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ABSTRACT Biological nitrogen fixation is catalyzed by the enzyme nitrogenase. Two
forms of this metalloenzyme, the vanadium (V)- and iron (Fe)-only nitrogenases,
were recently found to reduce small amounts of carbon dioxide (CO2) into the po-
tent greenhouse gas methane (CH4). Here, we report carbon (13C/12C) and hydrogen
(2H/1H) stable isotopic compositions and fractionations of methane generated by V-
and Fe-only nitrogenases in the metabolically versatile nitrogen fixer Rhodopseudo-
monas palustris. The stable carbon isotope fractionation imparted by both forms of
alternative nitrogenase are within the range observed for hydrogenotrophic metha-
nogenesis (13�CO2/CH4 � 1.051 � 0.002 for V-nitrogenase and 1.055 � 0.001 for Fe-
only nitrogenase; values are means � standard errors). In contrast, the hydrogen iso-
tope fractionations (2�H2O/CH4 � 2.071 � 0.014 for V-nitrogenase and 2.078 � 0.018
for Fe-only nitrogenase) are the largest of any known biogenic or geogenic pathway.
The large 2�H2O/CH4 shows that the reaction pathway nitrogenases use to form
methane strongly discriminates against 2H, and that 2�H2O/CH4 distinguishes nitro-
genase-derived methane from all other known biotic and abiotic sources. These find-
ings on nitrogenase-derived methane will help constrain carbon and nitrogen flows
in microbial communities and the role of the alternative nitrogenases in global bio-
geochemical cycles.

IMPORTANCE All forms of life require nitrogen for growth. Many different kinds of
microbes living in diverse environments make inert nitrogen gas from the atmo-
sphere bioavailable using a special enzyme, nitrogenase. Nitrogenase has a wide
substrate range, and, in addition to producing bioavailable nitrogen, some forms of
nitrogenase also produce small amounts of the greenhouse gas methane. This is dif-
ferent from other microbes that produce methane to generate energy. Until now,
there was no good way to determine when microbes with nitrogenases are making
methane in nature. Here, we present an isotopic fingerprint that allows scientists to
distinguish methane from microbes making it for energy versus those making it as a
by-product of nitrogen acquisition. With this new fingerprint, it will be possible to
improve our understanding of the relationship between methane production and ni-
trogen acquisition in nature.
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Microorganisms produce over half of global methane (CH4) emissions (1). Fermen-
tative and hydrogenotrophic methanogens are the most significant microbial

producers of this potent greenhouse gas (1, 2). Their metabolic pathways occur
exclusively within anaerobic Archaea and involve multiple enzymes working together in
series, including the obligatory methyl-coenzyme M reductase (Mcr). The primary
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function of Mcr is for catabolism, with methane production thought to occur only after
other more favorable electron acceptors, like oxygen, nitrate, or sulfate, have been
consumed (3–5). Over the past decade, it has been recognized that minor additional
contributions of methane derive from the demethylation of organophosphonates (6–8)
and from inefficient Wood-Ljungdahl pathway carbon fixation (9). Most recently, it was
discovered that some forms of the metalloenzyme nitrogenase also reduce carbon
dioxide (CO2) into methane (10). The discovery of biological methane production by
certain forms of nitrogenase expands the known range of organisms and environments
in which methane production is possible.

Nitrogenase is known primarily for its ability to reduce inert dinitrogen (N2) gas to
ammonia, a process known as nitrogen fixation. It is the only enzyme that can catalyze
the production of newly fixed nitrogen for the biosphere. Prior to industrial reduction
of dinitrogen, biological nitrogen fixation catalyzed by nitrogenase was the primary
source of nitrogen for life on Earth (11, 12). Nitrogenase is generally considered a
promiscuous enzyme because it can reduce a variety of carbon-containing compounds
in addition to N2 (13–17). For example, the iron (Fe)-only nitrogenase isoform can
convert carbon monoxide into hydrocarbon chains, a reaction that may have been
important for early forms of life (15). In addition, all forms of nitrogenase reduce
acetylene to ethylene (18–21). This is the basis for the acetylene reduction assay, the
most commonly used method to measure nitrogen fixation rates in the laboratory and
field (22–25). The recent discovery that some forms of nitrogenase can reduce carbon
dioxide to methane (10) is significant because, unlike acetylene and carbon monoxide,
carbon dioxide is ubiquitous in nature.

The vanadium (V)- and Fe-only nitrogenases produce the most by-product methane
of the nitrogenase isoforms (10). They are found in both the bacterial and archaeal
domains and are present in diverse environments (26–31). In addition, certain artificial
mutations near the active site of the molybdenum (Mo)-nitrogenase enable this more
common isoform to produce methane as well (32, 33). These findings beg the question
of whether and to what extent carbon dioxide reduction by nitrogenase is an important
methane source in certain environments and how to distinguish nitrogenase-derived
methane from other sources. The stable isotopes of carbon (13C/12C) and hydrogen
(2H/1H) are commonly used to differentiate (fingerprint) different sources of methane
(2, 8, 35–40). Previous research has established that each form of nitrogenase imparts
a characteristic nitrogen or carbon isotope fractionation during N2 (34) or acetylene (27)
reduction, respectively. To determine what characteristic carbon and hydrogen isotope
fractionations are associated with methane production by the different nitrogenases,
we cultivated V- and Fe-only nitrogenase-utilizing strains of the anoxygenic photohet-
erotroph Rhodopseudomonas palustris under nitrogen-fixing conditions. We find that
the carbon isotope fractionations are large yet similar to those of canonical anaerobic
methanogens. Conversely, the hydrogen isotope fractionation values are the largest of
any methane production pathway on record. This unique hydrogen isotopic fingerprint
allows us to differentiate nitrogenase-derived methane from methane generated by
other physiological pathways and provides a new tool to gain insight into the mech-
anism of proton delivery to nitrogenase.

RESULTS AND DISCUSSION
Isotope fractionation by nitrogenase during methane production. Different

methane sources are commonly associated with characteristic stable isotope fraction-
ations that can help distinguish between different biogenic, geogenic, and thermo-
genic sources (2, 37, 40). To determine the stable isotopes associated with methane
production by nitrogenase, we grew mutant strains of the anoxygenic photohetero-
troph Rhodopseudomonas palustris CGA009 that exclusively utilize either the Mo-
nitrogenase, V-nitrogenase, or Fe-only nitrogenase for nitrogen fixation (10, 41, 42). The
Mo-nitrogenase strain did not produce detectable methane during batch culture
incubation through stationary phase in Balch tubes (data not shown). The V- and
Fe-only nitrogenase strains both produced methane, with the Fe-only nitrogenase
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strain producing over an order of magnitude more methane than the V-nitrogenase
strain (Fig. 1). For the Fe-only nitrogenase strain, methane production per cell was
higher later during growth. We measured the carbon (13C/12C) and hydrogen (2H/1H)
isotopic compositions of methane and fractionations relative to carbon dioxide (CO2/
CH4) and water (H2O/CH4), as produced by the V- and Fe-only nitrogenases across a
range of cell densities (optical density at 660 nm of �0.3 to 1.3, from early log to
stationary phase), temperatures (14 to 30°C), carbon substrates (succinate and acetate),
and growth medium pH (from 6.2 to 6.8 at inoculation).

We discovered that methane produced by the V- and Fe-only nitrogenases is highly
depleted in deuterium (2H) relative to other natural sources (Fig. 2). Growth in water
with �2H � 1,000 � [(2H/1Hwater)/(2H/1HVSMOW) � 1] of ��40‰ yielded methane with
�2H values ranging from �473 to �560‰. To our knowledge, this is the most
deuterium-depleted hydrogen isotope ratio measured for biogenic methane sources to
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FIG 1 Growth dynamics (A) and methane yields (B) of nitrogenase strains. During growth on succinate (suc.) at
19°C (A), the R. palustris V- and Fe-only nitrogenase strains produced methane (B). The Fe-only nitrogenase strain
produced �10-fold more methane in the headspace than the V-nitrogenase strain. For the Fe-only nitrogenase
strain, methane production per cell is greater at higher cell densities. Error bars show the standard errors from
three biological replicates. Dissolved methane is not included.
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FIG 2 Nitrogenase-derived methane has a unique isotopic composition. The stable isotopic composition
of methane produced by nitrogenase (yellow) can be distinguished from other natural methane sources
due to its more depleted hydrogen isotopic composition. Individual data points from this study are
shown as diamonds (n � 31). The observed ranges for fermentative (green) and hydrogenotrophic (blue)
mcr-based methanogenesis pathways and geological methane sources (red) were taken from reference
93, although we note that these boundaries are not absolute (see, e.g., reference 37).
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date. The methane carbon isotopic composition, which varied from �13C � 1,000 �

[(13C/12CCH4)/(13C/12CVPDB) � 1] � �73.0 to �97.1‰ for substrate CO2 of ��30‰,
falls within the range observed for hydrogenotrophic methanogenesis (2) but is distinct
from methane generated by other abiogenic (37) and nontraditional biotic path-
ways (8).

Methane isotope ratios can more reliably be attributed to specific pathways
when the isotopic composition of source water and carbon are also considered (35,
37). In our experiments, manipulation of growth medium �2H over a 600‰ range,
from �30 to 550‰, resulted in a constant, statistically indistinguishable fraction-
ation of 2�H2O/CH4 � (�2HH2O � 1,000)/(�2HCH4 � 1,000) � 2.047 � 0.016 calculated
for individual samples, 2�H2O/CH4 � 2.056 � 0.057 calculated using the slope, and
2�H2O/CH4 � 2.050 � 0.019 calculated using the intercept (P � 0.9) (Fig. 3). The
hydrogen isotope fractionations (1.820 � 2�H2O/CH4 � 2.199) measured for methane
production by V- and Fe-only nitrogenase over a range of temperatures and growth
conditions are substantially higher than the largest fractionations observed for
traditional microbial methanogenesis pathways, which are around 2�H2O/CH4 of
�1.45 for acetoclastic (43) and hydrogenotrophic (35) methanogenesis (Fig. 4A and
5). Values as large as 2�H2O/CH4 � 1.89 have been observed in one pure-culture
experiment with a hydrogenotrophic methanogen (44), but in general, depending on
substrate concentrations and environmental conditions, the hydrogen isotope fractionation
for these traditional methane-forming pathways is often even lower than 2�H2O/CH4 � 1.45
(35, 43, 45). Our data indicate that a large hydrogen isotope fractionation of 2�H2O/CH4 �

2.1 is characteristic of methane production by nitrogenase and distinguishes methane
produced by nitrogenase from other biogenic and abiogenic pathways.

Like the carbon isotopic composition, the carbon isotope fractionation measured for
nitrogenase, 1.045 � 13�CO2/CH4 � (�13CCO2 � 1,000)/(�13CCH4 � 1,000) � 1.062, falls
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indistinguishable (P � 0.9). The values next to each data point are the calculated fractionations for
individual samples, and the shaded area shows the 95% confidence interval for the regression. The
convention used for individual samples is for substrate over product, whereas the regression line was
calculated as product over substrate. The regression calculated for substrate over product, x � (2.043 �
0.117)y � (1045 � 46), is statistically indistinguishable (P � 0.9).
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within the range observed for hydrogenotrophic methanogenesis (1.030 � 13�CO2/CH4 �

1.080) (38) (Fig. 4B). It is possible that the similarity in carbon isotope fractionation
between these two pathways is due to the similarity in substrate (CO2) and the
eight-electron requirement of carbon dioxide reduction to methane.

We observed only small changes in nitrogenase fractionation across a large range of
temperatures, cell densities, and carbon substrates (	0.38 for 2�H2O/CH4 and 0.02
for 13�CO2/CH4) relative to the variability observed for other methane production
pathways. Fractionation increased by 0.01 as temperature decreased from 30 to 14°C
for 13�CO2/CH4 (P � 10�5) and by 0.16 for 2�H2O/CH4 (P � 0.03) (Fig. 4 and 5). In contrast,
the form of growth substrate (succinate or acetate) did not alter 2�H2O/CH4 (P � 0.96)
and only had a small impact of �0.005 on 13�CO2/CH4 (P � 0.006). This is compatible
with the recent observation that electron availability has only a minor impact on
methane production by a mutant Mo-nitrogenase isoform (46). Acidification of the
growth medium by �0.5 pH unit also did not alter fractionation, although we note that
there was only one biological replicate for the acidified treatment (Table 1). Despite more
than an order of magnitude difference in the rate of methane production by V- and Fe-only
nitrogenase (Fig. 1), they have indistinguishable fractionation factors associated with meth-
ane production (P � 0.9 for 2�H2O/CH4 and 0.4 for 13�CO2/CH4) (Table 1). This suggests that
there is no rate effect on fractionation and that the V- and Fe-only nitrogenases share a
common mechanism for carbon dioxide reduction to methane.

The greatest source of variability in fractionation (�0.25 for 2�H2O/CH4 and �0.01 for
13�CO2/CH4) is due to cell density, growth phase (Fig. 5C and G), or substrate (CO2)
concentration (Fig. 5D and H). These variables are strongly correlated due to dissolved
inorganic carbon (DIC) production throughout growth (Fig. 5I) and cannot be disen-
tangled with the current data set. The DIC concentrations in our experiments, from 2.4
to 12.2 mM at harvest, fall at the higher end of concentrations observed in natural
environments (typically 0.1 to 5 mM in rivers and lakes, averaging around 1 mM [47]).
Linear extrapolation of the trends in Fig. 5D and H suggest that if the effect is due to
DIC concentration rather than growth phase, at lower DIC concentrations, hydrogen
and carbon isotope fractionation could be as low as �1.7 for 2�H2O/CH4 and �1.038 for
13�CO2/CH4 (see the discussion in Supplemental File 1). Future experiments are neces-
sary to test whether the observed trend is caused by DIC concentration or growth
phase and how this influences the variability of the nitrogenase isotopic fingerprint in
natural ecosystems. Notably, a similar cell density or growth phase effect was previously
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FIG 4 Nitrogenase-derived methane has a characteristic hydrogen isotope fractionation. (A) The largest
hydrogen isotope fractionations observed for canonical, mcr-based anaerobic methanogenesis path-
ways, around �1.45 (35, 43), are substantially smaller than the hydrogen isotope fractionation observed
for nitrogenase, although we note that values as high as 1.89 were observed in one pure-culture study
with hydrogenotrophic methanogens (44, 48). (B) In contrast, carbon isotope fractionation by nitroge-
nase falls within the range observed for hydrogenotrophic methanogenesis (blue, 1.023 � 13�CO2/CH4 �
1.090) and is intermediate to the range observed for methanol (1.072 � 13�CO2/CH4 � 1.094)- and acetate
(1.017 � 13�CO2/CH4 � 1.031)-based fermentative methanogenesis (green, 8). Green-blue hatched areas
represent ranges of overlap between the fractionations observed for fermentative and hydrogenotrophic
methanogenesis. The black bars represent the range of fractionation values measured in this study, with
individual data points shown as yellow diamonds.
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observed for mcr-based methanogenesis, where it has been tentatively attributed to
changes in temperature, catabolic rate (43, 44, 48), or carbon assimilation during
logarithmic growth (49).

The methane isotopic composition at harvest integrates the isotopic composition of
methane produced throughout growth. Therefore, the fractionation measured at sta-
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tionary phase is altered by the change observed in substrate CO2 isotopic composition
during exponential phase (Fig. 5J). Using the observed shift in medium CO2 isotopic
composition to estimate the effect on the fractionation measured at stationary phase,
we find that the change in substrate isotopic composition could account for at most
half (�0.005) of the total (�0.01) shift observed in 13�CO2/CH4 with cell density (see the
supplemental material). We note that it is possible that the isotopic composition of
intracellular CO2 is somewhat different from the bulk composition due to localized
production, consumption, and depletion, given the competing reactions of CO2 pro-
duction during organic substrate assimilation and RuBisCO refixation during photohet-
erotrophic growth of R. palustris (42, 50, 51).

Prior studies of isoform-specific fractionation have shown that 15N/14N fractionation
during N2 reduction into biomass and 13C/12C fractionation during acetylene into
ethylene are remarkably constant across different organisms, metabolisms, and envi-
ronmental conditions, varying by little more than a per mille under the conditions
tested so far (27, 34, 95; Darnajoux et al., unpublished data, and Luxem et al.,
unpublished data). Here, we observed changes of �20‰ (carbon) and �380‰
(hydrogen) in fractionation by nitrogenase correlated with temperature, growth phase,
and DIC concentration but not with organic carbon substrate, total methane produc-
tion rate, or nitrogenase isoform. This variability could help elucidate the mechanism
responsible for the large hydrogen isotope fractionation during methane production by
nitrogenase. Even when taking this variability into account, the range of measured
hydrogen isotope fractionation is easily distinguished from the range observed for
other methane production pathways (Fig. 4).

Hydrogen concentration does not influence methane isotope fractionation by
nitrogenase. Molecular hydrogen (H2) is an obligatory product of nitrogen fixation
and, in our experiments, is generated simultaneously with the production of methane
from carbon dioxide (52, 53). We explored whether the buildup and isotopic compo-
sition of H2 influence methane isotope fractionation by nitrogenase, as has been
observed for mcr-based methanogenesis (2, 43, 48, 54–63).

Two lines of evidence show that the presence of H2 does not alter the isotopic
composition of methane produced by nitrogenase. First, for Fe-only nitrogenase cul-
tures (grown on succinate at 19°C in serum vials), the hydrogen isotope fractionations
were indistinguishable in cultures in which the headspace contained 2 to 3% H2 at
inoculation (2�H2O/CH4 � 2.068 � 0.033, n � 3) and in cultures that were flushed with
100% N2 prior to inoculation (2�H2O/CH4 � 2.046 � 0.016, n � 4, P � 0.57; Supplemental
File 2). Although we were not able to measure the �2H of the exogenous H2, these data
suggest that its presence did not influence the isotopic composition of the product
methane. This result is expected, given that the strains used in our experiments lack a
functional uptake hydrogenase (64) and that nitrogenase itself is not thought to
catalyze isotope exchange between water and H2 (65). Isotopic exchange is distinct
from the hydrogenation of 2H2, forming 1H2H, which nitrogenase does catalyze in the
presence of N2. We note that abiotic hydrogen isotopic equilibration between H2-H2O,

TABLE 1 Carbon and hydrogen stable isotope fractionation associated with methane production by V- and Fe-only nitrogenasea

Temp C substrate 13�CO2/CH4
13�CO2/CH4

13n 2�H2O/CH4
2�H2O/CH4

2n

Fe-only nitrogenase
14°C Suc. 1.061 � 0.001 61.3 � 0.3‰ 3 2.193 � 0.004 1,193 � 4‰ 3
19°C Suc. 1.054 � 0.001 53.7 � 1.0‰ 12 2.063 � 0.024 1,063 � 24‰ 16

Suc.‡ 1.056 56.3‰ 1 2.159 1,159‰ 1
Ac. 1.060 � 0.001 59.6 � 1.0‰ 3 2.064 � 0.055 1,064 � 55‰ 3

30°C Suc. 1.049 � 0.001 49.3 � 0.6‰ 3 2.033 � 0.030 1,033 � 30‰ 3
All conditions 1.055 � 0.001 55.1 � 1.0‰ 22 2.078 � 0.018 1,078 � 18‰ 26

V-nitrogenase
19°C Suc. 1.051 � 0.002 51.4 � 2.3‰ 3 2.071 � 0.014 1,071 � 14‰ 5

aMean values � standard errors. Individual data points, including product and substrate isotopic compositions, are shown in Supplemental File 2. Suc., succinate; Ac.,
acetate; Suc.‡, acidified.

Stable Isotopes of Nitrogenase-Derived Methane Applied and Environmental Microbiology

October 2020 Volume 86 Issue 19 e00849-20 aem.asm.org 7

https://aem.asm.org


CH4-H2, and CH4-H2O is likely too slow to be important at the timescales (�weeks) and
temperatures (�30°C) of relevance to our experiments (37, 66–68). Our finding that
exogenous H2 does not alter the isotopic composition of product methane in the R.
palustris V- and Fe-only nitrogenase strains is consistent with other reports that the
source of protons for carbon monoxide reduction by nitrogenase is water, not hydro-
gen gas (16). We did not test whether the presence of exogenous H2 influences the
measured hydrogen isotope fractionation when an uptake hydrogenase is present (69),
a mechanism that may be significant for the �2HH2 effect on the isotopic composition
of methane generated by hydrogenotrophic methanogenesis (48, 56, 57, 59).

The second line of evidence demonstrates that H2 concentration does not influence
nitrogenase methane isotope fractionation by comparing the fractionations observed
in different growth containers and for the different strains. For a given growth container
and strain, cell density and hydrogen concentration are correlated (Fig. 6A; also see the
discussion in the supplemental material). However, their respective effects on frac-
tionation can be disentangled by comparing data from Balch tubes (10 ml medium,
17 ml headspace) and serum vials (180 ml medium, 60 ml headspace). As seen in
Fig. 6, hydrogen and carbon isotope fractionations in cultures with 10% to 20% H2

in the headspace at harvest overlap those of cultures with 20% to 50% H2 in the
headspace at harvest (P � 0.5) (Fig. 6C and E). We conclude that fractionation
during methane production by nitrogenase is not sensitive to hydrogen concen-
tration over the large range (10% to 50%) tested here. This is compatible with
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findings that carbon dioxide reduction by Mo-nitrogenase is not competitively
inhibited by H2 and does not proceed through the same reversible re (reductive
elimination of H2) step as N2 reduction (70). The lack of hydrogen partial pressure
dependency on fractionation contrasts with some modes of mcr-based methano-
genesis (2, 43, 48, 54–63).

Mechanistic implications for nitrogenase. Determining whether isotope effects
are due to equilibrium or kinetic fractionation and under what conditions they are fully
expressed can help elucidate the mechanism, intermediates, and reversibility of a
reaction. At 20°C, the equilibrium hydrogen isotope fractionation predicted between
methane and water, 2�H2O/CH4, is �1.019 (71). This is much smaller than the fraction-
ation observed for nitrogenase (�2.1), suggesting that kinetic, rather than equilibrium,
isotope effects are responsible for the large hydrogen isotope fractionation observed
here. This conclusion is consistent with the finding that fractionation of carbon dioxide
reduction by nitrogenase is larger at colder temperatures (Fig. 5B and F), which is
generally incompatible with an equilibrium isotope effect (72). These results lead us to
attribute the fractionation observed here (1.820 � 2�H2O/CH4 � KIE � 2.199, mean �

2.1) to a kinetic isotope effect (KIE) in which C1H4 methane production by V- and
Fe-only nitrogenase is roughly twice as fast as C1H3

2H methane production. We suggest
that these new values can help yield insight into the mechanism of CO2 reduction by
nitrogenase.

There is limited experimental data regarding hydrogen stable isotope fractionation
by nitrogenase. The only existing measurements of hydrogen stable isotope fraction-
ation are for H2 production (2�H2O/H2) in the absence of N2 by the Mo-nitrogenase (73).
Khadka and colleagues (73) used this data as a tool to determine the mechanism of H2

loss during activation of the cofactor, a catalytically inefficient reaction that competes
with N2 reduction (Fig. 7). They demonstrated, experimentally and computationally,
that the KIE of �2.7 for H2 production by Mo-nitrogenase is due to the preference for
1H during protonation of the bridging Fe-hydrides by highly acidic, protonated cofactor
sulfides.

The mechanism of CO2 reduction by nitrogenase is a subject of much study because
of its potential industrial application as a renewable fuel source (70, 74, 75, and
references therein). Our observation that the hydrogen KIE during methane production
(2�H2O/CH4) for V- and Fe-only nitrogenases is �2.1 represents a new experimental
constraint for these studies. There are several possible explanations for why the
2�H2O/CH4 value for alternative nitrogenases is lower than the 2�H2O/H2 of Mo-
nitrogenase (73). For example, it could be that the V- and Fe-only nitrogenases are less
selective for 1H than the Mo-nitrogenase. The nitrogenase isoforms have different
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cofactor and amino acid environments, which can alter protonation and substrate
selectivity (76–78 and references therein). Alternatively, it could be due to different
hydrogen isotope effects for different substrates (e.g., N2 versus CO2), possibly due to
differing contributions by the protonated sulfides, which can exchange with solvent at
the timescale relevant to the reaction, compared to the bridging Fe-hydrides, which do
not (Fig. 7) (73). It is also possible that proton tunneling, which is generally thought to
have a very large KIE (but also see references 96 and 97) and has been proposed to
occur in nitrogenase (79), could be contributing to the KIE observed here, although we
note that the temperature effect observed here is opposite the predicted effect for
tunneling (80, 81). Computational models, which can distinguish the rates of hydroge-
nation based on 1H and 2H, and might be able to shed light on the mechanism
responsible for the observed fractionation and whether the currently proposed, mul-
tistep mechanisms of hydrogenation by nitrogenase (82–85) are compatible with the
measured KIE of 2.1. The clumped isotopic composition of methane produced by
nitrogenase could also provide additional constraints.

Environmental relevance. The carbon and hydrogen isotopes of methane are
critical constraints for the attribution of emissions of this potent greenhouse gas to its
sources (86). Our characterization of nitrogenase’s biosignature helps refine the space
of possible source �13C and �2H values. The characteristic �2H signature of alternative
nitrogenases distinguishes them from other microbial and thermogenic methane
sources (Fig. 2). At �550‰, the �2H of nitrogenase-derived methane falls well below
the lowest values, around �400‰, that have been observed for other biotic and
abiotic processes (2, 39).

Given the ubiquity of carbon dioxide in cells and in the environment, it is likely that
some methane production is occurring whenever V- and Fe-only nitrogenases are
active. However, this flux is orders of magnitude smaller than N2 reduction (�5 � 10�4

CH4:1 N2 for Fe-only nitrogenase in our experiments; data not shown) and can be
limited by intracellular energy (10, 33) and presumably DIC availability. The Km values
of the V- and Fe-only nitrogenases for CO2 reduction into methane have not been
measured, but, based on similar systems, are likely at the high end of environmental
DIC concentrations, around 10 or 20 mM (see the discussion in the supplemental
material). It will be valuable for future studies to elucidate how variable CH4 production
stoichiometry by V- and Fe-only nitrogenases is and what factors control this variability.

Even without such data, it is clear that methane production by the V- and Fe-only
nitrogenases does not contribute quantitatively to methane production at the global
scale (10). For instance, assuming generously that �20% of the �145 Tg annual
terrestrial biological nitrogen fixation flux (�120 Tg year�1 from reference 87, corrected
for underestimation by the acetylene reduction assay as described in reference 27) is
fixed by Fe-only nitrogenase, and recognizing that methane itself is a minor by-product
of dinitrogen reduction (using 5 � 10�4 CH4:1 N2), the resultant �0.01 Tg year�1 is
negligible compared to total methane emissions of �560 Tg year�1 (88).

Nonetheless, we hypothesize that the alternative nitrogenases’ large hydrogen
isotope fractionations could influence methane isotopic composition, and act as a
biomarker for alternative nitrogenase activity, in nitrogen-limited environments with
low methanogenesis rates and high alternative nitrogenase activity. We developed a
simple isotope-mixing model to quantitatively determine the extent to which stable
isotopes can attribute methane production to alternative nitrogenase activity in envi-
ronments with multiple sources (Fig. 8). The model calculates the net 2�H2O/CH4 and �2H
of the mixed methane pool given the local water isotopic composition, the fraction of
total methane generated by nitrogenase, and net 2�H2O/CH4 fractionation values for
methane generated by other physiological pathways, not accounting for possible
contributions from �2HH2 or �2Hacetate. Based on a compilation of 2�H2O/CH4 values
measured in diverse pure-culture experiments (48), we suggest that 2�H2O/CH4 of �1.65
(shown in red in Fig. 8A) would provide evidence for alternative nitrogenase activity in
natural samples. Using this constraint, the isotopic mixing model demonstrates that
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methane stable isotopes can identify alternative nitrogenase activity as long as the rate
of methane production from nitrogenase is faster than or comparable to that of other
methane-producing pathways but not when it is slower.

The controls on alternative nitrogenase activity are not fully understood (e.g.,
references 25, 27, 89, and 98), although new tools (27, 34) are rapidly advancing our
understanding of their distribution. It is now well established that alternative nitroge-
nases are favored under conditions of low Mo availability (28, 90), although their
activity has been observed in some sedimentary environments that appeared to be
Mo-replete as well (26, 27). Aerobic soils, cyanolichens, mosses and other biocrusts, lake
and marine waters (8, 91), or sediment systems with high sulfate concentrations, where
sulfate reducers generally outcompete methanogens for substrates (3, 92), are possible
targets to test where and when alternative nitrogenases are active using methane
stable isotopes (10). Our results present an exciting avenue for future research aimed
at constraining the importance of nitrogenase to methane production in environments
with low activity of canonical methanogens and at illuminating the mechanism(s) of
nitrogenase CO2 reduction.

Conclusions. Nitrogenases are important enzymes in the global nitrogen cycle. The
curious observation that two of the three isoforms, V- and Fe-only, produce small
quantities of methane from carbon dioxide led us investigate the isotopic composition
of nitrogenase-derived methane as it compares to other biogenic and abiogenic
sources in nature. Here, we show that the �2H of nitrogenase-derived methane can be
as low as �550‰. This is significantly lower than the �2H of methane from all other
known processes. This result provides new experimental constraints on the mechanism
of the nitrogenase enzyme and demonstrates that significantly depleted hydrogen
stable isotopic composition constitutes a passive biosignature of V- and Fe-only
nitrogenase-derived methane. This isotopic fingerprint offers a means to probe the
contribution of alternative nitrogen fixation and nitrogenase methane emissions on
Earth and beyond.
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MATERIALS AND METHODS
Bacterial cultures. Rhodopseudomonas palustris strains CGA766 (V-nitrogenase strain; genotype,

ΔnifH nifD::Tn5 ΔanfA) and CGA755 (Fe-only nitrogenase strain; genotype, ΔnifH ΔvnfH) were grown in
batch cultures at 14, 19, and 30°C and �90 �mol photons m�2 s�1 under anaerobic photoheterotrophic
conditions in defined nitrogen-fixing medium with 2.5 �M Fe, 100 nM Mo, 10 �M V, Wolfe’s vitamin
solution, 0.0005% yeast extract, and either 10 mM succinate or 20 mM acetate (34, 41, 42). Where
applicable, the �2H of the growth medium was manipulated by adding 99.9% purity D2O (Cambridge
Isotope Laboratories, Inc.) to the growth medium. Bacterial growth was monitored by optical density at
660 nm (OD660) using a Genesys 20 visible spectrophotometer (Thermo Fisher Scientific) and converted
to cell density using the empirically observed relationship cells ml�1 � 2.29 � 109 � OD660.

Analytical. Methane concentrations in the culture headspaces were measured either on a Peak
Performer 1 gas chromatograph with N2 carrier gas (Peak Laboratories) or on a GC-8A with He carrier gas
(column, Supelco HayeSep N; column temperature, 80°C; detector temperature, 150°C; Shimadzu Instru-
ments) with flame ionization detectors. Calibration curves were made by sequentially diluting 100 ppm
or 1% CH4 standards with N2 in a 10-ml syringe with a Luer lock and, like the samples, loading 1 ml onto
the instrument using an injection loop. Hydrogen and carbon dioxide gas concentrations were measured
using gas chromatography with a thermal conductivity detector (GC-8AIT TCD; column, Restek Shin-
Carbon ST; column temperature, 100°C; detector temperature, 150°C; Shimadzu Instruments) with N2 as
the carrier gas. Dissolved methane was not quantified. We note that not all variables were measured in
all samples, and that the raw data points used for all the figures and calculations in this report are
available in the supplemental material.

Stable isotope measurements. Methane samples were analyzed for �2H and �13C at the UC Davis
Stable Isotope Facility. Depending on the methane concentration, samples were collected either in
preevacuated 12-ml soda glass vials (839W; Labco Limited) or diluted in He-flushed vials. Because sample
methane �2H was depleted relative to the lowest standard available at the UC Davis Stable Isotope
Facility (�276‰), a dilution series of a single sample was measured, and the resulting linearity correction
was applied to all samples (calculations included in Supplemental File 2). The constant hydrogen isotope
fractionation observed for Fe-only nitrogenase over a �500‰ range in �2H suggests that the analytical
methods employed are robust (Fig. 3). Samples for �13C analysis of CO2 were collected in the same
manner as those for methane. Samples for �13C of DIC were collected in He-flushed vials that contained
1 ml of concentrated high-performance liquid chromatography (HPLC)-grade phosphoric acid (85%;
Fisher Chemical). At the UC Davis Stable Isotope Facility, the �2HCH4, �13CCH4, �13CCO2, and �13CDIC samples
were measured on a Delta V Plus IRMS (Thermo Scientific, Bremen, Germany) coupled to a Gas Bench II
system. Water �2H samples were collected by filtering growth medium (0.22 �m) at the end of the
experiment and storing at �20°C. For analysis, samples were thawed, and 1.4 to 1.5 ml was aliquoted into
2-ml soda glass vials (National C4010-1W with C4010-40A caps; Thermo Scientific) and shipped on ice or
at room temperature overnight to the UC Davis Stable Isotope Facility, where they were measured on a
Laser Water Isotope Analyzer V2 (Los Gatos Research, Inc.). Biomass and substrate �13C were measured
in the Zhang stable isotope laboratory at Princeton as described previously (42) on a Vario ISOTOPE select
(Elementar Isoprime). The standard deviation of standard material replicates were 	1‰ for �2HH2O,
	2‰ for �2HCH4, 	0.2‰ for �13CCH4 (�10 ppm), 	0.2‰ for �13CCO2 and �13CDIC, and 	0.1‰ for
�13Cbiomass.

Isotope nomenclature. Hydrogen and carbon isotopes are expressed using delta notation relative
to Vienna Standard Mean Ocean Water (VSMOW) and Vienna Pee Dee Belemnite (VPDB), respectively:

2R � 2H ⁄ 1H

13R � 13C ⁄ 12C

�2H � 1,000 � ��2H ⁄ 1Hsample� ⁄ �2H ⁄ 1HVSMOW� 	 1� � 1,000 � �2Rsample ⁄ 2RVSMOW 	 1�
�2C � 1,000 � ��13C⁄12Csample� ⁄ �13C⁄12CVPDB� 	 1� � 1,000 � �13Rsample ⁄ 13RVPDB 	 1�

Apparent CO2-CH4 and water-CH4 isotope fractionation factors were calculated as substrate over
product using the equations

13�CO2⁄CH4 � 13RCO2 ⁄ 13RCH4 � ��13CCO2 
 1,000� ⁄ ��13CCH4 
 1,000�
2�H2O⁄CH4 � 2RH2O ⁄ 2RCH4 � ��2HH2O 
 1,000� ⁄ ��2HCH4 
 1,000�

� � �� 	 1) � 1,000‰

In this work, errors represent the standard errors of multiple biological replicates.
Isotope mixing model. To determine under what conditions the methane isotopic composition can

be used as a biosignature for alternative nitrogenase activity, we developed a mixing model that
calculates the fractionation and isotopic composition of methane produced by multiple sources (Fig. 8).
We used the following parameters: 2�Nase � 2.07; �2HH2O � �40‰ versus VSMOW as representative of
the mid-latitudes and �150‰ versus SVMOW as representative of northern latitudes; and k � the
fraction of total methane produced by nitrogenase. For fermentative methanogenesis, the model
assumes that all protons ultimately derive from local water. The observed fractionation and isotopic
composition were calculated using the equations

2FNase⁄mcrCH4 � 2RNase⁄mcrCH4 ⁄ �1 
 2RNase⁄mcrCH4�
2FCH4 � k � 2FNaseCH4 
 �1 	 k� � 2FmcrCH4
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Data availability. Individual data points are available in Supplemental File 2. In addition to
Supplemental File 2, these data are preserved in FigShare (https://figshare.com/articles/Data_associated
_with_large_hydrogen_isotope_fractionations_distinguish_nitrogenase-derived_methane_from
_other_sources_/12343997).

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 0.2 MB.
SUPPLEMENTAL FILE 2, XLSX file, 3.4 MB.
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