
Article

Generation of Vertebra Micro-CT-like Image from MDCT:
A Deep-Learning-Based Image Enhancement Approach

Dan Jin 1, Han Zheng 2, Qingqing Zhao 1, Chunjie Wang 1, Mengze Zhang 1 and Huishu Yuan 1,*

����������
�������

Citation: Jin, D.; Zheng, H.; Zhao, Q.;

Wang, C.; Zhang, M.; Yuan, H.

Generation of Vertebra Micro-CT-like

Image from MDCT: A

Deep-Learning-Based Image

Enhancement Approach. Tomography

2021, 7, 767–782. https://doi.org/

10.3390/tomography7040064

Academic Editor: Jasper Nijkamp

Received: 2 September 2021

Accepted: 9 November 2021

Published: 12 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Radiology, Peking University Third Hospital, Beijing 100191, China;
jindan1418@bjmu.edu.cn (D.J.); qqzhao@pku.edu.cn (Q.Z.); chunjiewang17@126.com (C.W.);
zmzforever@pku.edu.cn (M.Z.)

2 School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China; hanzheng@bjtu.edu.cn
* Correspondence: huishuy@bjmu.edu.cn

Abstract: This paper proposes a deep-learning-based image enhancement approach that can generate
high-resolution micro-CT-like images from multidetector computed tomography (MDCT). A total
of 12,500 MDCT and micro-CT image pairs were obtained from 25 vertebral specimens. Then, a
pix2pixHD model was trained and evaluated using the structural similarity index measure (SSIM)
and Fréchet inception distance (FID). We performed subjective assessments of the micro-CT-like
images based on five aspects. Micro-CT and micro-CT-like image-derived trabecular bone microstruc-
tures were compared, and the underlying correlations were analyzed. The results showed that the
pix2pixHD method (SSIM, 0.804 ± 0.037 and FID, 43.598 ± 9.108) outperformed the two control
methods (pix2pix and CRN) in enhancing MDCT images (p < 0.05). According to the subjective
assessment, the pix2pixHD-derived micro-CT-like images showed no significant difference from
the micro-CT images in terms of contrast and shadow (p > 0.05) but demonstrated slightly lower
noise, sharpness and trabecular bone texture (p < 0.05). Compared with the trabecular microstructure
parameters of micro-CT images, those of pix2pixHD-derived micro-CT-like images showed no signif-
icant differences in bone volume fraction (BV/TV) (p > 0.05) and significant correlations in trabecular
thickness (Tb.Th) and trabecular spacing (Tb.Sp) (Tb.Th, R = 0.90, p < 0.05; Tb.Sp, R = 0.88, p < 0.05).
The proposed method can enhance the resolution of MDCT and obtain micro-CT-like images, which
may provide new diagnostic criteria and a predictive basis for osteoporosis and related fractures.

Keywords: computed tomography; osteoporosis; vertebra; trabecular bone; deep learning; struc-
ture analysis

1. Introduction

The spine, which consists of vertebrae, is the main load-bearing component of the
body, and its skeletal status influences a person’s quality of life. Osteoporotic fractures,
particularly vertebral fractures, can be associated with chronic disabling pain and even
directly affect a person’s survival and life expectancy. Clinical diagnosis of osteoporosis and
assessment of fracture risk are mainly based on the areal bone mineral density (BMD) of
trabecular bone in the spine and/or hip observed using dual energy X-ray absorptiometry
(DEXA) [1]. However, a number of clinical studies have demonstrated the limitations of
BMD measurements. It has been recognized that BMD can account for only 60% of the
variation in bone strength [2]. Recently, researchers found that concomitant deterioration
of the bone structure, especially structural changes in trabecular bone, occurs with the loss
of bone mass [3]. This deterioration and loss of bone mass both reduces bone quality and
increases fracture susceptibility, indicating that bone structure also plays a key role in bone
strength.

Microcomputed tomography (micro-CT), the gold standard for measuring bone mi-
crostructure, is an imaging system with exceptionally enhanced resolution (at the micron
level) and can generate three-dimensional (3D) images of internal microstructures [4].
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However, micro-CT scanners cannot be applied to materials larger than 10 cm in diameter
(e.g., human torso), precluding their incorporation into in vivo imaging and diagnosis.
Clinical multidetector computed tomography (MDCT) is widely used in the imaging
diagnosis of spinal diseases, but it does not allow for accurate measurements of bone
microstructure to be determined. Previously published in vitro studies have investigated
the feasibility of using MDCT to measure bone structure, with some parameters exhibiting
only a moderate correlation with that of micro-CT [5–7]. The trabecular bone thickness
(Tb.Th) is approximately 100 microns, which is far less than the maximum resolution of
MDCT images of approximately 200–500 microns [8]. Thus, the ideal imaging instrument
for analyzing the structure of trabeculae needs to meet the requirement of a resolution
lower than that of the thinnest trabeculae [9]. However, there is still a lack of suitable
in vivo methods for measuring the microstructures of vertebrae. Therefore, we hope to
find a method to enhance the resolution of MDCT images to obtain more image informa-
tion about patients’ bone structure, which will help improve the accuracy of osteoporosis
diagnosis and related fracture prediction.

In the medical imaging field, image enhancement methods have recently been used to
improve the visualization of important details [10,11], for example, defects of retinal blood
vessels [12] and indications of tuberculosis [13]. Essentially, there are three kinds of methods
used in medical image enhancement: example-based methods [14], convolutional neural
network (CNN)-based methods [15–18] and conditional generative adversarial network
(CGAN)-based methods [19–23]. However, most of these methods can accommodate only
mappings of local regions or low-resolution images and lack stability when high-resolution
images are being evaluated [21]. To enhance vertebral images, with the goal of making
accurate measurements of the bone microstructures, we needed to map the structure,
orientation and other specific features of the trabecular bone between two sets of images
(i.e., micro-CT and MDCT) with large resolution differences. Pix2pixHD [24], a CGAN-
based method, consists of a coarse-to-fine generator and multiscale discriminators and
is designed for the generation of high-detail and high-resolution images of more than
2048 × 1024, which fits our research needs. Therefore, we used pix2pixHD in our endeavor
to enhance MDCT images of vertebrae.

In this study, intact vertebrae from human cadavers were imaged using clinical MDCT
and micro-CT imaging protocols to (1) take micro-CT images as the gold standard and to
regard corresponding MDCT images as inputs to train the pix2pixHD model to enhance
vertebral images and obtain micro-CT-like images; (2) use objective image quality metrics
to compare the performance of the proposed model with that of two other models named
pix2pix and CRN to determine which method is the most suitable for enhancing vertebral
images; (3) compare the difference between pix2pixHD-derived micro-CT-like images
and micro-CT images by a subjective assessment method to evaluate the quality of the
micro-CT-like images and (4) assess the accuracy of trabecular bone structure metrics
generated from pix2pixHD-derived micro-CT-like images using micro-CT images as the
gold standard to further validate that the proposed method is clinically applicable.

2. Materials and Methods
2.1. Specimens

This study was performed with 5 sets of lumbar spines (between segments L1 and
L5, including 25 vertebrae) harvested from 5 formalin-fixed human cadavers (3 males and
2 females; mean age, 75 years; age range, 68–88 years). The donors had dedicated their
bodies for educational and research purposes to the local Institute of Anatomy prior to
death, in compliance with local institutional and legislative requirements. Lumbar verte-
brae with significant compression fractures, bone neoplasms or other causes of significant
bone destruction were excluded. All 25 specimens were included in the experiment. The
lumbar spine with surrounding muscle was cut into individual segments using a band saw,
with pedicle and appendix structures preserved as much as possible. The samples were
immersed in phosphate-buffered saline (PBS) solution at 4 ◦C for 24 h prior to scanning
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to minimize trapped gas. The study protocol was reviewed and approved by the local
institutional review boards.

2.2. Imaging Techniques

The specimens were scanned by micro-CT (Inveon, Siemens, Erlangen, Germany)
and MDCT (SOMATOM Definition Flash, Siemens, Erlangen, Germany). The parame-
ters of micro-CT imaging were 80 kVp/500 mAs, the field of view on the xy plane was
80 × 80 mm2, the standard matrix size used was 1536 × 1536 pixels, the number of slices
was 1024 at an effective pixel size of 52 µm and the exposure time was 1500 ms in each
of the 360 rotational steps. The MDCT imaging parameters were 120 kVp/250 mAs, the
field of view was 100 × 100 mm2, the slice thickness was 0.6 mm, the slice interval was
0.1 mm, pitch was 0.8 and the standard matrix size used was 512 × 512 pixels. The two
scans provided stack images on the axial plane that covered the entire vertebrae.

2.3. Image Co-Registration

The independent acquisition of the two scanning methods causes MDCT and micro-
CT images to be mismatched. To obtain micro-CT-like images, the first step is to achieve
slice matching between MDCT and micro-CT axial images [25,26]. The scanned micro-CT
slice interval was approximately 0.05 mm, and the MDCT slice interval was approximately
0.1 mm. For a sample of any of the 25 vertebrae, after removing images with incomplete
vertebral structures and images involving the upper and lower endplates, we selected an
area of 2.5 cm in height on the vertebra, obtaining approximately 500 micro-CT images and
250 MDCT images. There were twice as many micro-CT images as MDCT images.

Subsequently, the MDCT and micro-CT images were compared one by one, and the
best image mappings were obtained by the dynamic time warping (DTW) algorithm [27]
and scale-invariant feature transform (SIFT) [28]. Then, the MDCT images were doubled
according to the mapping relationships to obtain MDCT and micro-CT image pairs. Ap-
plying the above method to each of the 25 vertebrae, a total of 25 × 500 = 12,500 image
pairs could be obtained. The image pairs were stored in database_0. Figure 1 illustrates the
process mentioned above.
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2.4. Construction of Training Set and Testing Set

In our study, we assumed that images from the obtained 12,500 image pairs can be
treated as individual samples from the micro-CT domain and MDCT domain. In other
words, the relationship between these samples and the vertebrae to which they belong
was ignored during training and testing. This assumption is supported by the following
reasons:

(1) Characteristics of the selected model. In this paper, we intended to map MDCT
images to micro-CT-like images using an image-to-image method named pix2pixHD.
This method is a supervised paired image learning method that maps images from
the source MDCT domain to the target micro-CT domain and does not consider the
continuity within the image domain. Image pairs are randomly selected for tuning the
model during training, and no images of a particular vertebra are fed into the training
as a set. In other words, in the framework of the selected technique, all image pairs
are considered independent during training, and the correlation between different
slices of images within a vertebra is ignored.

(2) Diversity within each vertebra. Due to the diversity of images at each slice inside ver-
tebrae (see Figure 2), the images within a vertebra do not obey the same distribution.
This diversity is even more pronounced in the presence of vertebral attachments. To
better realize the training, we needed to use all pairs of images at all slices in vertebrae
as the basic unit for model training.
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Figure 2. Samples from one L2 vertebra, where (a) is the sagittal position image of the L2 vertebra,
with 5 noted slices (named b–f), and (b)–(f) are the corresponding axis position images. We found that
although the images were from the same vertebra, the differences between the images of different slices
were substantially large. Moreover, since the technique used in this paper is an image-to-image technique,
there is no longer a holistic concept of “vertebra” in the training process but only discrete images.
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Therefore, there was no “vertebra” in the training and testing processing but only
image pairs. The sequential information can be further broken if the training set and test
set are constructed by random sampling. The training and test sets obtained on this basis
can be considered to be independent.

Based on the above analysis, we could obtain the test set and training set by random
sampling. To prevent a certain slice of images from being trained, for any vertebra, 100 im-
age pairs (20%) were randomly selected as the testing set, and the remaining 400 image
pairs were used as the training set (80%) [29]. Random sampling ensured that continuous
information was removed, and the training and test sets covered most parts of the vertebrae
so that the trained model did not suffer from underfitting or overfitting. In this way, the
12,500 image pairs in database_0 were divided into training (dataset_training) and test
(dataset_testing) sets.

2.5. Model Training

Pix2pixHD [24] is a model based on a CGAN that can generate high-resolution micro-
CT-like images given the input MDCT images by finding the complex mapping function.
The framework of pix2pixHD consists of a coarse-to-fine generator and multiscale dis-
criminators. The coarse-to-fine generator contains a global generator network and a local
enhancer network, where the global generator network focuses on coarse and global fea-
tures of images (such as external contours and geometric structures) and the local enhancer
network focuses on local details (such as the texture and direction of bone trabeculae).
Similar ideas but different architectures can be found in [30–32]. These multiscale dis-
criminators are designed for training the coarse-to-fine generator using three identically
structured networks focusing on different scales of details. The network framework of the
pix2pixHD model is shown in Figure 3.
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Figure 3. Architecture of the pix2pixHD model used, where the global generator consists of 3 components: a convolution
front-end, a set of residual blocks, and a transposed convolutional back-end. The local generator also consists of 3
components: a convolutional front-end, a set of residual blocks, and a transposed convolutional back-end. The multiscale
discriminators consist of three identically structured networks.

The pix2pixHD model was trained in the PyTorch platform on a Windows Server
2019 workstation with two Nvidia A6000 graphics processing units (GPUs). The batch size
was set as 10. The maximum number of epochs was set as 200, and there were 200 iterations
in each epoch. We compared our method with two other mature methods: CRN [33] and
pix2pix [21]. We trained these two models with their default settings.
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2.6. Objective Assessment of Image Quality

After training, the pix2pixHD model was validated by objective metrics based on the
designed testing set (dataset_testing), as were the pix2pix and CRN methods. The objective
metrics are described below.

Structural similarity index measure (SSIM) [34]: The SSIM computes the perceptual
distance between micro-CT-like images and the gold standard (i.e., micro-CT images). In
this paper, we used the simplified version of the SSIM:

SSIM(x, y) = (2µxµy+C1)(2σxy+C2)
(µ2

x+µ2
y+C1)(σ2

x+σ2
y+C2)

where µx and µy are the average values of input images x and y, respectively. C1 = (K1L)2

and C2 = (K2L)2, where K1 and K2 � 1 are small constants (the default values of k1 and
k2 are 0.01 and 0.03, respectively), and L is the dynamic range of the pixel values (255 for
8-bit grayscale CT images).

Fréchet inception distance (FID) [35]: The FID measures the distance between a
generated micro-CT-like image and the corresponding micro-CT image by extracting a
feature vector with 2048 elements by a trained Inception-V3 model. The FID formula is
as follows:

FID = ‖ µr − µg ‖2 + Tr
(

Cr + Cg − 2
(
CrCg

)1/2
)

where µr and µg are the mean values of the features of the real and generated images, respec-
tively, and Cr and Cg are the covariance matrices of the real and generated images, respectively.

These two indexes evaluate the similarity between two images from different perspec-
tives. The SSIM tends to evaluate similarity in terms of structure, and higher SSIM indicates
higher similarity of the images [36]. In contrast, the FID tends to evaluate similarity in
terms of details, and a lower FID indicates a higher similarity of the images [35]. The
above two objective metrics validated the generated micro-CT-like images from a computer
imaging perspective. By comparing the two metrics from the results of the three methods
(pix2pixHD, pix2pix and CRN), we could ascertain the effectiveness of the three methods
and determine which method better enhances vertebral images.

2.7. Subjective Assessment of Image Quality

Subjective assessment of image quality was performed by three radiologists (Ob-
server 1, J.D., 6 years of experience in musculoskeletal imaging; Observer 2, Z.Q., 5 years
of experience in musculoskeletal imaging; Observer 3, W.C., 3 years of experience in mus-
culoskeletal imaging) through image scoring. The detailed experimental operation was
as follows: to prevent visual fatigue of the observers which could impact the fairness of
the scoring results, we randomly selected 30 micro-CT images and 30 pix2pixHD-derived
micro-CT-like images and sorted them into a sequence as an experimental collection. Each
image was assigned a unique identification number. These sequences were anonymized
and presented to the three observers independently in a blinded and random fashion. To
provide comparable results, all images were displayed using the same graphics software,
and all images were consistent in size, window level and width. Contrast was rated on a
3-point scale, and noise, sharpness, shadow and texture were rated on a 5-point scale to
assess image quality. These ratings are further described in Table 1.

Table 1. Scoring method for the subjective assessment.

Metrics Scoring

1 Contrast between the trabecular
bone and bone marrow

1. Too high or too low and unacceptable; 2. High or
low but acceptable; 3. Optimal

2 Existence of noise 1. Severe and unacceptable; 2. Marked but acceptable;
3. Moderate; 4. Mild; 5. None or minimal
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Table 1. Cont.

Metrics Scoring

3 Sharpness of the trabecular bone

1. Severe blurring of the images and unacceptable; 2.
Marked blurring of the images but acceptable; 3.

Moderate blurring of the images; 4. Mild blurring of
the images; 5. None or minimal blurring of the images

4 Obvious overlapping shadows 1. Severe and unacceptable; 2. Marked but acceptable;
3. Moderate; 4. Mild; 5. None or minimal

5 Natural shape of the trabecular
bone texture

1. Poor and unacceptable; 2. Marked irregular and
unnatural but acceptable; 3. Slightly irregular and

unnatural; 4. almost defined and natural; 5.
Completely defined and natural

2.8. Assessment of the Trabecular Bone Microstructure

To measure the bone microstructure, we needed to obtain continuous axial images to
form a cylindrical volume of interest (VOI). After training the model, we inputted all the
original MDCT images of the 25 vertebrae from database_0 into the pix2pixHD model to
obtain continuous micro-CT-like images. Then, we selected micro-CT-like images with the
original micro-CT images of the 25 vertebrae. Then, two cylindrical VOIs (approximately
15 mm in diameter and 5 mm in height) for each vertebra (n = 50 in total) were defined on
both the micro-CT and micro-CT-like images. The positioning of the VOI can be found in
Figure 4. The same VOI setting was also used for MDCT images to calculate bone structure
parameters as a control group.
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Figure 4. (a) The sagittal position of the VOI, which includes two areas 5 mm above and below the
central slice. (b) The axial position of the VOI. First, the vertebral body central axis line A (Horizontal
positioning line) was drawn, and then, line B (Vertical positioning line) was drawn perpendicular to
line A at 5 mm inside the intersection of line A and the anterior edge of the vertebral body. Using the
intersection of lines A and B as the tangent point, a cylindrical VOI with a diameter of 15 mm was
outlined. (c) 3D reconstructed VOI of micro-CT and micro-CT-like images.
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Trabecular microstructure analysis of the micro-CT-like and micro-CT images was
performed using the BoneJ plug-in [37] in Fiji [38]. Fiji is a distribution of the image
processing package ImageJ2 (National Institutes of Health, USA) [39,40]. The micro-CT-
like images of the vertebrae were processed in conjunction with the micro-CT images
as 8-bit stack maps in Fiji software. The micro-CT and micro-CT-like grayscale image
pairs were binarized into bone and marrow phases using a global (histogram-derived)
thresholding method named the IsoData algorithm [41]. The underlying assumption
of this method is that the histogram intensity distribution is bimodal, exhibiting bone
and background peaks. The midpoint between the two peaks was used as the threshold
value. Then, the following structural parameters were calculated: bone volume fraction
(BV/TV), trabecular thickness (Tb.Th) and trabecular spacing (Tb.Sp). BV/TV was derived
through simple voxel counting. In this method, all the foreground voxels were counted,
and all voxels were assumed to represent bone; then, the number of foreground voxels was
compared to the total number of voxels in the image. Tb.Th and Tb.Sp were calculated
without model assumptions as direct measures. Foreground voxels were considered to be
trabeculae, and background voxels were regarded as the spacing [42]. BoneJ was used to
calculate the mean and the standard deviation of the Tb.Th or Tb.Sp directly from pixel
values in the resulting thickness map.

2.9. Statistics

The Kolmogorov–Smirnov test was used to analyze normality, and the Levene test
was used to analyze the homogeneity of variance among the measurement data. Data
showing a Gaussian distribution are reported as the mean ± standard deviation. For
objective image analysis, because the data did not satisfy homogeneity of variance, the
Kruskal–Wallis test was used to assess the difference in the SSIM and FID for the three
methods. For the subjective assessment, Kendall’s coefficient of concordance (Kendall’s W)
was calculated to evaluate interobserver agreement for each subjective image evaluation
score of 5 aspects. We considered Kendall’s W values of less than 0.20 to be indicative of
poor agreement, values between 0.20 and 0.40 to indicate fair agreement, values between
0.60 and 0.80 to indicate moderate agreement and values greater than 0.80 to indicate
excellent agreement. Then, the Mann–Whitney U test was performed to compare the
subjective assessment scores between micro-CT and pix2pixHD-derived micro-CT-like
images. For trabecular bone microstructure analysis, the paired Student’s t-test was used
to determine the statistical significance of differences between micro-CT and micro-CT-like
images for each structural parameter. Parameters derived from the micro-CT and micro-
CT-like images were correlated using Pearson’s correlation coefficient. These statistical
analyses were performed using SPSS 26.0 software (SPSS Inc., Chicago, IL, USA), and a
p-value < 0.05 was considered statistically significant.

3. Results

The training process of pix2pixHD required 653 min in total, which is close to the time
required for the training process of pix2pix (603 min) and CRN (698 min). Figure 5 shows
the evolution of the SSIM and FID of pix2pixHD during training.

3.1. Objective Assessment of Micro-CT-like Image Quality of the Three Evaluated Methods

Figure 6 shows the SSIM and FID metrics between the sets of micro-CT images
and micro-CT-like images generated from the three methods. The mean SSIM values
of pix2pixHD-, pix2pix- and CRN-derived micro-CT-like images were 0.804 ± 0.037,
0.568 ± 0.025 and 0.490 ± 0.023, respectively, and the differences were statistically sig-
nificant (p < 0.001 for both). Additionally, the mean FID of pix2pixHD-derived micro-CT-
like images was 43.598 ± 9.108, which was significantly smaller than that of the pix2pix
(180.317 ± 16.532) and CRN (249.593 ± 17.993) methods (p < 0.001 for both).
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3.2. Subjective Assessment of pix2pixHD-Derived Micro-CT-like Image Quality

The summary of subjective assessment scores and Kendall’s W in Table 2 shows the
interobserver agreements on five aspects in pix2pixHD micro-CT-like images and micro-
CT images. The subjective scoring of shadow was perfectly consistent. In addition, the
Kendall’s W values of the other four aspects were between 0.800 and 0.959 (p < 0.001),
demonstrating excellent interobserver agreement. Then, we averaged the scores to analyze
the differences between two sets of images, as shown in Table 3. The noise, sharpness and
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trabecular bone texture scores of pix2pixHD-derived micro-CT-like images were slightly
lower than those of micro-CT images (p = 0.002, p = 0.004 and p = 0.013, respectively).
In addition, there was no significant difference between the subjective scores of the two
sets of images in terms of contrast and overlapping shadow (p = 0.716 and p = 1.000,
respectively). In particular, in terms of overlapping shadows, the mean subjective scores
for both methods were five points, indicating that no significant overlap shadow existed in
either set of images.

Table 2. Interobserver agreement for subjective assessment scores of micro-CT and pix2pixHD-
derived micro-CT-like images.

Indexes Methods Observer
Score

Kendall’s W p-Value †
1 2 3 4 5

Contrast Micro-CT Observer 1 0 7 23 \ \ 0.912 <0.001
Observer 2 0 6 24 \ \
Observer 3 0 5 25 \ \

Micro-CT-like Observer 1 0 7 23 \ \ 0.959 <0.001
Observer 2 0 7 23 \ \
Observer 3 0 6 24 \ \

Noise Micro-CT Observer 1 0 0 0 6 24 0.800 <0.001
Observer 2 0 0 0 9 21
Observer 3 0 0 0 4 26

Micro-CT-like Observer 1 0 0 4 8 18 0.938 <0.001
Observer 2 0 0 5 5 20
Observer 3 0 0 5 8 17

Sharpness Micro-CT Observer 1 0 0 0 4 26 0.817 <0.001
Observer 2 0 0 0 9 21
Observer 3 0 0 0 8 22

Micro-CT-like Observer 1 0 0 4 8 18 0.888 <0.001
Observer 2 0 0 6 3 21
Observer 3 0 0 5 10 15

Shadow Micro-CT Observer 1 0 0 0 0 30 0.000 1.000
Observer 2 0 0 0 0 30
Observer 3 0 0 0 0 30

Micro-CT-like Observer 1 0 0 0 0 30 0.000 1.000
Observer 2 0 0 0 0 30
Observer 3 0 0 0 0 30

Texture Micro-CT Observer 1 0 0 0 4 26 0.927 <0.001
Observer 2 0 0 0 3 27
Observer 3 0 0 0 3 27

Micro-CT-like Observer 1 0 0 3 6 21 0.908 <0.001
Observer 2 0 0 2 4 23
Observer 3 0 0 2 4 24

† Calculated using Kruskal–Wallis test.

Table 3. Comparison of the subjective mean scores of micro-CT and pix2pixHD-derived micro-
CT-like images.

Micro-CT (n = 30) Micro-CT-like (n = 30) p-Value †

Contrast 2.8 ± 0.402 2.78 ± 0.418 0.716
Noise 4.79 ± 0.410 4.46 ± 0.752 0.002

Sharpness 4.77 ± 0.425 4.43 ± 0.765 0.004
Shadow 5.00 ± 0.00 5.00 ± 0.00 1.000
Texture 4.89 ± 0.316 4.68 ± 0.615 0.013

† Mann–Whitney U test for comparing subjective mean scores of micro-CT and micro-CT-like images.
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3.3. Assessment of Trabecular Bone Microstructure with pix2pixHD-Derived Micro-CT-like
Images and Micro-CT Images

As shown in Table 4, comparison of the trabecular bone microstructure parameters
obtained from pix2pixHD-derived micro-CT-like images with those from micro-CT images
showed that there were no significant differences in BV/TV (p = 0.101). The Tb.Th and
Tb.Sp of micro-CT-like images (0.179 ± 0.027 and 0.758 ± 0.479 mm, respectively) were
significantly lower than those of the corresponding micro-CT images (0.220 ± 0.012 and
0.934 ± 0.126 mm, respectively) (p < 0.01).

Table 4. Trabecular bone structure parameters and correlation coefficient (R) of micro-CT and
pix2pixHD-derived micro-CT-like images.

n = 50 Micro-CT Micro-CT-like
Images

p-Value
†

Correlation Coefficient of
Micro-CT-like and

Micro-CT Images (R)
p-Value ‡

BV/TV 0.180 ± 0.016 0.175 ± 0.034 0.101 0.920 <0.001
Tb.Th (mm) 0.220 ± 0.012 0.179 ± 0.027 <0.001 0.905 <0.001
Tb.Sp (mm) 0.934 ± 0.126 0.758 ± 0.479 0.002 0.885 <0.001

† Paired Student’s t-test for comparing trabecular bone structure parameters of micro-CT and micro-CT-like
images. ‡ Pearson’s correlation coefficient for verifying the correlation of trabecular bone structure parameters
between micro-CT and micro-CT-like images.

The correlation coefficients (R) between the micro-CT-like image- and micro-CT-
derived trabecular bone structure parameters are also shown in Table 4. The values
of BV/TV, Tb.Th and Tb.Sp determined from the micro-CT-like images showed high
correlations with those determined from the micro-CT images, and all correlations were
significant (p < 0.001).

We also compared the bone microstructure parameters obtained from MDCT images
with those from micro-CT images. The results are shown in Table 5. We found that
the BV/TV and Tb.Th values of MDCT images (0.320 ± 0.067, 0.680 ± 0.079 mm) were
significantly higher than those of the corresponding micro-CT images (p < 0.001). However,
the Tb.Sp (0.870 ± 0.140 mm) of MDCT images was lower than that of micro-CT images
(p < 0.001).

Table 5. Trabecular bone structure parameters and correlation coefficients (R) of micro-CT and
MDCT images.

n = 50 Micro-CT MDCT p-Value
†

Correlation Coefficient of
MDCT and Micro-CT

Images (R)
p-Value ‡

BV/TV 0.180 ± 0.016 0.320 ± 0.067 <0.001 0.514 <0.001
Tb.Th (mm) 0.220 ± 0.012 0.680 ± 0.079 <0.001 0.445 <0.001
Tb.Sp (mm) 0.934 ± 0.126 0.870 ± 0.140 <0.001 0.539 <0.001

† Paired Student’s t-test for comparing trabecular bone structure parameters of micro-CT and MDCT images.
‡ Pearson’s correlation coefficient for verifying the correlation of trabecular bone structure parameters between
micro-CT and MDCT images.

The correlation coefficients (R) between the MDCT and micro-CT-derived trabecular
bone structure parameters are also shown in Table 5. The values of BV/TV, Tb.Th and Tb.Sp
determined from the MDCT images showed moderate correlations with those determined
from the micro-CT images (p < 0.001).

4. Discussion

In this paper, we used a deep-learning-based method, pix2pixHD, to find mappings
between MDCT and micro-CT axial images to generate micro-CT-like images of vertebrae.
To our knowledge, integrating image mapping and texture accuracy enhancement between
two sets of images with very different textures and details, such as MDCT images and
micro-CT images, is still a challenge; additionally, this is the first attempt to map micro-CT
and MDCT images using the deep-learning-based pix2pixHD method.
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By comparing the performance of the three methods regarding the generated im-
ages using objective image assessment metrics, it was demonstrated that the pix2pixHD
method resulted in superior micro-CT-like images compared to the other two methods,
with sufficient similarity between the generated images and the corresponding micro-CT
images. This similarity was reflected not only in the overall vertebral body but also in the
local details and anatomical subtleties of the images. The reason the pix2pixHD method
outperformed the other methods is that it adopts a multiscale generator and discriminators,
considering the overall structure and local details. In contrast, the CRN and pix2pix models
were not designed for the high-resolution and high-detail medical image enhancement
problem; they do not have an adequate field of view and have severe overlapping shadow
and blurring problems when processing high-resolution images [24].

All three observers had high agreement on all subjective image quality scores and
concluded that the contrast and overlapping shadow scores of pix2pixHD-derived micro-
CT-like images were not significantly different from those of micro-CT images. This
means that the generated images were excellent in both aspects. This result arises because
pix2pixHD’s generator and discriminator were both built using a multiscale architecture
and can generate high-detail and high-resolution images with a resolution of more than
2048 × 1024, which covered our image scope completely.

Micro-CT-like images also have some shortcomings, with a slightly deficient perfor-
mance in terms of noise, sharpness and ability when visualizing trabecular bone texture
compared to micro-CT images. We reviewed our micro-CT-like images with relatively low
noise scores and found that noise was mainly found in the vertebral appendages (including
the pedicles and laminae), as shown in Figure 7, which are characterized by a thicker bone
cortex or markedly heterogeneous increases in bone density at localized positions. This
outcome may be due to the complex interleaving of pixels representing bone contained in
the abovementioned regions. The objective function [43] used by the model was insensitive
to noise in this case. Fortunately, osteoporosis is mainly associated with the vertebral
body, and noise at the above anatomical positions does not directly affect the accuracy
of measurement of the bone structure of the vertebral body. Nevertheless, the pedicle is
the clinical entry point for pedicle screws in spinal decompression and fixation fusion,
especially in posterior internal fixation systems. Furthermore, studies have demonstrated
that the bone quality of this component determines the stability of internal fixation [44–46].
Hence, in the future, we plan to use more auxiliary means to improve the accuracy of bone
structure in vertebral appendages.
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In addition, the observers subjectively determined the sharpness and trabecular tex-
ture scores of micro-CT-like images to be lower than those of micro-CT images (p < 0.001),
which is consistent with the trend of our objective metric results (SSIM and FID) and
trabecular bone measurement results (Tb.Th and Tb.Sp). This result arises because the
method used is based on image-by-image mappings with insufficient consideration of
the correlation between adjacent images. This caused the bone trabecular details to have
unreasonable missing and abnormal textures, which reduced the corresponding score in
the subjective evaluation. To solve the above problems, we need to increase the number
of samples, build models that can extract association information between images and
optimize the parameters of the training models in future work.

Regarding all trabecular bone structural measurements (BV/TV, Tb.Th and Tb.Sp) in
our study, the correlation of their values computed from micro-CT and pix2pixHD-derived
micro-CT-like images was very high (R > 0.88) and better than the correlation computed
from micro-CT and MDCT images. The mean values of the measurements in our study
were lower than those of the gold standard. Previously published in vitro studies on the
feasibility of bone structure measurements using MDCT on vertebral bodies reported simi-
lar results for BV/TV. Issever et al. [5] reported a correlation coefficient of 0.86 (coefficient
of determination, R2) for BV/TV measured in vertebrae specimens. However, the correla-
tion between Tb.Th and Tb.Sp in the results of Issever et al. [5] was considerably weaker
and rare (R2 = 0.19–0.26), which is consistent with our MDCT image results. Guha [6]
and Chen [7] explored the correlation between trabecular bone structural measurements
of MDCT and the corresponding micro-CT images using in vitro tibial and distal radius
specimens. Although the anatomical positions of the study specimens were different, the
correlation coefficients of Tb.Th and Tb.Sp was also relatively moderate (R < 0.80, Pearson).
In addition, note that the mean values of MDCT-derived Tb.Th measured by the existing
studies were greater than those of the gold standard, which is the same as our MDCT
images but the opposite of the patterns we found from micro-CT-like images. Scholars have
concluded that [5,7] this is a result of the relatively low image resolution of MDCT, causing
the thinner trabeculae to be lost in the images and the trabecular network to be blurred.
Unlike existing studies, our method can recover trabecular bone with widths smaller than
the maximum resolution of MDCT by modeling the implicit mapping relationships in
MDCT and micro-CT images. Through this method, we obtained Tb.Th and Tb.Sp values
that were extremely close to those of the gold standard (R > 0.90). Notably, the bone
structure metrics derived from our micro-CT-like images were lower than those of the gold
standard. This is mainly because our trained pix2pixHD model still has some deficiencies
in the extraction of image features during the generation of the map images, making the
grayscale values of the pixels in and around the bone trabeculae fluctuate. This fluctuation
directly affected the bone structure measurement process; in particular, it caused local
disappearance, fragmentation and displacement of trabecular bone during the binarization
process. The thickness of trabecular bone was reduced, and the number of bone trabeculae
was increased.

In summary, our chosen method is more suitable for the task of generating high-
resolution micro-CT-like images than previous methods are. Nevertheless, prior to im-
plementation in clinical practice, the following improvements should be made in future
studies. Firstly, the relationship between images needs to be captured by a 3D mapping
model. Thus, the fineness of the bone trabecular texture can be further enhanced. Secondly,
the relationship between bone structure metrics and bone biomechanical metrics needs to
be analyzed. In the future, we plan to perform mechanical experiments on bone samples to
determine the relationship between the bone structural metrics of generated micro-CT-like
images and bone strength in a more detailed way. This relationship could be used to further
enhance the significance of bone structural metrics studies for clinical applications, such as
the diagnosis of osteoporotic fragility fractures.

Continued increases in life expectancy are predicted to increase the population with
osteoporosis, and associated fracture rates are expected to increase as well. Therefore, it is
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essential to identify fracture risks to plan therapeutic interventions and monitor treatment
responses. In addition, as the age of the population undergoing spinal instrumentation
increases, clinicians need to consider bone quality more carefully than ever before and
tailor surgical techniques to optimize patient outcomes and reduce the probability of post-
operative complications [47]. Although our results are currently at the in vitro stage, with
the expansion of the sample size, the inclusion of in vivo experiments and the maturation
of the deep learning algorithm, it will be possible to obtain more accurate bone structural
parameters while performing conventional CT scans in the future. Additionally, the bone
density and bone structure measurements of vertebrae can be obtained simultaneously
through the use of a commercial calibration phantom during MDCT scanning. These
composite metrics may provide a new predictive basis for osteoporotic fractures and a new
reference for surgical planning and drug selection.

5. Conclusions

In this paper, we applied a deep-learning-based image enhancement method that
can generate full-sized high-resolution images from MDCT. This fully automatized deep-
learning-based vertebral bone enhancement method performs better than other methods.
Moreover, this method can make full use of MDCT images to accurately measure vertebral
bone structure, which may provide new diagnostic criteria and a predictive basis for
osteoporosis and related fractures and may provide a new reference for osteoporosis
treatment and prevention.
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