SEM) Analysis. A core

piece was cut from the end face of the tight core before and
after being soaked in the supercritical carbon dioxide (SC-
CO2). The morphology of core tablets was observed by
scanning electron microscopy (SEM) with a FEI Quanta 450.
Low-Field Nuclear Magnetic Resonance (LF-NMR)

Test. The core plugs were subjected to vacuum at 10−1 MPa
for one week using a vacuum pressurization saturation device
(KDZB-II, Kedi, China) and then pressurized to 30 MPa to
saturate the core with brine (room temperature). Then, the
cores were subjected to LF-NMR spectrometry (AniMR-150,
Shanghai Niumag Electronic Technology Co., Ltd., China) to
conduct the measurements of the nuclear magnetic resonance
(NMR) T2 spectrum. The permanent magnet of the NMR
spectrometer is 0.23 ± 0.03 T with a resonance frequency of
12 MHz. The echo and scanning numbers were 18 000 and 64,
respectively. All of the measurements were performed at room
temperature and atmospheric pressure.

Figure 2. Schematic illustration of the experimental setup for the vacuum saturation device.

Figure 3. Schematic illustration of the experimental setup for different tight cores soaked in supercritical carbon dioxide (SC-CO2) under deionized
water.
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■ RESULTS AND DISCUSSION
LF-NMR Analysis. To comprehensively describe the CO2−

rock−water interactions, low-field nuclear magnetic resonance
(LF-NMR) was applied to illustrate the reaction process. The
NMR transverse relaxation time (T2) spectra of the original,
CO2−rock, CO2−rock−water for cores with different mineral
types are presented in Figure 5. Based on the bimodal T2
curve, the pores of the tight cores can be divided into two
regimes (small pores and large pores).22−24 The increase of
amplitude for tight cores of CO2−rock−water tests was mostly
higher than that for CO2−rock tests owing to the dissolution
reaction.25 Figure 7 simply presents the mechanisms of altering

the pore size before and after the test. In the case of CO2−rock
reaction tests, CO2 was trapped in porous media primarily
through the adsorption process, and it could slightly enlarge
the pore size of tight cores. However, this effect was not as
strong as expected even though the CO2 was under a
supercritical state. By contrast, the significant increase of
pore size caused by the dissolution reaction is much more
obvious than that by CO2−rock tests. Furthermore, it was
found that the increase of amplitude for big pores was much
higher than that for small pores in CO2−rock−water tests, as
shown in Figure 6. This might be due to the fact that there was
a large amount of micropores in tight cores, which were helpful

Figure 4. Porosity/permeability increment (a) and mass loss (b) of the core sample after the interaction between CO2, water, and rock.

Figure 5. NMR T2 spectra of different cores ((a) calcite, (b) kaolinite, (c) illite, (d) feldspar) during CO2−rock and CO2−rock−water
measurements.
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to the dissolution interactions between CO2, rock, and water.
The dispersed micropores were well connected after being
exposed to saturated CO2. It should be noted that the
alteration of amplitude presented significant differences
corresponding to different types of minerals and pores. The
highest increase of amplitude of total pores and big pores
occurred in feldspar during the CO2−rock test.26 But in the
case of CO2−water−rock measurements, the highest increase
of amplitude of total pores and big pores occurred in kaolinite.
The mass loss and permeability/porosity alterations of tight
cores after CO2−water−rock tests also present the same
results, as shown in Figure 4 (Figures 5, 6, and 7).
Mineral Surfaces. Figure 8 shows the mineral surface

morphology of the rock disks before and after the CO2−
water−rock reaction by SEM. It can be seen that the rock
consisted of fine cemented minerals, as shown in Figure 8a.
After being exposed to saturated CO2, the dissolved pores and
pits were clearly observed, which could notably increase the
connectivity of the tight reservoir rocks, as shown in Figure
8b.27 Furthermore, the SEM images presented conclusive
evidence of feldspar dissolution (Figure 8b) and kaolinization
(Figure 8d).

XRD Analysis. It can be seen from Figure 9 that the
intensities of the peaks become notably weak with the increase
of reaction time, which corresponds to the expansion of the
mineral during the injection of CO2. New characteristic peaks
were not observed during the experiments, indicating that only
physical interaction was triggered between CO2 and tight core.
On the contrary, the new characteristic peaks occurred in the
case of CO2−water−rock experiments (as shown in Figure
10), which suggested that there existed a chemical reaction
during the injection of saturated CO2. Furthermore, the
interplanar spacing D, which can comprehensively reflect the
alteration of the pore size of the cores before and after the
injection of CO2/saturated CO2 was calculated by the
following equation

D
K

B cos
=

(2)

where K is the Scherrer constant, λ denotes the wavelength of
X-ray, B represents the half-width of the peak for the core
samples, and θ is the diffraction angle.
It can be seen from Tables 2−5 that the interplanar spacing

of the core samples was increased with the increase of reaction
time in the CO2−rock experiments but still lower than that in
CO2−rock−water tests. This may be attributed to the
expansion of pore size being limited since only physical
interactions occurred during the injection of CO2. In contrast,
the chemical reaction caused by the injection of saturated CO2
could further expand the pore size.

■ CONCLUSIONS
To clarify the interaction process between CO2, water, and
rock at the pore level during the CO2−EOR operations, we
systematically presented an experimental investigation of
characterizing the reaction mechanism in tight cores under
reservoir conditions using LF-NMR, XRD, and SEM methods.
Based on the experimental data, the following conclusions can
be generally drawn:

Figure 6. Increments of amplitude with different cores during CO2−
rock and CO2−rock−water measurements in different pore intervals.

Figure 7. Schematic of the alteration mechanisms of pore size during CO2−rock and CO2−rock−water measurements.
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(a) The low-field NMR tests indicated that the increase of
amplitude for CO2−rock−water tests was larger than
that for CO2−rock tests due to the dissolution reaction.

(b) The amplitude alteration presented great differences
corresponding to different types of minerals and pores.

(c) The interplanar spacing of the core samples was
increased with the reaction time in the CO2−rock
experiments but was still lower than that in CO2−rock−
water tests.

(d) Although limited works have been conducted in this
paper, it provides some insights into the study of CO2−
EOR and CCS in tight reservoirs. For example, core
samples with a single mineral in this study were not
representative to reflect the actual reservoir condition.
Therefore, the natural cores will be used to characterize
the CO2−EOR process at the pore scale in our future
works.
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■ NOMENCLATURE
EOR = enhanced oil recovery
CCS = CO2 capture and storage

Figure 8. Mineral surface morphology of the rock disks before (a) and after the CO2−water rock reaction (b−d).
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NMR = nuclear magnetic resonance
LF-NMR = low-field nuclear magnetic resonance
XRD = X-ray diffraction
CT = computed tomography
SEM = scanning electron microscopy
DEM = discrete element method
SC-CO2 = supercritical carbon dioxide
B = half-width of peak
θ = diffraction angle
T2 = NMR transverse relaxation time
D = interplanar spacing
Kair = permeability to air
K = Scherrer constant
Φ = porosity, %
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