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Olanzapine is a widely used atypical antipsychotic medication for treatment of
schizophrenia and is often associated with serious metabolic abnormalities including
weight gain and impaired glucose tolerance. These metabolic side effects are severe
clinical problems but the underpinning mechanism remains poorly understood. Recently,
growing evidence suggests that Wnt signaling pathway has a critical role in the
pathogenesis of schizophrenia and molecular cascades of antipsychotics action,
of which Wnt signaling pathway key effector TCF7L2 is strongly associated with
glucose homeostasis. In this study, we aim to explore the characteristics of metabolic
disturbance induced by olanzapine and to elucidate the role of TCF7L2 in this
process. C57BL/6 mice were subject to olanzapine (4 mg/kg/day), or olanzapine plus
metformin (150 mg/kg/day), or saline, respectively, for 8 weeks. Metabolic indices and
TCF7L2 expression levels in liver, skeletal muscle, adipose, and pancreatic tissues were
closely monitored. Olanzapine challenge induced remarkably increased body weight,
fasting insulin, homeostasis model assessment-insulin resistance index, and TCF7L2
protein expression in liver, skeletal muscle, and adipose tissues. Notably, these effects
could be effectively ameliorated by metformin. In addition, we found that olanzapine-
induced body weight gain and insulin resistance actively influence the expression of
TCF7L2 in liver and skeletal muscle, and elevated level of insulin determines the
increased expression of TCF7L2 in adipose tissue. Our results demonstrate that TCF7L2
participates in olanzapine-induced metabolic disturbance, which presents a novel
mechanism for olanzapine-induced metabolic disturbance and a potential therapeutic
target to prevent the associated metabolic side effects.

Keywords: olanzapine, Wnt signaling pathway, atypical antipsychotics, TCF7L2, weight gain, insulin resistance

INTRODUCTION

Schizophrenic patients possess an approximately 20% shortened lifespan compared with the
general population. One of the main causes of premature mortality is metabolic syndrome
(MetS) (Hennekens et al., 2005; Raedler, 2010), which is twice higher in schizophrenia patients,
featuring insulin resistance, glucose intolerance, dyslipidemia, hypertension, type 2 diabetes
mellitus (T2DM), cardiovascular disease, and obesity (Rethelyi and Sawalhe, 2011). Largely due
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to MetS (Ryan et al., 2003; Mathieu et al., 2009; Rheaume et al.,
2009), the first-episode, drug-naïve patients present impaired
glucose tolerance, insulin resistant, higher levels of plasma
glucose (Ryan et al., 2003; Spelman et al., 2007), and increased
visceral fat distribution (Thakore et al., 2002; Ryan et al.,
2004). In a recent systematic review and meta-analysis (Mitchell
et al., 2013b), the overall incidence rate of MetS is 32.5%
in schizophrenia patients and related disorders. In clozapine-
prescribed patients, the proportion could be as high as 51.9%
than that in unmedicated patients (20.2%) (Mitchell et al., 2013a).
Furthermore, MetS is also associated with increased risk of
cardiovascular diseases and all-cause mortality (Lakka et al.,
2002).

Increasing evidence shows that atypical antipsychotics (APPs)
are associated with metabolic adverse effects, such as weight
gain, obesity, glucose intolerance, dyslipidemia, and MetS
(Newcomer, 2007; De Hert et al., 2011; Mitchell et al., 2013b).
Compared to the first-episode and unmedicated schizophrenia
patients, the prevalence of metabolic disturbance is significantly
higher in patients on established antipsychotic drugs (9.8% for
unmedicated, 9.9% for first episode, and 35.3% for medicated
patients) (Chadda et al., 2013; Mitchell et al., 2013a). Numerous
studies have demonstrated that APPs are crucial in the high
prevalence of MetS in patients with schizophrenia (Alvarez-
Jimenez et al., 2008; Malhotra et al., 2013). Among APPs,
olanzapine is widely used for management of patients with
schizophrenia and other psychiatric disorders and produces the
most serious abnormalities in glucose and lipid metabolism
(Alvarez-Jimenez et al., 2008; Komossa et al., 2010). The
molecular mechanism underlying olanzapine-induced metabolic
disturbance remains largely unknown, although H(1)-histamine
receptor has been involved in the APPs-induced weight gain
(Kroeze et al., 2003). Interestingly, molecular genetics data show
that genes regulating glucose metabolism predispose human
population to schizophrenia susceptibility (Hansen et al., 2011;
Alkelai et al., 2012). Of these genes, TCF7L2 is found to be
associated with schizophrenia, which is the best replicated risk
factor for T2DM, and exhibits the strongest association to
diabetes susceptibility (Grant, 2012). Previous study suggested
that TCF7L2 may stimulate the pancreatic β-cells proliferation
and affect the production of glucagon-like peptide-1 in intestinal
endocrine cells (Jin and Liu, 2008). As a transcriptional regulator
of the canonical Wnt signaling pathway, it also regulates cell fate
specification during development and cell proliferation (Peifer
and Polakis, 2000; Clevers, 2006; MacDonald et al., 2009).
Previous study suggests that Wnt signaling pathway may be
associated with schizophrenia, and expression of Wnt-related
proteins is altered following APPs treatment, for example, the
expression of β-catenin and glycogen synthase kinase-3 (GSK-3)
protein are increased in rat medial prefrontal cortex and striatum
after APPs administration (Alimohamad et al., 2005a).

Indeed, converging evidence has recently showed that the
protein kinase B (Akt)/GSK-3 and Wnt signaling pathways could
play a key role in the pathogenesis of schizophrenia and the
molecular mechanisms of APPs (Alimohamad et al., 2005a;
Freyberg et al., 2010; Singh, 2013). It has been reported that AKT1
gene polymorphisms are associated with schizophrenia (Xu et al.,

2007), and antipsychotic drugs modulate the Akt/GSK-3 and Wnt
signaling pathways in order to correct the deficits induced by
the gene mutation (Alimohamad et al., 2005b). Furthermore,
the downstream molecule of the diabetes risk genes, TCF7L2,
is associated with schizophrenia (Hansen et al., 2011). These
findings prompt us to investigate the possible involvement of the
TCF7L2 in olanzapine-induced metabolic disturbances.

Metformin, a widely used biguanide antihyperglycemic drug
for T2DM, has been effectively used to prevent antipsychotic-
induced weight gain and other metabolic adverse events (Jarskog
et al., 2013; Boyda et al., 2014). Metformin normalizes blood
glucose levels by suppressing hepatic gluconeogenesis and
increases peripheral tissue insulin sensitivity (Kirpichnikov et al.,
2002).

In our current study, our goal was to explore the molecular
mechanisms and the protective effects of metformin against
olanzapine-induced metabolic disturbance. Male mice were
included in order to exclude sex differences (Cooper et al., 2007;
Wu et al., 2007; Li et al., 2016). Mice were subject to olanzapine,
olanzapine plus metformin, or saline for 8 weeks, respectively,
and the variables including weight, fasting blood glucose, and
insulin and oral glucose tolerance test (OGTT) were determined
prior to and after drug administration. Blood lipid profile and the
expression of TCF7L2 were also monitored in individual tissues
at the end of each treatment paradigm.

MATERIALS AND METHODS

Animals
Male C57BL/6 mice (18.9–22.6 g, 26–30 days old) were obtained
from Hunan Slack King Laboratory Animal Co., Ltd. They were
housed at 22± 2◦C, 55± 15% humidity on a 12 h light/dark cycle
(lights on at 7:00 am). Food and water were allowed ad libitum
throughout the study. The mice were fasted for about 12 h before
the start of experiments (when the mice were 8-week-old). This
study was carried out in accordance with the recommendations
of Guide for the Care and Use of Laboratory Animal (NRCU,
1996), Animal Ethics Committee of the Second Xiangya Hospital
of the Central South University. The protocol was approved by
the Ethics Committee of the Second Xiangya Hospital of Central
South University. After 1 week of acclimatization, the 8-week-old
mice were randomly divided into three groups (10 per group)
as follows: group 1 (sham mice) received a standard chow diet
plus saline, group 2 received a standard diet plus olanzapine, and
group 3 received a standard diet plus olanzapine and metformin.

Drug Treatment
Olanzapine (brand name: Zyprexa) was purchased from Eli
Lilly, United States. Metformin hydrochloride was obtained
from Hunan Xiangya Pharmaceutical Co., Ltd., Changsha,
China. Olanzapine was dissolved in 0.9% saline solution and
maintained in one gavage administration (4 mg/kg/day) every
day for 8 weeks. Olanzapine (4 mg/kg/day, oral) and metformin
hydrochloride (150 mg/kg/day, oral) were prepared as previously
(Matsui et al., 2010; Savoy et al., 2010). The vehicle solution for
metformin was 0.9% saline solution. All the drugs were prepared
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freshly prior to usage and administered orally (gastric gavage)
between 9:00 and 14:00 h every day.

Study Design
Mice (n = 10 per group) were randomly assigned into three
groups. Group 1 was subject to daily gavage of 0.9% saline
solution, while group 2 received daily gavage of olanzapine and
group 3 was given olanzapine and metformin. After 1 week of
acclimatization and fasting for 12 h, the baseline measurement
of body weight, whole-blood glucose level, serum insulin level,
and OGTT were determined prior to the administration of
olanzapine. The body weight of the mice was monitored weekly.
After 8 weeks of treatment, 10 mice in each group were fasted 12 h
and gavaged with glucose (2 g/kg body weight), blood glucose
was measured at baseline and at 0, 30, 60, 90, and 120 min after
glucose load. On the next day, at least 8 h after being fasted, the
mice were killed by decapitation. Blood samples were collected,
serum insulin level, blood lipid level [including total cholesterol,
low-density lipoprotein cholesterol (LDL-C), triglycerides and,
high-density lipoprotein cholesterol (HDL-C)], and OGTT were
determined. The liver, adipose, skeletal muscle, and pancreatic
tissues were collected, immediately frozen in liquid nitrogen, and
stored at −80◦C until further analysis. A part of the pancreatic
tissue was fixed with 4% paraformaldehyde in PBS and stored at
4◦C for immunofluorescence staining.

Metabolic Measures
Blood glucose was determined by clipping tails and using the
glucometer (EKF Diagnostics, Germany). For fasting insulin
measurement, blood samples were collected and centrifuged
(3500 rpm, 20 min, 4◦C) to separate the serum and stored
at −80◦C until assay. Serum insulin level was measured
quantitatively using a Mouse Ultrasensitive Insulin ELISA kit
(ALPCO Diagnostics, United States). The mice fasted for 12 h
were given with glucose (2 g/kg, p.o.). Blood samples were
collected from tail tip incision at 0, 30, 60, 90, and 120 min
after glucose administration. Blood glucose concentration was
plotted against time, and area under the curve (AUCg) was
calculated following trapezoidal rules (Dora et al., 2008). Serum
concentrations of triglycerides, total cholesterol, HDL, and
LDL were measured with an autobiochemical analyzer (C8000,
Abbott, United States).

Insulin resistance index was calculated based on the
homeostatic model assessment of insulin resistance (HOMA-
IR): [fasting insulin (mIU/L) × fasting glucose (mmol/L)]/22.5
(Mather, 2009).

RNA Extraction and Real-Time
Quantitative PCR
Total RNA was extracted from pancreatic tissues by using the
SYBR Green PCR kit (F-415XL, Thermo, United States). RNA
was reverse-transcribed using the protocol provided in the kit
(K1622, Thermo, United States). The primer sequences are
listed in Table 1. The gene was amplified through RT-PCR
method using the SYBRGreen PCR kit (Thermo, United States).
GAPDH was used as the reference gene. Amplification was run

for 40 cycles. Samples were denatured at 95◦C, followed by
annealing at 60◦C. The mRNA expression of the TCF7L2 gene
was quantitatively analyzed using Applied Biosystems 7300 Real-
Time PCR System (Applied Biosystems, Thermo, United States).
Data were analyzed with 2−MM CT (Schmittgen and Livak, 2008).

Immunofluorescence Staining and
Imaging
Pancreatic tissues were fixed for 4 h in 4% paraformaldehyde in
PBS and embedded for paraffin sectioning (5 µm). The sections
were deparaffinised, rehydrated, and incubated overnight at 4◦C
with goat antisera against insulin, TCF7L2 antibody (1:60–70, D-
4, sc-166699, Santa Cruz, CA, United States), and DAPI (AR1176,
Wuhan Boster Company). The sections were subsequently
probed with secondary antibodies for 20 min at 37◦C (Yang
et al., 2012). Images of the pancreatic tissues were acquired using
a fluorescent inverted microscope (Olympus IX71, Japan). For
morphometric analysis, the fluorescence intensity of pancreatic
sections was quantified using the Image J 1.37c1.

Western Blot Analysis
TCF7L2 proteins in the pancreas were extracted for Western blot
analysis (Yang et al., 2012). Frozen tissues were homogenized
in RIPA lysis buffer (Solarbio, Beijing, China) and centrifuged
at 12,000 rpm for 10 min at 4◦C to collect the supernatant.
Protein concentrations of the tissue lysates were determined
by bicinchoninic acid method. Tissue lysates were separated
by SDS–PAGE and transferred to PVDF membranes. Proteins
were probed with rabbit anti-TCF7L2 (1:2500, Abcam Inc.,
United Kingdom) or mouse anti-actin (1:1000, TA-09, ZSGB-
Bio Co., Ltd., Beijing, China) antibodies and incubated with
peroxidase-conjugated affiniPure Goat Anti-Mouse IgG (H+L)
secondary antibody (1:3000, ZB-2305, ZSGB-Bio Co., Ltd.,
Beijing, China). The proteins were visualized using a Western
Lightning Plus Enhanced Chemiluminescence reagent (ECL,
Amersham, United States). Density of the bands was analyzed
with a GDS-8000 system (UVP CA, United States).

Statistical Analysis
Statistics was performed using SPSS 19.0 (Chicago, IL,
United States). Statistical differences in measures of the
different groups were analyzed by one-way ANOVA followed
by Tukey’s multiple-comparison post hoc test. The weight levels
at different time points were compared across groups using
repeated measures ANOVA. Statistical power of the main results

1http://rsb.info.nih.gov/ij/

TABLE 1 | PCR primer sequences used to quantify mRNA levels of TCF7L2 gene
by real-time PCR.

Primer Sequence Pos Size (bps)

TCF7L2 F 5′-GTCCTCGCTGGTCAATGAATC-3′

TCF7L2 R 5′-CCGCTTCTTCCAAACTTTCCC-3′ 667–791 C 125

GAPDH F 5′-ATCACTGCCACCCAGAAG-3′

GAPDH R 5′-TCCACGACGGACACATTG-3′ 585–775 191
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was calculated with G∗Power 3.1. Correlations were identified
using Pearson’s correlation. Multivariate linear regression
was performed to examine the relationship between TCF7L2
expression and the change of weight, fasting blood glucose,
fasting insulin, AUCg, and HOMA-IR during the 8-week study
period. A second analysis was conducted with the metabolic
indexes as independent variables and TCF7L2 expression as the
dependent variable, with the probability of entry set at 0.10 and
removal at 0.15, reporting the coefficient of determination values
that were significant at p-level of 0.05. All data were presented as
mean± SEM. Statistical significance was defined as p ≤ 0.05.

RESULTS

Effect of Olanzapine on Body Weight
No significant difference was found in the body weight of
the three groups (one-way ANOVA, F2,27 = 1.029, p = 0.371)
prior to any treatment. However, olanzapine treatment induced
a significantly higher body weight than control group and
metformin group during (Figure 1A) and also after (Figure 1B,
one-way ANOVA, F2,27 = 0.521, p = 0.012) the 8 weeks
of treatment, although all three groups displayed significantly
increased mean body weight after drug administration. The
alteration of body weight from baseline to week 1 and week 8
was summarized in Figures 1C,D. As indicated in the figure, the
increase of mean body weight in mice was significantly higher
in olanzapine group than control group at week 1 and week
8 (one-way ANOVA, F2,27 = 7.217, p = 0.003; F2,27 = 5.28,
p = 0.012), moreover, treatment with metformin plus olanzapine
significantly ameliorated the mean body weight increase induced
by olanzapine at week 1 and week 8 (p = 0.032 and p = 0.018,
respectively). The statistic power of body weight gain at week 1
and week 8 was 0.77 and 0.67, respectively.

Effect of Olanzapine on Fasting Glucose,
Fasting Insulin, HOMA-IR, OGTT, and
AUCg
As shown in Figures 2A–C, after 8 weeks of drug treatment,
olanzapine-treated mice significantly increased fasting insulin
level and HOMA-IR compared with control group mice (one-way
ANOVA, F2,27 = 29.724, p < 0.001; F2,27 = 29.724, p < 0.001),
whereas no significant difference was found in the fasting glucose
between groups (one-way ANOVA, F2,27 = 0.37, p = 0.694).
Moreover, we assessed the effect of metformin on the metabolic
disturbances induced by olanzapine and found that metformin
remarkably reversed olanzapine-induced fasting insulin elevation
and insulin resistance (both p< 0.001), which was consistent with
previous studies (Wang et al., 2012).

To investigate insulin resistance and pancreatic beta-cell
function, we conducted the OGTT at week 8. Compared with
olanzapine group, metformin plus olanzapine treated mice
significantly reduced the blood glucose level at OGTT 30, 90, and
120 min (Figures 2D,E), and the glucose level was also lower
compared with placebo group mice at OGTT 90 and 120 min.
Oral glucose tolerance test following 8 weeks of treatment in

the mice revealed that AUCg values were significantly lower in
the metformin group compared with olanzapine group (one-way
ANOVA, F2,27 = 7.787, p = 0.001). The AUCg value did not differ
between the olanzapine treatment and control group (p = 0.209).
The statistic power of fasting insulin level, HOMA-IR, and AUCg
at the end of 8 weeks was 0.98, 0.96, and 0.79, respectively.

Effect of Olanzapine on Blood Lipid
In order to evaluate whether olanzapine could induce any
significant difference in blood lipid between control and
olanzapine treatment animals, we measured the serum total
cholesterol, HDL-C, LDL-C, and triglyceride levels in the three
groups after treatment completion. Olanzapine group displayed
a significantly higher serum LDL-C level than control group
(p = 0.034), which could be massively improved by metformin
(Figure 3A, p = 0.02), while no significant difference was found in
the level of total cholesterol and HDL-C between the treatments
(one-way ANOVA, F2,27 = 0.536, p = 0.591; F2,27 = 0.765,
p = 0.475). In addition, the triglyceride levels in metformin
treatment group was significantly lower than the olanzapine
treatment group and control group (Figure 3). The statistic
power of LDL-C and TG at the end of 8 weeks was 0.79 and 0.97.

Effect of Olanzapine on TCF7L2
Expression in Liver, Skeletal Muscle,
Adipose, and Pancreas
TCF7L2 expressing level in liver, skeletal muscle, and adipose
tissues is associated with glucose metabolism and insulin
resistance (Boj et al., 2012; Kaminska et al., 2012; Singh et al.,
2013). As shown in Figures 4A–C, we detected significant
difference of TCF7L2 protein expression in liver, skeletal muscle,
and adipose tissues between treatment groups (one-way ANOVA,
F2,27 = 20.842, F2,27 = 13.345, and F2,27 = 20.149, respectively,
all p < 0.001). Compared with the control, olanzapine treatment
obviously increased TCF7L2 protein expression in liver, skeletal
muscle, and adipose tissues (p < 0.001), which can be
effectively reduced by metformin (p < 0.001). There was no
significant difference in the level of TCF7L2 expression in
these tissues between metformin treatment group and control
group (p > 0.05). The statistic power of TCF7L2 protein
in liver, skeletal muscle, and adipose tissues was 0.94, 0.88,
and 0.95, respectively. To further explore the mechanisms of
olanzapine in MetS, we determined the expression of TCF7L2
mRNA and TCF7L2 protein in pancreas. However, there was
no significant difference of TCF7L2 mRNA or TCF7L2 protein
expression among the three groups (p > 0.05) as shown in
(Figure 5).

Relationship Between TCF7L2 Protein
Expression and Metabolic Measures
To investigate the relationship between the TCF7L2 protein
expression and metabolic variables changes, we performed
multiple linear regression analysis to evaluate the association
of TCF7L2 protein expression and altered body weight, blood
glucose, fasting insulin, HOMA-IR, and AUCg after olanzapine
challenge. TCF7L2 protein expression was significantly correlated
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FIGURE 1 | Comparison of the body weight between different treatment groups in C57BL/6 mice. C57BL/6 mice were treated with olanzapine (4 mg/kg/day, Ola),
olanzapine (4 mg/kg/day, Ola) + metformin (150 mg/kg/day, Met), or saline for 8 weeks. (A) Body weight of mice from olanzapine group (Ola), olanzapine +
metformin group (Ola +Met), and control group (Control) during 8-week of treatment. ∗p < 0.05, ∗∗p < 0.01, Ola vs. Control group; #p < 0.05,##p < 0.01, Ola +Met
vs. Ola group. (B) Body weight measured at the end of 8-week treatment. (C) Body weight gain after the first week of treatment. (D) Body weight gain after 8 weeks
treatment. All the results (n = 10 for each group) were expressed as mean ± SEM. ∗p < 0.05, ∗∗p < 0.01.

with changes in body weight, fasting insulin, HOMA-IR,
and AUCg from baseline to week 8 (Table 2). The results
demonstrated that the extent of increases in body weight,
HOMA-IR, and AUCg exerted a greater influence on TCF7L2

TABLE 2 | The correlation analysis between TCF7L2 protein expression and
changes of metabolic measures.

TCF7L2 expression Person correlation coefficient

Weight
change

Fasting
insulin
change

HOMA-IR
change

AUCg
change

Liver 0.457∗∗ 0.592∗∗∗ 0.636∗∗∗ 0.460∗∗

Skeletal muscle 0.459∗∗ 0.499∗∗ 0.503∗∗ 0.399∗

Adipose 0.377∗ 0.639∗∗∗ 0.584∗∗∗ 0.364∗

Test statistic: multivariate linear regression analysis. ∗p < 0.05, ∗∗p < 0.01,
∗∗∗p < 0.001.

protein expression elevation in liver, with coefficient of
determination (R2) value of 0.461 (p < 0.001). Similarly, we
used the same multivariate linear regression model to investigate
the changes of these variables in skeletal muscle and adipose
tissues, and found that the extent of increases in HOMA-IR and
body weight had a greater impact on TCF7L2 protein expression
elevation in skeletal muscle, with R2 value of 0.352 (p = 0.003),
and the increase of insulin level contributed to major impact on
TCF7L2 protein expression elevation in adipose tissues, with R2

value of 0.408 (p < 0.001).

DISCUSSION

The exact mechanism of olanzapine-induced metabolic
disturbance remains unclear and numerous animal and
post-mortem studies have demonstrated that Wnt signaling
pathways are associated with schizophrenia and the intracellular
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FIGURE 2 | Comparison of the fasting glucose, insulin level, insulin resistance, and glucose tolerance between different treatment groups in C57BL/6 mice.
C57BL/6 mice were treated with olanzapine (4 mg/kg/day, Ola), olanzapine (4 mg/kg/day, Ola) + metformin (150 mg/kg/day, Met), or saline for 8 weeks. Effect of
different treatment groups on fasting glucose (A), insulin level (B), and HOMA-IR (C) at the end of 8-week treatment. (D) Oral glucose tolerance test (OGTT) on
overnight fasted mice from olanzapine group, olanzapine + metformin group, and control group after 8 weeks of treatment. Blood glucose level was measured
before and 30, 60, 90, and 120 min after glucose administration (2 g/kg body weight). ∗p < 0.05, Ola vs. Control group; #p < 0.05, ##p < 0.01, Ola +Met vs. Ola
group. (E) Area under curve of glucose (AUCg) of three treatment groups determined by OGTT. AUCg was calculated following trapezoidal rule from 0 to 120 min.
Values (n = 10 for each group) were reported as mean ± SEM. ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.

mechanism of antipsychotic medications (Koros and Dorner-
Ciossek, 2007; Sutton et al., 2007; Freyberg et al., 2010; Sutton
and Rushlow, 2011). TCF7L2, a key effector of Wnt signaling
pathway, performs important metabolic functions in several
tissues, including the pancreas, liver, fats, and gut. In the present
study, we explored the possible relationship between olanzapine-
induced metabolic disturbance and TCF7L2 expression. We
found that olanzapine could significantly increase TCF7L2
protein expression in the liver, skeletal muscle, and adipose
tissues after 8 weeks of treatment, whereas metformin could
remarkably reduce the TCF7L2 protein expression after
olanzapine challenge. We further explored the relationship
between TCF7L2 protein expression in these tissues and changes
in metabolic variables. Our results demonstrated that the extent
of increases in some metabolic variables (body weight, insulin
resistance, AUCg, and insulin) actively influences the TCF7L2
expression in the liver, skeletal muscle, and adipose tissues.

Consistent with previous clinical and animal studies (Alvarez-
Jimenez et al., 2008; Coccurello et al., 2009; Komossa et al.,
2010; Kim et al., 2014), the present study confirms that

olanzapine could significantly induce weight gain, insulin
resistance, and impaired glucose tolerance. Although we did
not observe any significant change of fasting glucose in
mice with olanzapine treatment, the insulin resistance index
was significantly higher after olanzapine challenge. Similarly,
Girault et al. (2014) reported that chronic olanzapine treatment
(5 weeks) could cause increase in insulin without blood
glucose elevation. The observed olanzapine-induced insulin
resistance in this study is parallel with a previous study which
demonstrated the existence of hyperinsulinemia and insulin
resistance independently from body weight gain and psychiatric
disease through the use of olanzapine for 9 days in healthy
subjects (Teff et al., 2013). These results suggest that olanzapine
exerts direct effects on some insulin-sensitive tissues independent
of mechanisms underpinning the metabolic abnormalities.
Although no significant difference in AUCg was observed
between the olanzapine and control groups, an increasing trend
in blood glucose was evident in the olanzapine group at OGTT
30 min (p = 0.063). The greatest weight gain was observed in
the first week of drug administration, which is consistent with
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FIGURE 3 | Comparison of the blood lipid between different treatment groups in C57BL/6 mice. C57BL/6 mice were treated with olanzapine (4 mg/kg/day, Ola),
olanzapine (4 mg/kg/day, Ola) + metformin (150 mg/kg/day, Met), or saline for 8 weeks. Effect of different treatment groups on LDL-C (A), triglyceride (B), total
cholesterol (C), and (D), HDL-C at the end of 8-week treatment. All of the results are expressed as the mean ± SEM. ∗p < 0.05, ∗∗∗p < 0.001.

clinical observation that the first year is critical for development
of weight gain and metabolic abnormalities in the first treated
episode of psychosis (Perez-Iglesias et al., 2013; Tek et al., 2015).
In the present study, we failed to observe significant alterations
in blood total cholesterol and HDL-C levels after treatment
with olanzapine or olanzapine plus metformin. Consistently,
clinical data also demonstrate that atypical APPs are associated
with increased blood lipid levels in patients with schizophrenia
(Pramyothin and Khaodhiar, 2010; Kaushal et al., 2012; Schreiner
et al., 2012). Moreover, Koro et al. (2002) reported that
olanzapine treatment is associated with a nearly fivefold increase
in the prevalence of hyperlipidemia in contrast to the general
population using a large database (which contains over 18,000
patients with schizophrenia). The effect of APPs on blood lipid
profile in rodent models seems controversial, which showed
no alteration (Albaugh et al., 2006), or significant increase in
triglyceride level after chronic olanzapine administration (Skrede
et al., 2012; Zugno et al., 2012). Yet, a recent animal study (Horska
et al., 2016) demonstrated that olanzapine is associated with
hypertriglyceridemia and lowered LDL-C levels at the 8th day
of olanzapine treatment, but these alterations could not persist

after 8 weeks of olanzapine administration, and no significant
alteration in blood lipid profiles was detected in later phase of
olanzapine treatment. In the present study, we have observed
a massively decreased triglyceride after olanzapine treatment.
This seems contradictive with MetS-related insulin resistance
but features an impaired lipid oxidation caused by olanzapine.
In line with our findings, Albaugh et al. (2012) also reported
a significantly reduced triglycerides and free fatty acids after
olanzapine challenge in vivo. They further demonstrated that this
is largely due to the rapid and inappropriate utilization of lipids
triggered by olanzapine. Although data from previous literature
remain controversial, in our study, 4 mg/kg dose of olanzapine
did not significantly elevate triglyceride levels, possibly because
of the short duration of treatment or the improper dosage of
olanzapine. However, our data showed that olanzapine could
significantly increase LDL-C levels, which is consistent with
previous reports (Kaushal et al., 2012; Shao P. et al., 2013).

Recently, metformin was shown to effectively attenuate
antipsychotic-induced weight gain, insulin resistance, and
glucose dysregulation (Hasnain et al., 2010; Praharaj et al.,
2011; Wang et al., 2012; Chen et al., 2013; Jarskog et al.,
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FIGURE 4 | Effect of olanzapine on TCF7L2 protein expression in liver, skeletal muscle, and adipose tissue in C57BL/6 mice. C57BL/6 mice were treated with
olanzapine (4 mg/kg/day, Ola), olanzapine (4 mg/kg/day, Ola) + metformin (150 mg/kg/day, Met), or saline for 8 weeks. (A) Protein expression level of TCF7L2 in liver,
skeletal muscle, and adipose tissue of mice was measured via western blotting. Representative immunoblot images of TCF7L2 are shown. 1, 2, and 3 represents
Control, Ola, and Ola + Met group, respectively. (B) Quantitative analysis was used to qualify the TCF7L2 protein expression level in liver. (C) Quantitative analysis
was used to qualify the TCF7L2 protein expression level in skeletal muscle. (D) Quantitative analysis was used to qualify the TCF7L2 protein expression level in
adipose tissue. n = 10 for each group. All of the results are expressed as the mean ± SEM. ∗∗p < 0.01, ∗∗∗p < 0.001.

2013; Boyda et al., 2014). Therefore, we examined the effects of
metformin against olanzapine-induced metabolic abnormalities.
Our findings are consistent with previous studies, that metformin
could ameliorate olanzapine-induced metabolic abnormalities,
such as weight gain, glucose intolerance, and insulin resistance.
Meanwhile, metformin reduced TCF7L2 protein expression in
liver, skeletal muscle, and adipose tissues, which is much higher
in olanzapine treatment group, suggesting a close association
between olanzapine-induced metabolic disturbance and TCF7L2
expression. The results were further supported by the fact that
obesity surgery-induced weight loss could regulate the alternative
splicing of TCF7L2 in subcutaneous fat. Moreover, the TCF7L2
variant is associated with fasting glucose as well as impaired
insulin action in adipose tissue (Kaminska et al., 2012).

TCF7L2 is one of the strongest susceptibility genes for
T2DM across different ethnicities (Grant et al., 2006). Among

the TCF7L2 polymorphisms-associated metabolic disturbance,
the T-allele of rs7903146 in TCF7L2 is the most consistent
loci which is linked to schizophrenia and schizoaffective
disorders (Hansen et al., 2011). As a component of the
β-catenin/TCF transcription factor, TCF7L2 plays an important
role in conveying Wnt signaling pathway in regulating gene
expression. It has been suggested that Wnt signaling pathway
and β-catenin/transcription factor could suppress hepatic
gluconeogenesis through a liver-specific TCF7L2 dominant-
negative transgenic mouse model (Ip et al., 2015). Animal studies
also reported a strong association between liver-specific TCF7L2
overexpression and increased hepatic glucose production, and as
an example, liver-specific TCF7L2 overexpression could increase
hepatic glucose production (Boj et al., 2012). The role of TCF7L2
extends to non-pancreatic tissues, a recent study that revealed
that TCF7L2 overexpression in non-pancreatic tissues leads to
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FIGURE 5 | Effect of olanzapine on expressions of TCF7L2 in pancreas islets in C57BL/6 mice. C57BL/6 mice were treated with olanzapine (4 mg/kg/day, Ola),
olanzapine (4 mg/kg/day, Ola) + metformin (150 mg/kg/day, Met), or saline for 8 weeks. (A–L) Representative images of immunofluorescence images of islets
stained with antibodies to insulin (green), TCF7L2 (red), and DAPI (blue). Microscopic magnification 400×. (M) Quantitative analysis of TCF7L2 mRNA expression in
pancreas islets. n = 4 for each group. (N) Quantitative analysis of TCF7L2 protein expression in pancreas islets. Values are expressed as the mean ± SEM. Total
pancreatic fluorescence intensity was quantified using the Image J 1.37c. n = 4 for each group.

worsened glucose intolerance, and that the function of TCF7L2
in maintaining glucose metabolic balance in peripheral tissues
may be more robust (Bailey et al., 2015). Previous studies
have shown that antipsychotic medications may exert their
actions by modulating the activity and expression of Akt/GSK-
3β and Wnt-related intracellular signaling factors (Freyberg et al.,
2010; Sutton and Rushlow, 2011). For example, administration
of haloperidol or clozapine could alter GSK-3 and β-catenin
protein levels in the rat prefrontal cortex while both GSK-3 and
TCF7L2 transcription factors are key downstream regulators in

the canonical Wnt/β-catenin pathway (Struewing et al., 2010).
Our data imply that the altered TCF7L2 expression may be
related to the effect of olanzapine on metabolic tissues.

In the present study, TCF7L2 protein levels were significantly
higher in the liver, skeletal muscle, and adipose tissues of
the olanzapine-treated mice than that in the control, and
significantly lower in metformin-plus-olanzapine-treated mice.
Interestingly, TCF7L2 protein expression in the liver, skeletal
muscle, and adipose tissues was positively correlated with
changes in body weight, fasting insulin, HOMA-IR, and AUCg.
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To our knowledge, this is the first animal study to examine
the association between TCF7L2 expression and olanzapine-
induced metabolic abnormalities. The function of TCF7L2 in
pancreas is well-studied using TCF7L2-overexpressing transgenic
mice, Savic et al. (2011) have demonstrated robust glucose
intolerance in multiple non-pancreatic tissues, including brain,
stomach, intestine, and pancreas, and TCF7L2-null mice
displayed improved glucose tolerance and lower insulin levels.
Similarly, liver-specific knockout mice exhibit improved glucose
homeostasis, and that liver-specific overexpression of TCF7L2
mRNA leads to hepatic glucose production (Boj et al., 2012).
Similarly, feeding can influence the overexpression of TCF7L2
mRNA in epididymal fat tissue of C57BL/6J mice; moreover,
high concentrations of insulin could inhibit the TCF7L2 level
in adipocytes (Chen et al., 2015). Our data demonstrated that
TCF7L2 expression in the liver and adipose tissue may play a
critical role in regulating glucose metabolism. An explanation
for the altered TCF7L2 expression in liver and adipose tissues
may be related to weight gain, insulin resistance, and insulin
level elevation induced by APPs. Interestingly, hyperinsulinemia
could increase TCF7L2 mRNA expression, and subjects with
low insulin sensitivity had higher TCF7L2 mRNA expression
in skeletal muscle tissue (Karczewska-Kupczewska et al., 2016).
In line with these data, we hypothesize that increased TCF7L2
expression in skeletal muscle might promote glucose uptake
during insulin resistance conditions. Despite of the observed
changes in TCF7L2 expression in liver, skeletal muscle, and
adipose tissue, we did not use inhibitors to antagonize or suppress
TCF7L2 specifically, and thus it remains uncertain whether
the olanzapine-induced metabolic dysfunction is mediated by
TCF7L2. Intriguingly, a study of African-American patients with
schizophrenia reported an interaction between APPs treatment
and TCF7L2 under a multiplicative scale (Irvin et al., 2009).
Indeed, as APPs may alleviate symptoms of schizophrenia
through Wnt signaling pathway mediated by D2 dopamine
receptor (Sutton et al., 2007), our results emphasize the
potential pharmacogenetical and clinical relevance of TCF7L2 for
antipsychotic-induced metabolic dysfunction in schizophrenia
and provide a novel mechanism of TCF7L2 in antipsychotic-
induced metabolic disturbance. However, further studies are
needed to determine the role of TCF7L2 and other components
of Wnt signaling pathway in antipsychotic-induced metabolic
disturbance.

Notably, the mRNA and protein expression levels of TCF7L2
in pancreas did not differ in different groups in our study.
By contrast, previous studies reported that TCF7L2 expression
in human islets increased by fivefolds in T2DM compared
with nondiabetic individuals (Lyssenko et al., 2007). In vitro,
elevated glucose concentration can reduce beta-cell proliferation
and induce beta-cell apoptosis in cultured human islets, and
these effects are reversible by TCF7L2 overexpression. By
contrast, a previous study reported an opposite direction of
regulating the level of TCF7L2 mRNA (upregulated) and protein
(downregulated) in islets in diabetes (Le Bacquer et al., 2011). We
observed no alterations in TCF7L2 expression in the pancreatic
tissue, although the TCF7L2 is frequently considered to have
physiological effects on β cells. The precise nature of the TCF7L2

expression in pancreatic and its etiological basis in APPs-induced
metabolic disturbance remains the subject of future study.

Interestingly, oxidative stress also plays a key role in the
higher incidence of metabolic dysfunction of schizophrenia. For
example, Schiavone et al. (2017) found that redox imbalance plays
a crucial role in the visceral fat elevation in an animal model
of psychosis. Also, abnormal oxidative stress has been reported
in first episode patients with schizophrenia, with increased level
of thiobarbituric acid reactive substances and malondialdehyde,
which are important end-point products of lipid peroxidation
(Flatow et al., 2013). Indeed, in addition to a role in the
pathophysiology of schizophrenia, oxidative stress has also been
implicated in antipsychotic-induced metabolic dysfunction (Baig
et al., 2010; Gilca et al., 2014). It has been reported that
lipid peroxidation was altered in rat liver and brain following
antipsychotic administration in rats, moreover, APPs can also
elevate lipid peroxidation in human plasma (Dietrich-Muszalska
et al., 2013). However, how antipsychotic work on antioxidant
enzymes appears controversial and inconsistent (Parikh et al.,
2003; Martins et al., 2008; Andreazza et al., 2015) in rat brain
tissue after antipsychotic administration. A recent meta-analysis
(Flatow et al., 2013) also revealed that there is no replicable
and significant correlation between oxidative stress indexes
and clinical features. Given previous studies of altered lipid
peroxidation in antipsychotic-treated rats, and oxidative stress
is closely related to insulin resistance (Ando and Fujita, 2009),
the potential role of oxidative stress in antipsychotic-induced
metabolic dysfunction should be further elucidated.

This study has several limitations. Firstly, we utilized
healthy adult mice to analyze the mechanism of olanzapine-
induced metabolic disturbance. The use of a mouse model
for schizophrenia would be more reasonable given that
schizophrenia itself may predispose individuals to T2DM.
Secondly, the limited serum volume did not allow us to measure
theTCF7L2mRNA levels in the liver, skeletal muscle, and adipose
tissues, which can be a mediator of the observed outcomes.
Thirdly, although significant differences in TCF7L2 protein
expression were detected in the mentioned tissues, detecting the
differences of TCF7L2 expression in mice brain and gut tissues
is also a sensible approach, since proglucagon gene expression in
brain and gut may be controlled by TCF7L2 and Wnt signaling
pathway (Shao W. et al., 2013). Finally, we only observed the
effects of single antipsychotic, single dose of olanzapine, and one
antidiabetic drug. Because of many atypical APPs could induce
metabolic dysregulation and multiple type of antidiabetic drug
could treat diabetes, it is necessary to determine whether such
findings with olanzapine apply to other APPs. Further studies are
required to detect the difference in metabolic measures between
antipsychotic-treated normal and specific-tissue knockout mice.

CONCLUSION

Our study illustrates that olanzapine induces weight gain, fasting
insulin elevation, glucose intolerance, and increase of TCF7L2
protein expression in liver, skeletal muscle, and adipose tissues of
mice. These metabolic abnormalities and the increased TCF7L2
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expression in those tissues could be effectively ameliorated by
metformin. TCF7L2 overexpression in liver, skeletal muscle,
and adipose tissues may represent a potential mechanism
through which metabolic changes occurred following olanzapine
treatment.
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