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Effect of bisphenol A on human 
neutrophils immunophenotype
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Piotr Radziwon3 & Ewa Jablonska1

Neutrophils (PMN) play a key role in eliciting congenital immune response. These cells are equipped 
with specific receptors that are located on the surface of their cell membrane. These receptors produce 
various signals which in turn help in the effective functioning of PMN. The activity of these cells may be 
modified by factors of endo- and exogenous origin, including xenoestrogens such as bisphenol A (BPA). 
The aim of this study was to evaluate the effect of BPA on the expression of CD11c, CD14, CD15, CD16, 
CD62L and CD284 compounds on the surface of neutrophils in women and men. The study material 
included PMN isolated from the whole blood. The cells were incubated in the presence of BPA and/or 
LPS. Flow cytometry technique was used to evaluate the expression of CD antigens. Studies of these 
receptors indicate that BPA, at a concentration corresponding to the serum level of this compound 
in healthy subjects as well as at higher doses, induces changes in the immunophenotype of PMN, 
which may lead to immunity disorders associated with the dysfunction of these cells. Moreover, the 
observed effects of xenoestrogen on the expression of CD11c, CD14, CD15, CD16, CD62L and CD284 
differentiation markers on these cells are sex-independent.

There has been an increase in the number of allergic diseases, diabetics, obese individuals, and cases of endocrine, 
neurological and sexual disorders worldwide since the twentieth century and continues to show an increasing 
trend. This observation can be attributed to the rapidly growing chemical pollution of the environment. Humans 
are constantly exposed to natural and synthetic chemical compounds. Among them, xenoestrogens, estrogen-like 
compounds of exogenous origin endocrine disrupting compounds (EDCs), play an important role. They have 
the ability to interact with the hormonal system and modulate its functions in a manner that is characteristic for 
estrogens. Sources of xenoestrogens include some pharmaceutical compounds, metals, detergents, and chemicals 
used to harden plastics, such as bisphenol A (BPA)1–7. The popularity of plastic products has lead to the wide-
spread use of BPA. BPA easily penetrates into food and beverages at elevated temperatures or as a result of damage 
caused at the time of packaging. Humans are exposed to this compound mainly through food products, and the 
absorption is found to be particularly high in children. BPA is known to exert harmful effects on human health 
even at low concentrations. This factor disturbs the hormonal homeostasis of the organism, leading to infertility 
and cancers4,5,8–10.

Bisphenol A can affect the body functions through complex and still not fully understood mechanisms, 
including both the interaction with receptors and the influence on the permeability of cell membranes. There 
is evidence to prove that low levels of BPA cause negative effects on the female hormone estrogen, consequently 
causing a disruption of the hormonal balance in the body. The chemical structure of BPA is similar to that of 
phenol, thus enabling it to act as an agonist or antagonist. Its action is probably dependent on the content of 
estrogens1,3,8. At lower concentration of estrogens in the body, it exhibits agonist characteristics, while at higher 
concentrations, it behaves as an antagonist1,11. BPA can bind to estrogen receptors, estrogen-related receptors, 
aryl hydrocarbon receptors, and peroxisome proliferator-activated receptors. Owing to its ability to interact with 
many types of receptors, BPA has a wide impact on immune system regulation12.

Despite the conductance of numerous scientific studies on BPA, its effects on PMN are still unclear13,14. PMN, 
the largest pool of peripheral blood leukocytes, are the first line of defense against pathogens such as bacteria, 
fungi, and some viruses. They also play a crucial role in providing protection against cancer. These cells con-
tain specific receptors on the surface of their cell membrane, which enable them to interact with the extracel-
lular environment and with other cells. These include, inter alia, receptors for Fc fragment of immunoglobulins 
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(CD16), complement components (Complement receptor - CR), adhesion molecules (CD11c, CD15, CD62L), 
LPS (CD14), as well as receptors for hormones including estradiol (NR3). The receptors respond to the external 
stimuli by providing appropriate signals that further help in the activation and functioning of various intracellular 
transmission pathways, which include pathogen recognition, opsonization, phagocytosis, complement activation, 
and initiation of PMN death through apoptosis15–18.

Our previous studies have shown the influence of BPA on the mechanism of intracellular oxygen-dependent 
(related to nitric oxide) and oxygen-independent (related to serine protease release) killing of PMN in both 
women and men19,20. Moreover, the observed effects of xenoestrogen activity in these cells were dependent on the 
sex. Therefore, we undertook further studies in women and men to determine the influence of BPA on the expres-
sion of CD11c, CD14, CD15, CD16, and CD62L antigens on the surface of PMN, which are known to participate 
in the basic functions related to the diagnosis and elimination of pathogens.

Due to the fact that the mechanisms involved in EDC action are very complex and conditioned by the ability 
to act simultaneously on many receptors, which results in observed differential effects, it is difficult to unequivo-
cally determine the toxicity of these compounds. EDCs show a non-monotonic dose–effect relationship, in which 
both very low and high doses can provide maximum response, while no effect is observed at intermediate doses. 
This relationship is often presented as a U-shaped curve. In the case of EDCs, a dose–effect relationship may also 
be presented as an inverted U-shaped curve, where intermediate doses confer the maximum effect21–23. Based 
on the literature data24–26, our use of high BPA concentrations (1.5–12 μM) is intended to implement modern 
standards for immunotoxicological studies which would further allow to determine the linear (or nonlinear) 
dose–effect relationship in terms of BPA effect on the expression of the molecules studied. In previous studies 
undertaken in our laboratory, BPA was present in 97% of the analyzed serum samples of healthy subjects, and its 
mean concentration was found to be 14.94 nM in women and 17.17 nM in men19.

Material and Methods
Isolation and incubation of PMNs.  The tested blood was obtained from 15 volunteer donors from the 
Regional Centre for Transfusion Medicine (Bialystok, Poland). Famales were in follicular phase of menstrual 
cycle. All blood donors were in age 20–25 years, do not smoke, do not alcohol consume 48 hours prior blood 
donation. They do not have any chronic diseases and immunological deficiencies in medical history19,20.

All donors have been informed regarding the study objectives and methodology, and have provided written 
consent for participation in the study.

The approval for the conductance of the study titled “Assessment of bisphenol A influence on the immunophe-
notype of human peripheral blood leukocytes” (Resolution no.: R-I-002/95/2018) was granted by the Bioethics 
Committee of the Medical University of Białystok. All of the experiments were performed in accordance with 
good laboratory practice.

The study material included venous blood collected with an anticoagulant (heparin, Polfa, Lodz, Poland) and 
without an anticoagulant for serum purpose. From each donor, 4 ml of venous blood was drawn and overlaid on 
Polymorphprep™ (AXIS-SHIELD PoC AS, Oslo, Norway). Neutrophils were isolated by centrifuging the sample 
at 400 × g for 30 min in a density gradient. Cells were counted in a Bürker chamber after staining the cell nuclei 
with Türk’s solution. Subsequently, purity of the cell suspension was assessed by performing “thick drop” method 
by utilizing May-Grünwald and Giemsa stains. The samples of donor cells that demonstrated neutrophil purity of 
more than 85% were subjected to a subsequent stage of cell isolation. During positive separation process, we were 
able to effectively isolate neutrophils in accordance with the protocol recommended by Miltenyi Biotec company 
using MACS® Separator and CD16 MicroBeads (catalog no. 130-045-701) (Fig. 1).

The viability of neutrophils was determined using trypan blue staining (Lachema), which does not penetrate 
live cells but dead cells (late apoptotic and necrotic) are permeable to the stain and appear blue. Neutrophils 

Figure 1.  The 97% pure neutrophils after isolation in density centrifugation and positive selection with 
CD16 beads. Neutrophils were stained by May-Grünwald-Giemsa and assessed in the light microscope. 
Malignation × 100.
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stained with trypan blue were counted manually under a light microscope. Neutrophil viability was analyzed 
in the preparations developed directly after isolation, as well as in those obtained after 20 hours of incubation 
(Fig. 2).

The isolated neutrophils were cultured on the HBSS medium (Invitrogen, Carlsbad, CA), which was enriched 
with donor’s serum and antibiotics (penicillin and streptomycin (Polfa Trachomin SA, Warsaw, Poland)). The 
cells were incubated for 20 hours in sterile plates at 37 °C in 5% CO2 (NuaireTM US Autoflow, Plymouth, MN). 
Neutrophils can survive in the peripheral blood for approx. 8 hours, and then move to the tissues where they can 
sustain for 2 to 3 days. Recent studies have demonstrated that their survival period may be much longer—even 
up to about 90 hours27. Based on these data, as well as considering the outcomes of earlier research on bisphenol 
A, we undertook the following study, wherein we exposed neutrophils to bisphenol A (at concentrations 12 µM, 
6 µM, 3 µM, 1.5 µM, and 16 nM) or LPS (at concentration 10 µg/ml) for 20 hours19,20.

Bisphenol A (catalog no. 42088-100 MG, Sigma-Aldrich) employed in this study is 99% pure and is provided 
with Certificate of Analysis: Certified Reference Material. Lipopolysaccharides (LPS) used for the study (catalog 
no. L3129, Sigma-Aldrich) were obtained from Escherichia coli O127: B8 and purified by phenol extraction to 
97% purity. The LPS fraction thus extracted contains <3% of other proteins, this compound has also been pro-
vided with the Certificate of Analysis.

Flow cytometry analysis.  To 50 µl of the cells suspended in PBS, 20 µl of each of the following monoclonal 
antibodies was added: anti-CD11c, anti-CD14, anti-CD15, anti-CD16, anti-CD62L, and anti-CD284 (TLR4). 
After 30 minutes of incubation in the dark, the samples were rinsed with PBS by centrifuging for 5 minutes. The 
results were analyzed for 30 minutes on a flow cytometer (Canto II, Becton Dickinson) using FACSDiva software.

Statistics.  Statistical analysis was done using Statsoft Statistica version 13.3. Data was presented in terms of 
mean ± S.E or mean ± SD. The normal distribution of data was tested by the Kolmogorov-Smirnov test. The CD 
data were compared with the Mann-Whitney U test. Differences were considered statistically significant when 
the P < 0.05.

Results
Evaluation of CD11c, CD14, CD15, CD16, and CD62L expression in female and male neutro-
phils.  The expression of CD11c, CD14, CD15, CD16, and CD62L cell surface antigens was demonstrated on 
the cell membrane of PMN in women and men (Fig. 3).

Exposure of female PMN to BPA (at concentrations of 12 μM, 6 μM, 3 μM, 1.5 μM, or 16 nM) led to a decrease 
in the percentage of PMN expressing CD11c, CD15, and CD16 markers compared to cells not treated with 
xenoestrogen. On the other hand, the highest BPA concentration resulted in a higher percentage of PMN show-
ing CD62L expression compared to non-xenoestrogen-treated cells. However, in the presence of other applied 
BPA concentrations (6 μM, 3 μM, 1.5 μM, or 16 nM), no changes in the percentage of PMN expressing CD62L 
antigen were found (Fig. 4).

Exposing the PMN of female as well as male participants to 16 nM BPA led to an increase in the percentage 
of CD14-expressed PMN compared to non-xenoestrogen-treated cells. In the presence of other applied BPA 
concentrations, no changes in the percentage of PMN with CD14 expression at the surface were found (Fig. 4).

Similar to the results obtained for female PMN, incubation of male cells with BPA (at all applied concentra-
tions) showed a lower percentage of PMN expressing CD15 and CD16 markers on their surface compared to 
PMN incubated without xenoestrogen. The highest BPA concentration (12 μM) caused a decrease in the percent-
age of PMN with CD11c antigen. The exposure of PMN to other BPA concentrations (6 μM, 3 μM, 1.5 μM, or 
16 nM) showed no changes in the percentage of PMN with CD11c antigen. No changes in the percentage of PMN 
with CD62L expression were observed in the presence of all BPA concentrations (Fig. 4).

Stimulation of PMN with LPS in women and men caused an increase in the percentage of PMN expressing 
CD11c, CD14, CD15, CD16, and CD62L antigens compared to the cells not stimulated by LPS and not exposed 
to BPA (Fig. 4).

Figure 2.  The 98% survival of the neutrophils stained with trypan blue. Cells were counted in the light 
microscope. Malignation × 100. (A) cells after isolation; (B) cells affter 20 hours incubation.
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A lower percentage of PMN with CD11c and CD15 expression was found in female PMN following exposure 
to LPS and 12 μM concentration of BPA compared to the cells stimulated by LPS. However, no changes were 
observed in the percentage of PMN expressing these markers in the presence of LPS and other applied BPA con-
centrations (6 μM, 3 μM, 1.5 μM, or 16 nM) (Fig. 4).

In contrast to the results obtained in females for PMN, incubation of male cells with BPA at 12, 6, or 3 μM 
concentrations led to a decrease in the percentage of PMN with CD11c expression compared to LPS-stimulated 
cells. Moreover, similarly as in women, a reduced percentage of PMN with CD15 expression was observed in the 
presence of LPS and the highest BPA concentration used (Fig. 4).

When female and male PMN were exposed simultaneously to both LPS and xenoestrogen BPA (12 μM, 6 μM, 
3 μM, 1.5 μM, or 16 nM) stimulators, no changes in the percentage of PMN with CD14 expression were found 
compared to cells stimulated by LPS only (Fig. 4).

Figure 3.  Representative FCAS plots demonstrating of CD antigens expression on the PMN.
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Furthermore, simultaneous stimulation of PMN of both women and men with LPS and BPA at 12, 6, and 3 
μM concentrations led to a decrease in the percentage of PMN expressing CD16 and CD62L antigens compared 
to LPS-stimulated cells only. Moreover, when LPS and BPA were used at 1.5 μM concentration, a decrease in the 
percentage of CD16+ cells was observed in both sexes (Fig. 4).

In female and male neutrophils, a reduction in the percentage of neutrophils with CD16 and CD62L expres-
sion was observed after treatment with LPS and BPA (16 nM) as compared to the cells only stimulated with LPS 
(Fig. 4).

Simultaneous use of LPS and BPA (at all concentrations) led to a higher percentage of PMN with CD14 and 
CD15 expression in women and men compared to the cells exposed to BPA only. In addition, an increase in the 
percentage of PMN with CD62L expression was also observed in the cells of both sexes exposed to LPS and BPA 
(6 μM, 3 μM, 1.5 μM, or 16 nM) (Fig. 4).

Stimulation of the cells of both sexes with LPS and BPA (at all concentrations) led to an increase in the pro-
portion of PMN with CD11c antigen expression, except for male cells exposed to LPS and 6 μM concentration of 
BPA, compared to cells treated with BPA only (Fig. 4).

Figure 4.  Alterations in CD11c, CD14, CD15, CD16 and CD62L in human PMN. PMN were treated for 
20 hours with BPA (12 μM, 6 μM, 3 μM, 1.5 μM or 16 nM) and/or LPS (10 µg/ml). % - percentage share of cells 
with positive antigen expression; value significantly different between * – cells without and with BPA (p < 0.05); 
(a) cells incubated only with LPS and cells incubated without BPA and LPS (p < 0.05); (b) cells incubated only 
with LPS and cells simultaneously incubated with LPS and BPA (p < 0.05); (d) cells incubated only with BPA 
and cells incubated with LPS and BPA (p < 0.05); (c) cells collected from women and men (p < 0.05).
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In addition, incubation of PMN of both sexes with LPS and BPA (at all concentrations) led to an increase in 
the proportion of PMN with CD16 antigen expression, except for female cells exposed to LPS and 3 μM BPA, 
compared to the cells treated with BPA only (Fig. 4).

The analysis of the results, based on the sex of the patient, did not show any difference in the expression of 
CD11c, CD14, CD15, CD16, and CD62L antigens on the surface of PMN (not stimulated with LPS and not 
exposed to BPA, exposed only to BPA, or stimulated only with LPS) between women and men. On the other hand, 
a lower percentage of PMN with CD11c expression in the presence of LPS and BPA (at the concentrations of 6 and 
3 μM) was found in men compared to women. No changes were observed in the percentage of PMN expressing 
CD14, CD15, CD16, and CD62L antigens between women and men (Fig. 4).

Considering the effect of the lowest concentration of bisphenol A on CD14 expression of neutrophils, we also 
conducted a study to assess its impact on TLR4 expression. Incubation of neutrophils of both sexes with BPA 
(16 nM) resulted in an increased percentage of neutrophils with TLR4 receptor expression as compared to the 
cells not exposed to BPA (Fig. 5, Table 1). Stimulation with LPS of cells obtained from both sexes resulted in an 
elevated percentage of neutrophils with TLR4 receptor expression as compared to the non-stimulated cells with 
LPS (Fig. 5, Table 1). No changes were observed in the percentage of PMN expressing CD284 antigens between 
women and men.

Discussion
Functional disorders of phagocytes often lead to recurrent infections, most frequent among them being purulent 
and fungal respiratory tract infections, as well as diseases related to subcutaneous tissue, skin, mucous mem-
branes, and deep organ abscesses28,29.

The results of this study indicate that BPA acts by inducing changes in the expression of differentiation anti-
gens like CD11c/CD18, CD14, CD15, CD16, and CD62 on the surface of PMN and subsequently changing the 
immunophenotype of human PMN in both women and men. Moreover, the observed changes in the PMN anti-
gens were not found to be sex-specific.

The influence of BPA on the phenotype of nonspecific response cells, including monocytes, was also studied by 
Zbucka-Kretowska et al. They demonstrated that the culturing of human monocytes with BPA led to an increase 
in the percentage of classical subpopulations (CD14++ CD16−) of monocytes, without significantly affecting the 
percentage of nonclassical subpopulations (CD14++ CD16+ and CD14+ CD16++) of monocytes30.

Our own study demonstrated that BPA leads to a decrease in the percentage of PMN with CD11c expression 
in both women and men, which confirms the significant influence of this xenoestrogen on this glycoprotein. The 
demonstrated changes in the expression, and thus binding, of this receptor for fibrinogen and C4 complement 
component on the examined cells may lead to abnormal adhesion and phagocytosis of iC3b-coated molecules, 
as well as may induce phagocytosis without the participation of complement components in subjects exposed to 
this compound31,32.

In the present study, a trend similar to CD11c glycoprotein expression was observed for changes in the 
percentage of PMN with CD16 antigen expression. The decreased receptor expression for Fc Ig fragment on 
BPA-treated PMN may consequently lead to impaired phagocytosis induction as well as cell activation, inter alia, 
to antibody-dependent cellular cytotoxicity (ADCC). Moreover, alteration in the expression of CD16 on PMN 
may contribute to the dysfunction of these cells in the regulation of immune response, antigen presentation, as 
well in the secretion of inflammatory reaction mediators such as IL-1, IL-6, and TNF-α after binding to immune 
complexes33–36. The results of our study with regard to changes in the CD16 antigen expression are consistent with 
those reported by earlier studies. A decrease in CD16 expression on Natural killer (NK) cells due to the activity of 
endocrine-disrupting compounds as well as deterioration in the ability of PMN to phagocytose cells was observed 
under the influence of BPA37–40.

In addition, the study of PMN of both sexes exposed to different concentrations of BPA also showed a decrease 
in the percentage of PMN with CD15 antigen expression (stage-specific embryonic antigen 1), which may ulti-
mately lead to abnormalities in various functions of these cells, including adhesion, phagocytosis, oxygen explo-
sion, and degranulation41. Due to the wide involvement of CD15 molecule in the immune response, it seems 
particularly worrying that we observed changes in the expression of this molecule in the presence of the lowest 
xenoestrogen concentration, which corresponds to the average concentration of BPA determined in the human 
bloodstream (16 nM)19.

Moreover, overexpression of CD14, observed in this study, following exposure to the lowest concentration of 
bisphenol A (16 nM) may result in an elevated risk of systemic inflammation during infection with Gram-negative 
bacteria in individuals exposed to this xenoestrogen. There is evidence that the excessive expression of CD14 in 
transgenic mice increases their susceptibility to endotoxic shock and an increase in SCD14 in humans is related 
to increased mortality due to shock caused by G− and G+ bacteria42.

In the light of the available data, which shows that the key step in the production of inflammatory mediators 
is the activation of the “endotoxin receptor complex” (CD14 and MD2 molecules and Toll 4 receptor), the ability 
of BPA to activate the TRL4 receptor, as demonstrated by us as well as other authors, seems to be of particular 
importance43. The interactions of BPA with CD14 and TRL4 may lead to an increased expression of proinflamma-
tory genes and thereby cytokine synthesis44. On the other hand, the interaction of BPA with CD14 may contribute 
to the disturbed internalization of TLR4 dependent on CD14 protein45.

In the presented study, observed increase in the percentage of PMN in women with CD62L (L-selectin) 
expression in the presence of the highest concentration of BPA, which may lead to increased interaction of these 
cells with the vascular endothelium, seems surprising46,47. Different results were presented by Tӧrӧk et al., who 
showed that the expression of this molecule on the PMN surface decreased significantly under the influence of 
even a slight stimulation, whereas no change in the expression was noted on the monocyte surface48.
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Some studies have reported that PMN of people chronically exposed to endocrine-disrupting compounds, 
such as dichlorodiphenyltrichloroethane (DDT), show a decreased ability to chemotaxis, adhesion, phagocytosis, 
and oxygen-dependent killing. Moreover, it was observed that the dysfunction of these cells was associated with 
an increase in the incidence of infectious diseases, particularly upper respiratory tract infections, in this group 
of people49.

The results of our study showed that stimulation of PMN of both sexes with endotoxin (the main component 
of the outer membrane of Gram-negative bacteria) leads to an increased percentage of the cells expressing CD11c, 

Figure 5.  Representative FCAS plots demonstrating of CD antigens (CD14 and CD284 (TLR4)) expression 
on the PMN: (A) PMN; (B) PMN without BPA and LPS; (C) cells incubated only with BPA (16 nM); (D) cells 
incubated only with LPS.
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CD14, CD15, CD16, and CD62L antigens, which suggests a proper development of inflammatory response to 
bacterial toxin. Similar observations were made by Rodeberg et al., who observed an increase in CD14 expression 
on PMN stimulated by LPS50. Different results were reported by Vega et al. with regard to CD62L marker51. They 
did not observe any changes in the expression of this selectin on PMN as a result of LPS stimulation. Kishimoto 
et al., however, demonstrated reduced CD62L expression on PMN following stimulation with the endotoxin52.

In order to evaluate the potential influence of BPA on the inflammatory process, PMN of women and men 
were concurrently stimulated with LPS and xenoestrogen. The observed decrease in the percentage of PMN 
expressing CD11c, CD16, and CD62L antigens in both sexes suggests that xenoestrogen may prevent rapid 
removal of the pathogen factor and consequently lead to the development of an inflammatory process. This eti-
ology seems to be dangerous in pregnant women, who are particularly exposed to Gram-negative bacterial infec-
tions53,54. BPA alone can lead to a number of adverse effects in the offspring, including carbohydrate metabolism 
disorders55, fertility disorders56, and nervous system abnormalities57.

However, the study conducted in our laboratory did not show any influence of BPA on the percentage of 
PMN with CD14 expression after stimulation with LPS. This situation may be probably caused by higher affinity 
of bacterial endotoxin to TLR receptors compared to BPA58,59. LPS binds to a protein molecule (LPS binding 
protein) present in the serum, which in turn transports and transfers it to CD14. This receptor is anchored to 
the membrane by a glycosylphosphatidylinositol connector and is not capable of transmitting a signal by itself; 
only after the formation of a complex with TLR4, the cell can be activated60,61. On the other hand, the question 
arises as to whether we would also observe changes in the percentage of PMN with CD14 expression if these cells 
were exposed simultaneously to BPA and another component of the bacterial cell wall, which is lipoteichoic acid 
(LTA) from Gram-positive bacteria. There are data reporting that LTA induces the activation of PMN with CD14 
expression, independent of binding with the Toll-like receptors, TLR2 or TLR462.

In conclusion, it has already been established that BPA at a concentration corresponding to the serum level of 
this compound in healthy subjects as well as at higher doses affects the immunophenotype of PMN, which may 
subsequently lead to immunodeficiency disorders associated with dysfunction of these cells in subjects exposed 
to this compound. Moreover, the observed effects of xenoestrogen on the expression of CD11c, CD14, CD15, 
CD16, and CD62L differentiation markers on these cells are sex-independent.

The effects of BPA activity on the reproductive system and neonatal development have been widely recog-
nized. However, there is little information with regard to its effects on the cells of the immune system, especially 
PMN. A thorough understanding of the mechanism of BPA action on PMN together with a description of the role 
of estrogenic receptors in these cells will allow for a realistic assessment of the risks resulting from wide exposure 
to this xenoestrogen. Therefore, further research is needed to determine the possible effects of BPA on the func-
tioning of important immune cells, such as PMN.

Ethical approval and consent to participate.  The Ethics Committee of the Medical University of 
Bialystok (R-I-002/95/2018) approved this study. Informed consent was obtained from all participants prior to 
blood donations. All of the experiments were performed in accordance with good laboratory practice.

Data availability
The datasets used and/or analyzed during the current study are availablefrom the corresponding author on 
reasonable request.
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