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Abstract

Soil erosion and lake sediment loading are primary concerns of watershed managers around the 

world. In the Xinjiang River Basin of China, severe soil erosion occurs primarily during monsoon 

periods, resulting in sediment flow into Poyang Lake and subsequently causing lake water quality 

deterioration. Here, we identified high-risk soil erosion areas and conditions that drive sediment 

yield in a watershed system with limited available data to guide localized soil erosion control 

measures intended to support reduced sediment load into Poyang Lake. We used the Soil and 

Water Assessment Tool (SWAT) model to simulate monthly and annual sediment yield based on a 

calibrated SWAT streamflow model, identified where sediment originated, and determined what 

geographic factors drove the loading within the watershed. We applied monthly and daily 

streamflow discharge (1985–2009) and monthly suspended sediment load data (1985–2001) to 

Meigang station to conduct parameter sensitivity analysis, calibration, validation, and uncertainty 

analysis of the model. The coefficient of determination (R2), Nash–Sutcliffe efficiency (NSE), 
percent bias (PBIAS), and RMSE -observation’s standard deviation ratio (RSR) values of the 

monthly sediment load were 0.63, 0.62, 3.8%, and 0.61 during calibration, respectively. Spatially, 

the annual sediment yield rate ranged from 3 ton ha−1year−1 on riparian lowlands of the Xinjiang 

main channel to 33 ton ha−1year−1 on mountain highlands, with a basin-wide mean of 19 ton ha
−1year−1. The study showed that 99.9% of the total land area suffered soil loss (greater than 5 ton 

ha−1year−1). More sediment originated from the southern mountain highlands than from the 

northern mountain highlands of the Xinjiang river channel. These results suggest that specific land 

use types and geographic conditions can be identified as hotspots of sediment source with 

relatively scarce data; in this case, orchards, barren lands, and mountain highlands with slopes 

greater than 25° were the primary sediment source areas. This study developed a reliable, 
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physically-based streamflow model and illustrates critical source areas and conditions that 

influence sediment yield.
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1. Introduction

Soil erosion and lake sediment loading are severe ecological and environmental problems 

that watershed managers face around the world. In subtropical Southeastern China, both 

climatological and anthropogenic activity have altered hydrology and sediment loading [1]. 

In these areas, concentrated rainstorms occur during the monsoon period (May–October), 

where intense regional precipitation likely drives much of the soil erosion [2,3]. Erosive 

rainfall strips valuable topsoil away and, subsequently, sediment flows into nearby streams 

or water bodies, ultimately contributing to land degradation and downstream contamination, 

including nonpoint source pollution, siltation of reservoirs and lakes, and further 

deterioration of water quality [4]. Land use change is often identified as a manageable 

primary factor in soil erosion [4]. To address these erosion problems, managers often rely on 

modeling tools, but limited data availability discourages the application of many of the most 

accepted tools due to concerns regarding calibration and validation, which can prevent 

determination for focused land use management. For example, many physically-based 

hydrological models have been developed, such as the Areal NonPoint Source Watershed 

Environmental Response Simulation (ANSWERS) [5], the Agricultural Nonpoint Source 

Pollution Model (AGNPS) [6], the Better Assessment Science Integration Point and 

Nonpoint Sources (BASINS) [7], the Hydrologic Simulation Program Fortran (HSPF) [8], 

the Simulator for Water Resources in Rural Basins (SWRRB) [9], the Water Erosion 

Prediction Project (WEPP) [10], and the Soil and Water Assessment Model (SWAT) [11], 

among others, which are used widely to estimate streamflow processes, simulate sediment 

yield and transport, identify soil erosion high-risk areas, evaluate nonpoint source pollution, 

support water quality criteria (e.g., total maximum daily loads (TMDLs)) development, and 

support decision-making at the local or regional levels [12–15]. These are generally data 

intensive models [16]. Among those models, SWAT has been applied across various spatial 

and temporal scales and environmental conditions worldwide as a common watershed 

analysis tool [17]. Due to its distributed, physically-based structure, SWAT needs many input 

data to meet the requirement for prediction. If only limited data are available, SWAT 

requires careful calibration and validation [18]. Here, we applied SWAT with data from one 

hydrology station and two weather stations to simulate streamflow discharge, assess 

sediment yield, and perform calibration and validation to help identify areas of high soil loss 

potential in the Xinjiang River Basin.

The Xinjiang River Basin (27°32′–28°59′ N, 116°38′–118°36′ E) is one of five sub-basins 

of Poyang Lake Basin, which is situated at the south bank in the middle–lower reach of the 

Yangtze River in China. Poyang Lake has a large freshwater storage capacity, especially 

during the summer, and discharges to the Yangtze River. This region is a hotspot of 
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biodiversity and was designated by Wetlands International as a wetland of international 

importance [19]. However, frequent rainstorms, floods, and subsequent soil erosion have 

occurred in this basin, with changing climatic conditions and intensive human activity 

leading to degradation [20–23]. The study area is influenced by a subtropical monsoon 

climate, with the temporal distribution of rainfall occurring primarily during April–August, 

thereby driving intense surface land erosion. The Quaternary red soil, with dense clay 

texture and low permeability, is vulnerable to erosion and widely distributed throughout the 

basin. Additionally, intense human activity, such as deforestation, mining, and urbanization 

has accelerated the local soil erosion rate. As a result, in the 2000s, soil loss was estimated at 

approximately 3.4 × 104 km2, accounting for 20.0% of the total land area, and associated 

with financial losses of up to $333 million [24]. Due to soil loss, the siltation of Poyang 

Lake is estimated to be 1.2 × 107 ton. This sediment loading and subsequent siltation have 

dramatically altered the storage of water in Poyang Lake [25].

Soil erosion and lake sediment load issues have increasingly received research attention in 

the Poyang Lake basin. These studies were roughly categorized into three aspects: (1) The 

spatiotemporal distribution pattern of long-term precipitation or rainfall erosivity [26–33], 

(2) the impact of climate change and land use change on soil erosion, runoff, and/or 

sediment loading based on long-term hydrology and climate observed data [25,34–41], and 

(3) assessment of soil erosion based on Geographic Information System (GIS), remote 

sensing, and the universal soil loss equation (USLE) [19,42–45]. These studies resulted in 

improved understanding of the interactive impact among climate change, hydrologic 

process, soil erosion, and sediment yield. However, few of the aforementioned studies 

developed a model to simulate hydrologic patterns and evaluate sediment yield at the 

required time and spatial resolution to inform land use types (e.g., agriculture) or geographic 

characteristics (e.g., slope) needed for soil erosion control solutions at the small watershed 

scale under changing land use practices.

This study predicts long-term streamflow discharge and lake sediment load by applying 

SWAT in the Xinjiang River Basin and employs calibration and validation steps to generate a 

model and approach to help identify basin characteristics to support land use and 

management practice decisions. We set up this SWAT model with limited data and 

determined the most sensitive hydrologic parameters using the SWAT-CUP and SUFI-2 

method [46], which helped to improve calibration and uncertainty analysis. Then, we 

evaluated the model performance with R2 and NSE in streamflow and sediment prediction 

and analyzed the uncertainty of the resulting model with PBIAS, RSR, p-factor, and r-factor 

statistics. Finally, we presented high-risk soil loss potential areas within sub-basins. 

Together, this case study demonstrates an approach and application to help identify the 

upland sources and magnitude of sediment loads to Poyang Lake from the Xinjiang River 

Basin and similar systems.

2. Materials and Methods

2.1. Study Area

The Xinjiang River Basin (27°32′–28°59′ N, 116°38′–118°36′ E) is located at the eastern 

part of the Poyang Lake watershed and occupies over 1.7 × 105 km2. The southeastern 
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terrain is high in elevation and the northwest is low. The elevation of the Xinjiang ranges 

from −14 to 2090 m. The length of the main river channel is approximately 360 km. The 

Xinjiang River flows into Poyang Lake at Meigang station [47]. The upstream area of this 

station is about 15,535 km2. The annual streamflow averaged at Meigang station during 

1985–2009 was 555 m3 s−1. Guixi (28.18° N, 117.13° E, elevation: 50 m) and Yushan 

(28.41° N, 118.15° E, elevation: 100 m) meteorological stations are located at the lower and 

upper reaches, respectively (Figure 1). The subtropical monsoon climate system dominates 

the entire basin. Rainfall increased from January to June, then decreased sharply from July 

to December [30,48]. The average annual runoff depth, precipitation, and mean temperature 

values were 1112 mm, 1834 mm, and 18 °C during 1985–2009, respectively (Figure 2).

2.2. SWAT Model Description

SWAT is a physically-based and basin-scale model operated at daily or hourly time steps. 

SWAT evaluates the impact of climate change and land use change on the hydrology cycle in 

a complex watershed with different soils, vegetation cover, and management conditions [18]. 

Land use, soil, weather, and topography are the primary input data imported into SWAT. In 

SWAT, a watershed is discretized into multiple sub-basins, then each sub-basin is further 

divided into multiple hydrological response units (HRUs). In each HRU, land areas have 

specific land use, soil property, and slope combinations and hydrological components are 

calculated for surface water and groundwater [49]. SWAT simulates the hydrologic cycle on 

a land surface based on the water balance equation (Equation (1)) [49].

SW t = SW 0 + ∑
n = 1

t
Rd − Qsurf − Ea − W s − Qgw (1)

where SWt is the final moisture content of soil (mm H2O), SW0 is the initial moisture 

content of soil on day i (mm H2O), t is time (days), Rd is the total precipitation amount on 

day i (mm H2O), Qsurf is the surface runoff amount on day i (mm H2O), Ea is the 

evapotranspiration amount on day i (mm H2O), Ws is the volume of water entering the 

unsaturated zone from soil profiles on day i (mm H2O), and Qgw is the groundwater 

recharge amount on day i (mm H2O).

The modified universal soil loss equation (MUSLE) is used in SWAT to calculate a single 

event sediment yield (Equation (2)) [50].

SY = 11.8 × Qs × qp × A 0.56 × K × LS × C × P × F (2)

where SY is the sediment yield on a day (ton), Qs is the runoff volume (mm ha−1), qp is the 

runoff rate at peak flow (m3 s−1), A is the area of HRU (ha), K is the soil erodibility factor, is 

LS the slope length and slope factor, C is the vegetation cover factor, P is the land 

management practice factor, and F is the coarse fragment factor. The K, C, P, LS factors 

come from USLE.
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2.3. Input Data

We obtained the Digital Elevation Model (DEM) of the study area from Shuttle Radar 

Topography Mission (SRTM) 1 Arc-Second (about 30 m × 30 m) Global Database, which 

was downloaded from the United States Geological Survey (USGS) (https://

earthexplorer.usgs.gov/, 12/20/2017) (Figure 1). Vegetation cover was categorized into 

agricultural land (24.26%), forest (68.50%), orchard (0.23%), grassland (3.15%), water 

(1.97%), wetland (0.42%), urban land (1.46%), and barren land (0.01%) (spatial resolution 

was 100 m × 100 m) (Chinese Academy of Sciences, 2005) (Figure 3a). Due to the 

unavailability of high-resolution soil data, we downloaded a vectorized soil map (1: 

5,000,000) from Food and Agriculture Organization of the United Nations (FAO) soil 

database (version 3.6) as the SWAT model soil input (http://www.fao.org/geonetwork/srv/en/

metadata.show?id=14116, 12/05/2017) (Figure 3b). Table 1 lists the soil ID, name, texture 

name, composition, and other hydrological properties of each soil type. We used these soil 

properties to define the basin SWAT soils database. The slopes were divided into five 

categories to calculate sediment yield from different slopes, including <3%, 3%–8%, 8%–

15%, 15%–25%, and >25% (Figure 3c). Daily meteorological data for the period 1985–2009 

were obtained from Guixi and Yushan stations. The daily streamflow discharge (1985–2009) 

and suspended sediment load data (1985–2001) from Meigang gauging station were 

collected to calibrate and validate the model (Figure 3d).

2.4. Model Setup

DEM, FAO soil, and vegetation cover spatial data were converted to a grid raster format, 

then projected and transformed to the Universal Transverse Mercator 

(WGS_1984_UTM_Zone_50N) projection coordinate system in the ArcGIS 10.4.1 

(Environmental System Research Institue, Redlands, CA, U.S, 2016) desktop environment 

before setting up the SWAT model. The Xinjiang River basin was delineated into 103 sub-

basins with 1094 HRUs. The land use/soil/slope combination defined in HRUs was allocated 

by land use (10%), soil (10%), and slope (5%) thresholds to produce each response unit. The 

FAO soil data were appended into a user soil file in the SWAT2012 database before soil 

definition. The weather parameters obtained from Guixi and Yushan weather stations were 

written into the WGEN_user file in SWAT2012 database to create a user-defined weather 

generator. We set a warm-up period of 1985–1989 to stabilize the model in ArcSWAT 

version 2012.10_4.19 (Texas A&M University, College Station, TX, USA). The simulation 

running period of the SWAT model was from 1 January 1985 to 31 December 2009.

2.5. Model Sensitivity Analysis

The objective of the sensitivity analysis was to scan and find the most sensitive parameters 

that represented key physical processes [51]. We used global sensitivity analysis methods (or 

All-at-a-time, AAT) to identify the sensitive parameters related to streamflow and sediment 

yield prediction. The parameter sensitivity was calculated through multiple regression 

method using the Latin Hypercube (LH), and the objective function values of the parameters 

were determined by Equation (3) [46].
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E = a + ∑
i = 1

n
λibi (3)

where E is the result of an objective function, a is a constant of regression analysis, and λ 
corresponds to the coefficient of each parameter b. The significance of parameter b was 

identified using the t-test. The sensitivity of one parameter depended on a larger absolute 

value of the t-test and a smaller p-value.

2.6. Model Calibration, Validation, and Evaluation

We used the SWAT Calibration Uncertainty Procedure (SWAT-CUP) (version 5.1.6.2) (Texas 

A&M University, College Station, TX, U.S., 2015) and the sequential uncertainty domain 

parameter fitting algorithm (SUFI-2) integrated into SWAT-CUP to conduct the sensitivity 

analysis, calibration, validation, evaluation, and uncertainty analysis of the model. After the 

most sensitive parameters for streamflow and sediment simulation were found, we applied 

the parameters to conduct the calibration and validation procedures. Due to the limitations of 

the observed sediment data, we used 1990–1999 as a calibration period of streamflow and 

sediment and set 2000–2009 and 2000–2001 as the validation periods for streamflow and 

sediment, respectively.

We evaluated previously published recommendations for calibration and validation 

[46,52,53], and determined the Nash–Sutcliffe efficiency (NSE), Pearson’s coefficient of 

determination (R2), percent bias (PBIAS), root mean square error (RMSE)-observation’s 

standard deviation ratio (RSR), the p-factor, and the r-factor as evaluation indicators of the 

model performance. The values of R2, NSE, PBIAS, and RSR were calculated using 

Equations (4)–(7).

R2 =
∑i = 1

n yi − y yi′ − y′ 2

∑i = 1
n yi − y 2∑i = 1

n yi′ − y′ 2 (4)

NSE = 1 −
∑i = 1

n yi − yi′ 2

∑i = 1
n yi − y 2 (5)

PBIAS =
∑i = 1

n yi − yi′ * 100
∑i = 1

n yi
(6)

RSR =
∑i = 1

n yi − yi′ 2

∑i = 1
n yi − y 2 (7)

where yi is the observed data, y is the average of the observed data, yi′ is the predicted data, 

y′ is the average of the predicted data, n and is the sample number. The p-factor and r-factor 
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described the uncertainty of the simulation. Positive values of PBIAS indicated the 

underestimation bias of the model, and negative values indicated the overestimation bias of 

the model. An RSR value equal to zero indicated a perfect model fit to the measured data, 

while larger positive RSR values indicated a poor model performance [53]. The p-factor 

indicated the percentage of observed data that was captured by the 95% prediction 

uncertainty (95PPU) band. The r-factor represented the thickness of the 95PPU and was 

estimated to be the average 95PPU thickness divided by the standard deviation of the 

corresponding observed variable [46].

3. Results

3.1. Parameter Sensitivity Analysis

We selected twenty parameters as the initial input for the model sensitivity analysis because 

these parameters often have high correlation with streamflow simulations, according to the 

SWAT manual and the literature [18,35,54,55]. We conducted the parameter sensitivity 

analysis using the AAT method based on the SUFI-2 algorithm and LH sampling methods 

by running 1000 model simulations (see Figure A1 in Appendix A). The final sensitivities of 

the streamflow parameters were ranked, with the most sensitive parameter given rank 1 and 

the least sensitive parameter given rank 20, as shown in Table 2.

The sensitivity ranks of each hydrologic parameter applied for the monthly and daily 

predictions are listed in Table 3. The results revealed that the base flow alpha factor 

(ALPHA_BF) was the most sensitive parameter for the monthly and daily streamflow 

simulations, indicating the streamflow simulation in the study area was influenced and 

dominated by surface runoff and groundwater-flow process.

3.2. Streamflow Calibration and Validation

Using the SWAT-CUP, we conducted a one-time iteration of 500 and 1000 model runs in 

each iteration for the monthly and daily streamflow predictions, until an acceptable accuracy 

of model simulation was obtained (see Table A1 in Appendix 1) [53]. We used the 

evaluation guidelines for hydrology simulation from Moriassi and others [53] and Ayle and 

others [55], which provided recommendations for calibration and validation, and in our 

limited data case study we showed how this model compared these criteria. We applied 

1990–1999 data to calibrate and determine the parameter value ranges, then validated the 

model with 2000–2009 data. The results of the monthly and daily streamflow calibration and 

validation statistics are listed in Table 4.

3.2.1. Monthly Streamflow Simulations—We plotted the hydrograph of the monthly 

streamflow using the 95% prediction uncertainty (PPU) band and the rainfall bar, and 

marked the evaluation statistics NSE, p-factor, and r-factor on Figure 4. The results showed 

that NSE was 0.67 in the calibration and 0.50 in the validation. According to Table 4, the 

monthly streamflow simulation R2 was 0.79 in the calibration and 0.60 in the validation. The 

results of NSE and R2 indicated that the observed and simulated monthly streamflows were 

consistent. The values of PBIAS and RSR were −33.6% and 0.57 in the calibration and 

−26.8% and 0.71 in the validation. The p-factor value of 73% showed that this percentage of 
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observed data was covered by the 95PPU band in the calibration and 66% of the observed 

data was captured by the model in the validation, demonstrating that the model simulated the 

observed data during both time steps. The r-factor value was 1.37 in the calibration and 1.31 

in the validation, reporting that similar uncertainty occurred in the calibration and validation 

periods.

3.2.2. Daily Streamflow Simulations—The R2 and NSE valued for the daily time 

steps were 0.60 and 0.54 in the calibration and 0.43 and 0.39 in the validation (Table 4). 

Considering the smaller time scale (daily), we regarded these results as an acceptable 

agreement between the observations and simulations. To clearly illustrate the simulated 

result, we plotted Figure 5 to compare the calibrated and validated daily streamflow 

hydrographs alongside rainfall. Figure 5 shows that the 95PPU predicted 83% of daily 

observations for both time steps, indicating that the calibrated daily streamflow model 

simulated daily streamflow in the basin. The simulated daily streamflow was consistent with 

the daily rainfall as well. However, the PBIAS values were −33.1% and −27.7% in the 

calibration and validation periods, showing that the model overestimated the daily 

streamflow in both time steps. The model demonstrated proximate uncertainty in calibration 

and validation (r-factor was 1.31 and 1.37), with a relatively large uncertainty at low flow, 

indicated by a wide 95PPU bandwidth during the lowest discharge. Among the observed 

flows greater than 4000 m3 s−1 (total of 7305 daily observations from 1 January 1990 

through 31 December 2009, with 109 observations greater than 4000 m3 s−1), only 28 

simulated values were 20% more or less than the observed flows. Although the simulation 

appeared to capture peak flow well within the 95PPU band, 25.7% (28/109) of the simulated 

flows fell into the 20% more or less than the observed flow greater than 4000 m3 s−1 

category during the calibration and validation periods.

We illustrated a scatter plot with 1:1 and regression lines to compare the results between the 

observed and simulated daily streamflows during calibration and validation (Figure 6). The 

model overpredicted the flow when the observed values were less than approximately 1200 

m3 s−1, yet underestimated flow when the observed value was greater than 1200 m3 s−1 

during calibration (Figure 6a). The model had a large error of prediction when it predicted a 

daily streamflow peak greater than 4000 m3 s−1. During validation, the low-flow values 

(<2000 m3 s−1) were scattered near the 1:1 line, but most of the high-flow values (>2000 m3 

s−1) were underpredicted (Figure 6b).

3.3. Sediment Calibration and Validation

3.3.1. Monthly Sediment Simulations—We appended five control parameters 

influencing sediment transport simulation to further estimate the suspended sediment load. 

These sensitive parameters and their details are listed in Table 5. The results showed the 

linear factor for channel sediment routing (SPCON) was the most sensitive parameter for 

suspended sediment prediction. Meanwhile, we separated the calibration and validation 

periods of sediment simulation into 1990–1999 and 2000–2001 to keep the value ranges of 

the streamflow parameters unchangeable, which were calibrated in the previous sensitivity 

analysis.
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Table 6 shows the overall performance of the monthly sediment simulation for the sediment 

yield prediction and evaluation under the current conditions with limited data. According to 

Table 6, a PBIAS value of 3.8% indicated that the simulation slightly underestimated the 

observed suspended sediment in calibration, but a PBIAS value of −26.1% in validation 

indicated that the model overestimated the observed suspended sediment.

We plotted the sediment graph of the monthly suspended sediment load and marked 

statistical indicators in Figure 7, with an R2 of 0.63 and an NSE of 0.62 for calibration and 

an R2 of 0.58 and an NSE of 0.55 for validation. The values of PBIAS and RSR were 3.8% 

and 0.61 during calibration and −26.1% and 0.67 during validation, respectively. We used 

two statistics, p-factor and r-factor, to present the simulation uncertainty of the sediment 

prediction by the model. A p-factor value of 0.93 in the calibration and 0.88 in the validation 

indicated that the 95PPU band captured most of the observed data. An r-factor value of 0.93 

in the calibration and 1.17 in the validation showed a smaller uncertainty of the sediment 

simulation.

3.3.2. Annual Sediment Simulation—We estimated the annual suspended sediment 

load (Table 7) throughout the period of simulation (1990–2001). The annual suspended 

sediment load simulated was 206.2 × 104 ton, which was approximately 13% higher than 

observed suspended sediment load of 182.3 × 104 ton, with an R2 value of 0.53 and an NSE 
of 0.40, with the greatest difference occurring under low loads.

Table 8 lists some previous study results regarding the suspended sediment load at Meigang 

station. Compared with results from previous studies, we believe that the simulated averaged 

annual sediment yield mass of 206.2 × 104 ton along with observed value of 182.3 × 104 ton 

are rational and acceptable.

3.3.3. Spatial Variability of Sub-Basins’ Sediment Yield—The annual sediment 

yield rates varied from 3 ton ha−1year−1 in the riparian lowlands of the Xinjiang main river 

channel to 33 ton ha−1year−1 primarily in the mountain highlands from 103 contributing 

sub-basins, with an average sediment yield rate of 19 ton ha−1year−1 for the entire basin 

(Figure 8). These results were similar in magnitude to the 20.7 ton ha−1year−1 from Lu et al. 

[42].

The proportional areas of different sediment yield rate intensities are shown in Table 9. 

Overall, 99.9% of the study area produced more than 5 ton ha−1year−1. A total of 60.3% of 

the land area produced 5–25 ton ha−1 year−1, and 39.6% of the land area produced 25–33 ton 

ha−1year−1. According to our simulation, nearly the entire basin experienced soil loss during 

1990–2001.

3.3.4. Sediment Yield Distributed by Slope and Land Use—We determined an 

average sediment yield of different slope classifications (Table 10) and found that terrain 

with greater than 25° slopes was a primary sediment source that occupied only 9.5% of total 

land area, but contributed 24.2% of the entire basin sediment yield. The areas with slopes of 

8°– 15° and 15°–25° were also significant sediment source areas that contributed 21.2% and 

23.0% of the total basin sediment yield. The disproportionality of sediment yield suggested 
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that soil erosion control measures on slopes greater than 8°, and more so on slopes greater 

than 25°, may be warranted.

The average annual sediment yield proportions of different land use types are listed in Table 

11. Only land uses regarded as sediment “sources” were considered; otherwise, water bodies 

and wetlands that belonged to sediment “sinks” were not considered in this calculation. 

Additionally, we did not include urban land, since this was typically an impervious surface. 

Table 11 shows that orchards were the main contributors of sediment, accounting for 24.1% 

of the total sediment yield with only 0.2% of the area proportion. Forest was the second 

most significant contributor to basin sediment, at 21.9% with 68.5% area proportion.

4. Discussion

The sensitivity analysis indicated that the base flow alpha factor (ALPHA_BF) was the most 

sensitive parameter in the monthly and daily streamflow simulations, and the linear factor 

for channel sediment routing (SPCON) was most sensitive for the monthly sediment 

prediction. The model had a better performance in the monthly streamflow prediction 

intervals than daily time steps, and a poorer performance when predicting low-flow events 

than high-flow events. The monthly streamflow simulation was reported with an R2 of 0.79 

and an NSE of 0.6, as shown in Table 4, indicating that the model captured most of the 

variance in observations. This ability, however, became weak, with an R2 of 0.60 and an 

NSE of 0.50 during the validation period. The RSR value for validation was greater than the 

calibration value, indicating better model performance during calibration. The p-factor 

(0.73) and r-factor values (<1.5) showed desirable certainty for the monthly streamflow 

calibration and validation, as seen in Table 4. The streamflow peak corresponded with the 

maximum rainfall. However, the PBIAS values of −33.6% in calibration and −26.8% in 

validation expressed that the model overestimated the monthly streamflow at both time 

steps, especially during the low-flow period, with considerable uncertainty. There were 

several potential factors that may have affected the model uncertainty, including input 

precipitation data quality, particularly limited weather stations locations and the spatial 

discretization of weather data, coarse soil data input, the Soil Conservation Service (SCS) 

curve number method itself, unknown processes, and the effect of lumped parameter 

calculations [46,59]. In this study, we demonstrated that a reasonably well-supported model 

could be developed with limited data. However, the rainfall data used in our SWAT 

simulation only came from two meteorological stations, which ultimately limited model 

performance in a large basin with varied elevation and precipitation patterns. Limited or 

scarce data would clearly affect uncertainty in future efforts in similar situations, as noted by 

others (e.g., [55]). Further, the soil data used in our model were derived from FAO, which 

applies varied approaches to make a best-available determination of relatively coarse soil 

descriptions (see http://www.fao.org); this may improve over time with enhancements to 

technology and greater soil data availability.

Guo et al. [35] simulated daily streamflow in the Xinjiang River Basin. The daily streamflow 

simulation R2 and NSE values were 0.88 and 0.86 in the calibration period (1990–1997) and 

0.86 and 0.84 in the validation period (1998–2002) in their study. Obviously, their R2 and 

NSE values were higher than in our study. However, uncertainty was not reported in their 
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SWAT model and only two statistics were used to estimate the model based on a shorter 

observed data series. Overall, the model underestimated daily streamflow discharge, as 

shown in Figure 6, and the model was unable to predict the daily high-flow peak during 

validation. One possible reason for this is observation error in the high-flow events, because 

it is difficult to measure high flow, especially during flooding. Overall, our daily SWAT 

model performed better when simulating daily low streamflow compared with daily high 

streamflow in this study.

The overall performance of monthly sediment simulation is shown in Table 6 and Figure 7. 

A time-series comparison of the sediment showed that the observed and simulated 

suspended sediment load patterns and timing matched well with the rainfall (Figure 7). 

However, there was a noticeable difference in the monthly sediment simulation time-series 

and observed values for several high sediment load dates (e.g., June 1990, June 1993, June 

1994, July 1997, August 1998, June 1999, and June 2000). High monthly sediment load was 

not simulated well and was underestimated compared with the corresponding observed data 

(Figure 7). The likely reason for the error in sediment simulation was the poor hydrologic 

model simulation of high-flow conditions. Also, the simulated sediment load was higher 

than the observed sediment in 2001, potentially related to sand-mining activities in the basin 

beginning in 2001 [22,60].

Although the SWAT model we developed likely underestimated loads in high-flow 

conditions, our conservative model did provide valuable spatial and geographic insight to 

landscape drivers of sediment load to the system. Spatially, it was clear that high sediment 

yield occurred primarily in the highlands, while low sediment yield was mainly found on 

two banks of the Xinjiang River, with soil erosion particularly severe at the upper reaches of 

the highlands. Geographically, highland sediment yield of the southern side the Xinjiang 

main river channel appeared to be a major contributor in the basin (Figure 8). Ayele et al. 

(2017) [55] showed that the highlands were an important sediment source area, but the 

sediment ultimately traveled through the lowlands into water bodies. Thus, consideration of 

both southern highland and lowland practices are important to manage sediment delivery.

According to Huang [56], the area of soil erosion reached 4.1 × 103 km2 in 2000, which 

accounted for 12.3% of the total soil loss area (3.3 × 104 km2) in the Poyang Lake basin and 

was equivalent to 24.7% of the total land area of the Xinjiang River basin. Due to soil 

erosion, the annual suspended sediment load was 261.1 × 104 ton, accounting for 12.3% of 

total annual suspended sediment load (2.1 × 107 ton) in the Poyang Lake basin. Meanwhile, 

Lu et al. (2011) [37] indicated the average depth of topsoil loss in the Xinjiang River basin 

reached 1.2 mm in 1990; however, this figure increased to 1.5 mm in 2000. This study also 

showed severe soil erosion during this period.

Since we did not distinguish between dense woodland, sparse woodland, and shrub, these 

areas were regarded uniformly as forest in our model (Table 11). Forest accounted for the 

largest area (68.5%) of land use types, which may explain why forest became a primary 

sediment contribution source in this study. The simplified representation of the forest land 

use type could have easily resulted in an unexpected simulation output. High resolution land 
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use input may improve future predictions if a SWAT model is used [61–63]. The proportion 

of barren land was close to zero, but contributed 4.5% sediment yield.

The results of our model-based analysis show that there are land use and geographic 

hotspots of sediment load. With this insight, several specific management approaches could 

be considered. Agricultural land occupies 24.3% of the basin but supplies only 17.5% of the 

sediment yield, suggesting that targeted soil erosion control measures on agricultural land 

are important, especially on arid farmland distributed on steep southern slopes. Furthermore, 

poor land tillage practices and deforestation of farmland on steep slopes likely produces 

more soil erosion and may cause a subsequent increase in sediment yield. Overall, orchards, 

barren land, and agricultural land are critical sources of sediment yield, while forest and 

grassland were minor contributors, and dense woodland appeared to contribute a relatively 

low amount of sediment to the basin.

5. Conclusions

Our results showed that the Xinjiang River Basin experienced severe soil loss during 1990–

2001, with 99.9% of the total land area contributing a sediment yield rate larger than 5 ton 

ha−1year−1. A calibrated and validated SWAT model was able to estimate sediment loads 

and provide an indication of the land uses and geographic indicators of the primary sources 

of sediment load. Spatially, the annual sediment yield varied from 3 ton ha−1year−1 in the 

lowlands of the two banks of the Xinjiang main river channel to 33 ton ha−1year−1 in the 

mountain highlands, with 19 ton ha−1year−1 on average. Most of the sediment yield came 

from the southern mountain highlands of the Xinjiang River upstream. Future watershed 

management should consider the clear influence of land use and slope such as orchards, 

barren land, and mountain highland on slopes greater than 25°, because these areas tend to 

be disproportionately large contributors to soil loss and sediment load. Land use 

management in lowlands could be improved while practicing soil erosion control methods in 

highlands and inappropriate tillage practices in areas with slopes greater than 25° should be 

limited to prevent soil loss. Due to our data limitations, we did not compare the impact of 

land use change on streamflow and sediment load in this watershed, but it is important to 

determine how the drivers of sediment load change in response to changes in land use, 

weather, and climate. Nevertheless, this study developed a reliable physically-based 

streamflow model and illustrated the critical source areas and conditions of sediment yield.
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Appendix A

Parameter sensitivity analysis is an important step to effectively limit the number of 

parameters and identify key parameters [64]. The AAT method was applied to search 
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optimize parameters. A total of 1000 model runs were used to identify sensitive parameters 

in this study. The final sensitivities are ranked in Table 2. There is potential for the order of 

parameter sensitivity to differ if the number of runs changes.

Figure A1 is based on 1000 SUFI-2 monthly simulations. The x axis shows the range of 

parameter values for streamflow and the y axis is the value of the objective function, NSE. If 

the distribution of these dots showed an obvious trend, the sensitivity would be higher; if the 

points were scattered or haphazard, the parameter sensitivity would be low. ALPHA_BF, 

CH_N2, CH_K2, CN2, and GW_REVAP were the most sensitive parameters in the 

streamflow simulations of the study area (Figure A1).
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Figure A1. 
Dot plot of NSE against twenty SWAT parameters conditioned with SUFI-2 based on 1000 

monthly streamflow calibration simulations. The x-axis shows the range of each parameter 

value and y-axis represents NSE.

Abbaspour et al. (2015a) determined that a p-value of <0.05 was the threshold for a sensitive 

parameter. Although the p-value of SOL_K (1) was 0.04, other relevant soil parameters, 

such as SOL_Z (1), SOL_BD (1), and SOL_AWC (1), were insensitive in analysis. 
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Moreover, since the soil data came from the FAO soil database constructed from filed 

surveys backed up by remote sensing, environmental data, expert opinions, and laboratory 

analyses, the values of these soil property parameters were considered subject to less 

uncertainty and thus were not included in the final calibration process. ALPHA_BF was the 

baseflow alpha factor (1 day−1), reflecting the baseflow response to changes in the recharge 

of the shallow aquifer. The larger the value, the more sensitive the baseflow was to recharge. 

CH_N2, the Manning’s “n” value for the main channel, defined the channel flow resistance. 

CH_K2 referred to the effective hydraulic conductivity in the main channel alluvium (mm h
−1), and showed stream-groundwater relationships. CN2 was a key parameter in the SCS 

method of SWAT, characterizing the potential maximum soil moisture retention capacity. A 

low value indicated low runoff, but high potential infiltration. GW_REVAP, the groundwater 

“revap” coefficient, was the rate of the water returning to the soil zone from the aquifer 

when the overlying soil became unsaturated. CH_S2 was the average slope of main channel 

along the channel length (m m−1). OV_N indicated the Manning’s “n” value for the overland 

flow, and was relevant to the calculation of the time of concentration for overland flow; 

therefore, this value had an impact on the timing of the flow peaks. GW_DELAY 

characterized the delay time (days) of the recharge into the aquifer in the unsaturated non-

root zone.

As a result, we selected out most sensitive parameters based on the result of the above 

sensitivity analysis for the Xinjiang River Basin streamflow simulation. Table 4 lists the 

calibration results of the most influential parameters.

Moriasi et al. (2007) proposed a general guideline for the recommended statistics for the 

monthly streamflow and sediment simulations (Table A1).

Table A1.

Performance ratings of recommended statistics for streamflow simulations (modified from 

[53–55]).

Performance 
Rating R2 NSE RSR

PBIAS (%)

Streamflow Sediment

Very Good 0.7 <R2 ≤1
0.75 < NSE ≤ 

1 0 ≤RSR ≤0.5 PBIAS < ±10 PBIAS < ± 15

Good
0.6 < R2 ≤ 

0.7
0.65 < NSE ≤ 

0.75
0.5 < RSR ≤ 

0.6 ±10 ≤ PBIAS < ±15 ±15 ≤ PBIAS < ±30

Satisfactory
0.5 < R2 ≤ 

0.6
0.5 < NSE ≤ 

0.65
0.6 < RSR ≤ 

0.7 ±15 ≤ PBIAS < ±25 ±30 ≤ PBIAS < ±55

Unsatisfactory R2 ≤ 0.5 NSE < 0.5 RSR > 0.7 PBIAS ≥ ±25 PBIAS ≥ ±55
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Figure 1. 
Topography, rivers, and hydrological and meteorological stations of the study area.
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Figure 2. 
Monthly average runoff depth, precipitation, and temperature during 1985–2009 in the 

Xinjiang River Basin.
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Figure 3. 
Model data in the Xinjiang River Basin: (a) Land use and land cover in 2005; (b) Food and 

Agriculture Organization of the United Nations (FAO) soil; (c) slope classifications; (d) 

meteorological and hydrological stations, rivers, outlets, and sub-watersheds.
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Figure 4. 
Observed/simulated monthly streamflow hydrograph with 95% predication uncertainty 

(95PPU) for calibration and validation.
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Figure 5. 
Daily observed streamflow, 95PPU, and best-simulated streamflow. (a) Calibration and (b) 

validation.
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Figure 6. 
Comparison of observed and simulated daily streamflows. (a) Calibration and (b) validation.
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Figure 7. 
Monthly sediment load for calibration (1990–1999) and validation (2000–2001).
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Figure 8. 
Average annual sediment yield of delineated sub-watersheds in the Xinjiang River Basin 

(1990–2001).
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Table 1.

Soil types and hydrological properties in the Xinjiang River Basin.

Soil Name Depth of Soil 
Layer (mm)

Textural 
Name

Bulk Density 
(g cm−3)

Available 
Water 

Capacity (mm 
mm−1)

Saturated 
Hydraulic 

Conductivity (mm 
h−1)

Composition

Clay 
(%)

Silt 
(%)

Sand 
(%)

I-Bc-2c- 0–300 Clay- 1.0 0.098 38.1 38 33 30

3084 300–550 Loam 1.1 0.098 23.48 41 32 27

Af52–3b- 0–300 Clay 1.2 0.175 14.96 44 23 34

4259 300–1000 1.2 0.175 13.23 52 22 26

Ao13- 0–300 Clay- 1.2 0.129 13.26 39 33 28

3bc-4269 300–670 Loam 1.3 0.129 8.25 45 30 25

Ao18- 0–300 Clay- 1.2 0.144 13.05 37 30 33

3bc-4270 300–770 Loam 1.3 0.144 8.52 44 28 28

Vp66- 0–300
Clay

1.1 0.125 23.2 47 29 25

3a-4427 300–1000 1.3 0.125 8.12 51 25 23

Water (Basel). Author manuscript; available in PMC 2020 December 20.



E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

Yuan and Forshay Page 28

Table 2.

Calibration streamflow parameters and their adjustable range in the sensitivity analysis.

Calibration

No Parameter Name
1 Parameter Description Range Monthly Daily

t-Test p Rank t-Test p Rank

1 V__ALPHA_BF.gw Baseflow alpha factor (1 day−1) 0–1 35.76 0.00 1 17.15 0.00 1

2 V__CH_N2.rte Manning’s “n” value for the main channel −0.01–0.3 −16.96 0.00 2 −9.16 0.00 2

3 V__CH_K2.rte
Effective hydraulic conductivity in main 

channel alluvium (mm h−1) −0.01–500 −15.91 0.00 3 −6.19 0.00 3

4 R__CN2.mgt SCS runoff curve (mm h−1) −0.2−0.2 −7.65 0.00 4 −5.82 0.00 4

5 V__GW_REVAP.gw Groundwater “revap” coefficient 0.02–0.2 5.31 0.00 5 3.59 0.00 5

6 R__CH_S2.rte Average slope of main channel (m m−1) −0.001–10 4.26 0.00 6 2.09 0.04 7

7 R__OV_N.hru Manning’s “n” value for overland flow 0.01–30 −4.21 0.00 7 2.34 0.02 6

8 V__GW_DELAY.gw Groundwater delay (days) 100–500 2.47 0.01 8 −0.46 0.65 15

9 R__SOL_K (1).sol
Saturated hydraulic conductivity at the 1st 

soil layer (mm h−1) 0–100 −2.04 0.04 9 −1.78 0.08 9

10 V__SOL_Z (1).sol
Depth from soil surface to bottom of the 1st 

soil layer (mm). 0–300 0.95 0.34 10 0.14 0.89 18

11 R__SOL_BD (1).sol
Moist bulk density at the 1st soil layer (g cm

−3) 0.9–2.5 −0.90 0.37 11 0.51 0.62 14

12 R__ALPHA_BNK.rte
Baseflow alpha factor for bank storage 

(days) 0–1 −0.85 0.40 12 −0.46 0.65 16

13 R__EPCO.hru Plant uptake compensation factor 0–1 −0.59 0.55 13 −0.01 0.99 20

14 A__ESCO.hru Soil evaporation compensation factor 0–0.2 0.56 0.58 14 0.95 0.34 11

15 A__SURLAG.bsn Surface runoff lag time 0.05–24 0.55 0.58 15 0.70 0.48 13

16 R__SOL_AWC (1).sol
Available water capacity of the 1st soil layer 

(mm H2O mm soil−1) 0–1 0.46 0.64 16 −0.01 0.99 19

17 A__GWQMN.gw

Threshold depth of water in the shallow 
aquifer required for return flow to occur 

(mm H2O) 0–25 −0.43 0.67 17 1.59 0.11 10

18 V__REVAPMN.gw
Threshold depth of water in the shallow 
aquifer for “revap” to occur (mm H2O) 0–500 0.40 0.69 18 0.94 0.35 12

19 R__HRU_SLP.hru Average slope steepness (mm−1) 0–1 −0.39 0.69 19 0.26 0.80 17

20 R__SLSUBBSN.hru Average slope length (m) 10–150 −0.23 0.81 20 −1.83 0.07 8

1
Note: “A__”, “V__” and “R__” mean an absolute increase, a replacement, and a relative change to the initial parameter values, respectively. Rank 

is based on t-test and p-value [49].
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Table 3.

Calibrated parameters value for the monthly and daily streamflow simulations.

Monthly Daily

Rank Parameter Name Value Rank Parameter Name Value

1 V_ALPHA_BF 0.167 1 V_ALPHA_BF 0.700

2 V_CH_N2 0.007 2 V_CH_N2 0.022

3 V_CH_K2 54.491 3 V_CH_K2 482.250

4 R_CN2 −0.175 4 R_CN2 −0.196

5 V_GW_REVAP 0.185 5 V_GW_REVAP 0.176

6 R_CH_S2 8.610 6 R_OV_N 19.039

7 R_OV_N 22.712 7 R_CH_S2 3.294

8 V_GW_DELAY 494.500
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Table 4.

Monthly and daily streamflow calibration and validation statistics.

Statistical Indicators
Calibration (1990–1999) Validation (2000–2009)

Monthly Daily Monthly Daily

R2 0.79 0.60 0.60 0.43
#

NSE 0.67 0.54 0.50 0.39* 
#

PBIAS* 
#

−33.6% −33.1% −26.8% −27.7

RSR 0.57 0.68 0.71
#

0.78
#

p-factor 0.73 0.83 0.66 0.83

r-factor 1.37 1.31 1.31 1.37

*
Values are outside of recommendations for Moriassi et al. 2007 [53].

#
Value is outside of recommendations for Ayele et al. 2017 [55].
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Table 5.

Result of monthly sensitivity analysis and final calibrated sediment parameters.

Parameter Range Rank t-Test p-Value Value

v_SPCON.bsn 0.0001–0.01 1 3.82 0.00 0.005

v_USLE_P.mgt 0–1 2 2.58 0.01 0.522

r_CH_EROD.rte 0–1 3 −0.49 0.63 0.602

v_SPEXP.bsn 1–1.5 4 −0.15 0.88 1.281

r_CH_COV.rte −0.001–1 5 −0.06 0.95 0.369
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Table 6.

Monthly observed and simulated sediment calibration (1990–1999) and validation (2000– 2001) model 

performance statistics.

Component p-Factor r-Factor R2 NSE PBIAS RSR

Calibration 0.93 0.93 0.63 0.62 3.8% 0.61

Validation 0.88 1.17 0.58 0.55 −26.1% 0.67
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Table 7.

Annual observed and simulated suspended sediment loads at Meigang station.

Year
Sediment Load (× 104 ton)

Year
Sediment Load (× 104 ton)

Observed Simulated Observed Simulated

1990 143.4 196.9 1996 87.0 144.9

1991 118.0 186.2 1997 175.5 172.2

1992 264.7 242.8 1998 221.7 308.2

1993 257.9 213.8 1999 174.9 218.4

1994 223.5 213.4 2000 137.3 155.8

1995 317.8 251.3 2001 66.2 170.6

Average 182.3 206.2
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Table 8.

Observed suspended sediment load at Meigang station.

Authors Periods Observed Sediment (× 104 ton year−1)

Guo et al. [41] 1991–2001 200

Huang [56] - 261

Sun et al. [34] 1956–2005 210

Min et al. [57] 1956–2005 212

Luo et al. [58] 1956–2008 204
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Table 9.

Simulated sediment yield rate categories and proportional areas.

Sediment Yield (ton ha−1 year−1) Area (km2) Total Land Area %

<5 20.39 0.1%

5–25 9121.50 60.3%

25–33 5992.87 39.6%
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Table 10.

Simulated sediment yield proportions.

Slope (°) Area (km2) Area % Sediment Yield %

<3 4996.8 33.0% 13.3%

3–8 3116.3 21.6% 18.3%

8–15 2871.1 19.0% 21.2%

15–25 2712.9 17.9% 23.0%

>25 1437.6 9.5% 24.2%
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Table 11.

Simulated average annual sediment yield from different mainland use.

Land Use Area (km2) Area % Sediment Yield %

Agricultural land 3670.1 24.3% 17.5%

Forest 10,363.5 68.5% 21.9%

Orchard 35.4 0.2% 24.1%

Grassland 477.3 3.2% 16.7%

Barren land 1.3 0% 4.5%
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